Descargar

Historia de la Informática (página 5)


Partes: 1, 2, 3, 4, 5

Computación Suave o Soft Computing

 Su objetivo es bien concreto: aumentar el "coeficiente intelectual" de las máquinas dándoles la habilidad de imitar a la mente humana, la cual es blanda, suave, flexible, adaptable e inteligente. Es la antítesis de la computación actual, asociada con la rigidez, la fragilidad, la inflexibilidad y la estupidez. Los métodos de la computación dura no proveen de suficientes capacidades para desarrollar e implementar sistemas inteligentes.

En lugar de confiar en las habilidades del programador, un verdadero programa de Computación Suave aprenderá de su experiencia por generalización y abstracción, emulando la mente humana tanto como pueda, especialmente su habilidad para razonar y aprender en un ambiente de incertidumbre, imprecisión, incompletitud y verdad parcial, propios del mundo real. De esta forma, es capaz de modelizar y controlar una amplia variedad de sistemas complejos, constituyéndose como una herramienta efectiva y tolerante a fallas para tratar con los problemas de toma de decisiones en ambientes complejos, el razonamiento aproximado, la clasificación y compresión de señales y el reconocimiento de patrones. Sus aplicaciones están relacionadas, entre otras, con el comercio, las finanzas, la medicina, la robótica y la automatización.

La Computación Suave combina diferentes técnicas modernas de Inteligencia Artificial como Redes Neuronales, Lógica Difusa, Algoritmos Genéticos y Razonamiento Probabilística, esta última incluyendo Algoritmos Evolutivos, Sistemas Caóticos, Redes de Opinión y, aunque solo parcialmente, Teoría de Aprendizaje. No obstante, conviene aclarar, la Computación Suave no es una mezcla con estos ingredientes, sino una disciplina en la cual cada componente contribuye con una metodología distintiva para manejar problemas en su dominio de aplicación que, de otra forma, se tornarían irresolubles. De una forma complementaria y sinérgica -en lugar de competitiva-, conduce a lo que se denomina "sistemas inteligentes híbridos", siendo los más visibles los neuro-difusos, aunque también se están empezando a ver los difuso-genéticos, los neuro-genéticos y los neuro-difusos-genéticos.  

Cyborgs

 Dentro de algunos años, podría haber sofisticados sistemas computacionales implantados dentro mismo del sistema nervioso humano y enlazados con las partes sensitivas del cerebro. De este modo, y a través de las ondas cerebrales, el hombre podrá interactuar directamente con su "anexo cibernético" a través de sus procesos de pensamiento, mejorando su rendimiento, expandiendo sus habilidades innatas o creando otras nuevas. Incluso el cerebro humano tendría integradas las funciones de algunos dispositivos actuales como el celular, el pager, el e-mail o la agenda.

Por ejemplo, cualquiera podría tener en su memoria y a su disposición súbita y virtualmente la totalidad de los conocimientos de la humanidad, con el agregado de que estarán permanentemente actualizados. Sin embargo, estarían en la memoria de la microcomputadora, no en la memoria del ser humano. Este podría tener acceso a ella, ya que estarán completamente integrados, pero no lo podría entender hasta que no lo haya "concientizado", comprendiendo el significado de cada frase. En ese caso, sería posible conectarse con la computadora a voluntad y usarla para extraer recuerdos específicos. Incluso, la nueva capa encefálica artificial podría hacer surgir "en vivo" los recuerdos guardados en la mente humana con la misma intensidad con que fueron realidad en un remoto pasado. Con las "películas omnisensoriales on-line", por ejemplo, uno podría llegar a convertirse en un "copiloto" que experimenta la realidad de otra persona en el mismo momento en que ésta lo está viviendo.  

El gran salto en la Informática y las Telecomunicaciones se dará con el uso de los Componentes de la Luz

 Es ciertamente muy difícil hablar sobre el futuro: una y otra vez hemos visto cómo la extraordinaria inventiva humana deja atrás cualquier predicción y cómo, a su vez, la naturaleza nos da muestras de ser mucho más rica y sutil de lo que puede ser imaginado. Sin embargo, avances recientes en las aplicaciones físicas asociados a las tecnologías de la información basados en las propiedades de los componentes de la luz (fotones), y de la materia (electrones), así como en la aplicación de las leyes de la naturaleza a este nivel (los principios de la mecánica cuántica), nos permiten prever para las próximas décadas un avance importante en los límites de la computación y las comunicaciones. Se abrirán así grandes posibilidades para la humanidad en el siglo XXI. Aún si la industria de los semiconductores ha seguido la "ley de Moore", según la cual el poder de los procesadores se duplica cada 18 meses, lo cierto es que la tecnología actual tiene un límite físico impuesto por la miniaturización de los componentes y, por consiguiente, por las dimensiones del procesador y por el número de transistores, puesto que las señales eléctricas no pueden sobrepasar la velocidad de la luz.

Un grupo de investigadores del Laboratorio Nacional de Sandia en Albuquerque, Nuevo México, puso en operación por primera vez un cristal fotónico en tres dimensiones, que es el equivalente para la luz (fotones) de lo que los semiconductores y transistores usuales son para los electrones. La luz es desviada en los diversos materiales que constituyen el cristal fotónico, que actúa como un switch de luz que servirá de base para los futuros transistores ópticos. A diferencia de los procesadores actuales que operan a velocidades en el rango de los millones de oscilaciones por segundo, los transistores ópticos tendrán capacidad de operar un millón de veces más rápido, lo que equivale a un millón de millones de ciclos por segundo.

Se llevó a cabo en la Universidad de Harvard un experimento nunca antes realizado, en el que la velocidad de la luz es reducida a 17 metros por segundo de su velocidad en el vacío de 300.000 kilómetros por segundo. Para lograr este efecto, se creó un medio de materia condensada llamado "transparencia inducida por electromagnetismo" utilizando un sistema de láser, que permitió reducir la velocidad de la luz por un factor de 20 millones sin ser absorbida. Se espera alcanzar próximamente velocidades tan bajas como centímetros por segundo en la propagación de la luz para aplicaciones prácticas de conversión óptico-electrónica y conversión de la luz de una frecuencia a otra, aspectos necesarios para implementar la tecnología óptica en los computadores y sistemas de comunicaciones en el futuro.

Una propiedad básica de los electrones es su spin u orientación de su rotación intrínseca, que actúa como un minúsculo magneto. Esta propiedad es la base de otra nueva tecnología, la spintrónica, donde el uso de las corrientes de spin de los electrones en un circuito de información se usa en lugar de las corrientes de carga eléctrica en la electrónica. Como fue demostrado recientemente en la Universidad de California, en Santa Bárbara, esta tecnología puede ser viable para transportar información en los computadores cuánticos.               

El Futuro de las Telecomunicaciones

 Siguiendo el ritmo de desarrollo actual, veremos en la primera década del siglo XXI crecer el número de usuarios de Internet de unos 100 millones en la actualidad a unos 1.000 millones. El modelo de Internet posiblemente se impondrá en todos los aspectos de las telecomunicaciones, e incluso sustituirá la telefonía actual. Los protocolos de comunicación de Internet son simples y poderosos y pueden adaptarse a todo tipo de aplicaciones y a un gran crecimiento.

Un ejemplo de las aplicaciones tecnológicas del siglo XXI es el Proyecto Abilene, parte del Proyecto Internet 2, que interconecta a las universidades y centros de investigación más importantes en Estados Unidos. En Europa, el proyecto equivalente se conoce como TEN-155 y une a las universidades en16 países en el viejo continente. Abilene, es un proyecto conjunto de la Corporación Universitaria de Desarrollo Avanzado de Internet, y de las empresas Qwest, Cisco y Nortel. La velocidad usada en las aplicaciones de Abilene es 100.000 veces mayor que una conexión usual por módem. Aplicaciones como telecirugía y acceso remoto a telescopios, laboratorios e instrumentos avanzados de investigación y enseñanza serán cotidianas.

El Futuro del Software

 Los avances en los límites de la computación no podrían ser aprovechados sin un avance paralelo en el desarrollo de las aplicaciones y la accesibilidad de las tecnologías. Con el rol central y cada vez más importante de Internet, es posible que el software en el futuro sea cada vez más utilizado, distribuido y creado en la misma red de Internet en una forma abierta y disponible para todos.  

Historia de la informática

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

Tabla de contenidos

[]

  • 1 Texto de titular
  • 2 Línea Cronológica (ayuda a mejorarla)
    • 2.1 Calculador digital
  • 3 Segunda Guerra Mundial
  • 4 Posguerra
    • 4.1 Cronología
  • 5 Enlaces externos

Historia del hardware

  • Primera generación
  • Segunda generación
  • Tercera generación
  • Cuarta generación
  • Quinta generación

Historia del software

  • Sistemas operativos
  • Lenguajes de programación
  • Ingeniería del software

Interfaz de usuario

Internet

Juegos de computadora

La computadora o computador no es invento de alguien en especial, sino el resultado de ideas y realizaciones de muchas personas relacionadas con la electrónica, la mecánica, los materiales semiconductores, la lógica, el álgebra y la programación.

Línea Cronológica

Los primeros troligios de cálculo, se remontan a 3000 adC. Los babilonios que habitaron en la aitigua Mesopotamia empleaban unas pequeñas bolas hechas de semillas o pequeñas piedras, a manera de "cuentas" agrupadas en carriles de caña.

Posteriormente, en el año 1800 adC, un matemático babilónico inventó los algoritmos que permitieron resolver problemas de cálculo numérico. Algoritmo es un conjunto ordenado de operaciones propias de un cálculo.

Ábaco

Los chinos desarrollaron el ábaco, con éste realizaban cálculos rápidos y complejos. Éste instrumento tenía un marco de madera cables horizontales con bolas agujereadas que corrían de izquierda a derecha.

En el siglo XVII, John Napier, matemático escocés famoso por su invención de los logaritmos (unas funciones matemáticas que permiten convertir las multiplicaciones en sumas y las divisiones en restas) inventó un dispositivo de palillos con números impresos que, merced a un ingenioso y complicado mecanismo, le permitía realizar operaciones de multiplicación y división.

Una Pascalina firmada por Pascal del año 1652.

En 1642 el físico y matemático francés Blaise Pascal inventó el primer calculador mecánico, la pascalina. A los 18 años de edad, deseando reducir el trabajo de cálculo de su padre, funcionario de impuestos, fabricó un dispositivo de 8 ruedas dentadas en el que cada una hacía avanzar un paso a la siguiente cuando completaba una vuelta. Estaban marcadas con números del 0 al 9 y había dos para los decimales, con lo que podía manejar números entre 000000,01 y 999999,99. Giraban mediante una manivela, con lo que para sumar o restar había que darle el número de vueltas correspondiente en un sentido o en otro. Treinta años después el filósofo y matemático alemán Leibnitz inventó una máquina de calcular que podía multiplicar, dividir y obtener raíces cuadradas en sistema binario. A los 26 años aprendió matemáticas de manera autodidáctica y procedió a inventar el cálculo infinitesimal, honor que comparte con Newton.

En 1801 el francés Joseph Marie Jacquard, utilizó un mecanismo de tarjetas perforadas para controlar el dibujo formado por los hilos de las telas confeccionadas por una máquina de tejer. Estas plantillas o moldes metálicos perforados permitían programar las puntadas del tejido, logrando obtener una diversidad de tramas y figuras.

Charles Babbage (1793-1871) creó un motor analítico que permitía sumar, sustraer, multiplicar y dividir a una velocidad de 60 sumas por minuto. En 1843 Lady Ada Augusta Lovelace sugirió la idea de que las tarjetas perforadas se adaptaran de manera que causaran que el motor de Babbage repitiera ciertas operaciones. Debido a esta sugerencia algunos consideran a Lady Lovelace la primera programadora.

En 1879, a los 19 años de edad, Herman Hollerith fue contratado como asistente en las oficinas del censo estadounidense y desarrolló un sistema de cómputo mediante tarjetas perforadas en las que los agujeros representaban el sexo, la edad, raza, entre otros. Gracias a la máquina tabuladora de Hollerith el censo de 1890 se realizó en dos años y medio, cinco menos que el censo de 1880.

Hollerith dejó las oficinas del censo en 1896 para fundar su propia Compañía: la Tabulating Machine Company. En 1900 había desarrollado una máquina que podía clasificar 300 tarjetas por minuto (en vez de las 80 cuando el censo), una perforadora de tarjetas y una máquina de cómputo semiautomática. En 1924 Hollerith fusionó su compañía con otras dos para formar la International Business Machines hoy mundialmente conocida como IBM.

Calculador digital

A comienzos de los años 30, John Vincent Atanasoff, un estadounidense doctorado en física teórica, hijo de un ingeniero eléctrico emigrado de Bulgaria y de una maestra de escuela, se encontró con que los problemas que tenía que resolver requerían una excesiva cantidad de cálculo. Aficionado a la electrónica y conocedor de la máquina de Pascal y las teorías de Babbage, empezó a considerar la posibilidad de construir un calculador digital. Decidió que la máquina habría de operar en sistema binario, y hacer los cálculos de modo distinto a como los realizaban las calculadoras mecánicas.

Con 650 dólares donados por el Consejo de Investigación del Estado de Iowa, contrató la cooperación de

Clifford Berry, estudiante de ingeniería, y los materiales para un modelo experimental. Posteriormente recibió otras donaciones que sumaron 6460 dólares. Este primer aparato fue conocido como ABC Atanasoff- Berry-Computer

Prácticamente al mismo tiempo que Atanasoff, el ingeniero John Mauchly, se había encontrado con los mismos problemas en cuanto a velocidad de cálculo, y estaba convencido de que habría una forma de acelerar el proceso por medios electrónicos. Al carecer de medios económicos, construyó un pequeño calculador digital y se presentó al congreso de la Asociación Americana para el Avance de la Ciencia para presentar un informe sobre el mismo. Allí, en diciembre de 1940, se encontró con Atanasoff, y el intercambio de ideas que tuvieron originó una disputa sobre la paternidad del computador digital.

Segunda Guerra Mundial

En 1941 Mauchly se matriculó en unos cursos en la Escuela Moore de Ingeniería Eléctrica de la Universidad de Pensilvania, donde conoció a John Presper Eckert, un instructor de laboratorio. La escuela Moore trabajaba entonces en un proyecto conjunto con el ejército para realizar unas tablas de tiro para armas balísticas. La cantidad de cálculos necesarios era inmensa, tanto que se demoraba unos treinta días en completar una tabla mediante el empleo de una máquina de cálculo analógica. Aun así, esto era unas 50 veces más rápido de lo que tardaba un hombre con una sumadora de sobremesa.

ENIAC

ENIAC

Mauchly publicó un artículo con sus ideas y las de Atanasoff, lo cual despertó el interés de Herman Goldstine, un oficial de la reserva que hacía de intermediario entre la universidad y el ejército, el cual consiguió interesar al Departamento de Ordenación en la financiación de un computador electrónico digital. El 9 de abril de 1943 se autorizó a Mauchly y Eckert iniciar el desarrollo del proyecto. Se le llamó Electronic Numerical integrator and Computer (ENIAC) y comenzó a funcionar en las instalaciones militares norteamericanas del campo Aberdeen Proving Ground en Agosto de 1947. La construcción tardó 4 años y costó $486.804,22 dólares (el equivalente actual a unos tres millones de dólares por menos poder de cómputo del que actualmente se consigue en las calculadoras de mano).

El ENIAC tenía 19.000 tubos de vacío, 1500 relés, 7500 interruptores, cientos de miles de resistencias, condensadores e inductores y 800 kilómetros de alambres, funcionando todo a una frecuencia de reloj de 100.000 ciclos por segundo. Tenía 20 acumuladores de 10 dígitos, era capaz de sumar, restar, multiplicar y dividir, y tenía tres tablas de funciones. La entrada y la salida de datos se realizaba mediante tarjetas perforadas. Podía realizar unas 5000 sumas por segundo. Pesaba unas 30 toneladas y tenía un tamaño equivalente al de un salón de clases. Consumía 200 kilovatios de potencia eléctrica y necesitaba un equipo de aire acondicionado para disipar el gran calor que producía. En promedio, cada tres horas de uso fallaba una de las válvulas.

Lo que caracterizaba al ENIAC como a un computador moderno no era simplemente su velocidad de cálculo, sino el que permitía realizar tareas que antes eran imposibles.

Mark 1

Enigma.

Konrad Zuse.

Entre 1939 y 1944, Howard Aiken de la Universidad de Harvard, en colaboración con IBM, desarrolló el Mark 1, conocido como Calculador Automático de Secuencia Controlada. Fue un computador electromecánico de 16 metros de largo y unos 2 de alto. Tenía 700.000 elementos móviles y varios centenares de kilómetros de cables. Podía realizar las cuatro operaciones básicas y trabajar con información almacenada en forma de tablas. Operaba con números de hasta 23 dígitos y podía multiplicar tres números de 8 dígitos en 1 segundo.

El Mark 1, y las versiones que posteriormente se realizaron del mismo, tenían el mérito de asemejarse al tipo de máquina ideado por Babbage, aunque trabajaban en código decimal y no en binario.

El avance que dieron estas máquinas electromecánicas a la informática fue rápidamente ensombrecido por el ENIAC con sus circuitos electrónicos.

Alan Turing, matemático inglés, descifra los códigos secretos Enigma usados por la Alemania nazi para sus comunicaciones. Turing fue un pionero en el desarrollo de la lógica de los computadores modernos, y uno de los primeros en tratar el tema de la inteligencia artificial con máquinas.

Norbert Wiener, trabajó con la defensa antiaérea estadounidense y estudió la base matemática de la comunicación de la información y del control de un sistema para derribar aviones. En 1948 publicó sus resultados en un libro que tituló CYBERNETICS (Cibernética), palabra que provenía del griego "piloto", y que se usó ampliamente para indicar automatización de procesos.

Computador Z3

El computador Z3, creado por Konrad Zuse, fue la primera máquina programable y completamente automática, características usadas para definir a un computador. Estaba construido con 2200 relés, tenía una frecuencia de reloj de ~5 Hz, y una longitud de palabra de 22 bits. Los cálculos eran realizados con aritmética en coma flotante puramente binaria. La máquina fue completada en 1941 (el 12 de mayo de ese mismo año fue presentada a una audiencia de científicos en Berlín). El Z3 original fue destruido en 1944 durante un bombardeo aliado de Berlín. Una réplica completamente funcional fue construida durante los años 60 por la compañía del creador Zuse KG y está en exposición permanente en el Deutsches Museum. En 1998 se demostró que el Z3 es Turing completo.

Posguerra

Cronología

1946

John von Neumann

John Von Neumann propuso una versión modificada del ENIAC; el EDVAC, que se construyó en 1952. Esta máquina presentaba dos importantes diferencias respecto al ENIAC: En primer lugar empleaba aritmética binaria, lo que simplificaba enormemente los circuitos electrónicos de cálculo. En segundo lugar, permitía trabajar con un programa almacenado. El ENIAC se programaba enchufando centenares de clavijas y activando un pequeño número de interruptores. Cuando había que resolver un problema distinto, era necesario cambiar todas las conexiones, proceso que llevaba muchas horas.

Von Neumann propuso cablear una serie de instrucciones y hacer que éstas se ejecutasen bajo un control central. Además propuso que los códigos de operación que habían de controlar las operaciones se almacenasen de modo similar a los datos en forma binaria. De este modo el EDVAC no necesitaba una modificación del cableado para cada nuevo programa, pudiendo procesar instrucciones tan deprisa como los datos. Además, el programa podía modificarse a sí mismo, ya que las instrucciones almacenadas, como datos, podían ser manipuladas aritméticamente.

1951

Eckert y Mauchly entregan a la Oficina del Censo su primer computador: el UNIVAC I. Posteriormente aparecería el UNIVAC-II con memoria de núcleos magnéticos, lo que le haría superior a su antecesor, pero, por diversos problemas, esta máquina no vio la luz hasta 1957, fecha en la que había perdido su liderazgo en el mercado frente al 705 de IBM.

1953

IBM fabricó su primer computadora gran escala, el IBM 650.

1958

Comienza la segunda generación de computadoras, caracterizados por usar circuitos transistorizados en vez de válvulas al vacío. Un transistor y una válvula cumplen funciones equivalentes, con lo que cada válvula puede ser reemplazada por un transistor. Un transistor puede tener el tamaño de una lenteja mientras que un tubo de vacío tiene un tamaño mayor que el de un cartucho de escopeta de caza. Mientras que las tensiones de alimentación de los tubos estaban alrededor de los 300 voltios, las de los transistores vienen a ser de 10 voltios, con lo que los demás elementos de circuito también pueden ser de menor tamaño, al tener que disipar y soportar tensiones mucho menores. El transistor es un elemento constituido fundamentalmente por silicio o germanio. Su vida media es prácticamente ilimitada y en cualquier caso muy superior a la del tubo de vacío.

1962

El mundo estuvo al borde de una guerra nuclear entre la Unión Soviética y los Estados Unidos, en lo que se denominó "la Crisis de los misiles de Cuba". A causa de esto, una de las preocupaciones de las ejército de los Estados Unidos era conseguir una manera de que las comunicaciones fuesen más seguras en caso de un eventual ataque militar con armas nucleares. Como solución entró en consideración solamente el proceso de datos en forma electrónica. Los mismos datos se deberían disponer en diferentes computadores alejados unos de otros. Todos los computadores entrelazados deberían poder enviarse en un lapso corto de tiempo el estado actual de los datos nuevos o modificados, y cada uno debería poder comunicarse de varias maneras con cada otro. Dicha red también debería funcionar si un computador individual o cierta línea fuera destruida por un ataque del enemigo.

Joseph Carl Robnett Licklider escribió un ensayo sobre el concepto de Red Intergaláctica, donde todo el mundo estaba interconectado para acceder a programas y datos desde cualquier lugar del planeta. En Octubre de ese año, Lickider es el primer director de ARPA (Advanced Research Projects Agency), o Agencia de Proyectos de Investigación Avanzada, una organización científica creada en 1958 como contestación a la puesta en orbita por parte de los rusos del primer satélite conocido como Sputnik.

1963

Caracteres ASCII imprimibles, del 32 al 126.

Un comité Industria-Gobierno desarrolla el código de caracteres ASCII, (se pronuncia asqui), el primer estándar universal para intercambio de información (American Standard Code for Information Interchange), lo cual permitió que máquinas de todo tipo y marca pudiesen intercambiar datos.

1964

La aparición del IBM 360 marca el comienzo de la tercera generación. Las placas de circuito impreso con múltiples componentes pasan a ser reemplazadas por los circuitos integrados. Estos elementos son unas plaquitas de silicio llamadas chips, sobre cuya superficie se depositan por medios especiales unas impurezas que hacen las funciones de diversos componentes electrónicos. Esto representa un gran avance en cuanto a velocidad y, en especial, en cuanto a reducción de tamaño. En un chip de silicio no mayor que un centímetro cuadrado caben 64.000 bits de información. En núcleos de ferrita esa capacidad de memoria puede requerir cerca de un litro en volumen.

Investigadores del Instituto Tecnológico de Massachusetts (MIT), de la

Corporación Rand y del Laboratorio Nacional de Física de la Gran Bretaña, presentaron simultáneamente soluciones a lo propuesto por las Fuerzas Armadas norteamericanas. Y ese mismo año la Fuerza Aérea le asignó un contrato a la Corporación RAND para la llamada "red descentralizada". Ese proyecto fracasó después de muchos intentos y nunca fue realizado, pero la idea de una red que no dependiese de un solo punto central y con la transferencia de datos por paquete se quedó anclada en la cabeza de muchas personas.

Paul Baran, quien por ese entonces trabajaba con Rand Corporation, fue uno de los primeros en publicar en Data Communications Networks sus conclusiones en forma casi simultánea con la publicación de la tesis de Kleinrock sobre teoría de líneas de espera. Diseñó una red de comunicaciones que utilizaba computadores y no tenía núcleo ni gobierno central. Además, asumía que todas las uniones que conectaban las redes eran altamente desconfiables.

El sistema de Baran trabajaba con un esquema que partía los mensajes en pequeños pedazos y los metía en sobres electrónicos, llamados "paquetes", cada uno con la dirección del remitente y del destinatario. Los paquetes se lanzaban al seno de una red de computadores interconectados, donde rebotaban de uno a otro hasta llegar a su punto de destino, en el cual se juntaban nuevamente para recomponer el mensaje total. Si alguno de los paquetes se perdía o se alteraba (y se suponía que algunos se habrían de dislocar), no era problema, pues se volvían a enviar.

1966

La organización científica ARPA se decidió a conectar sus propios computadores a la red propuesta por Baran, tomando nuevamente la idea de la red descentralizada. A finales de 1969 ya estaban conectados a la red ARPA los primeros cuatro computadores, y tres años más tarde ya eran 40. En aquellos tiempos era, sin embargo, la red propia de ARPA. En los años siguientes la red fue llamada ARPANET (red ARPA), y su uso era netamente militar.

Ken Thompson y Dennis Ritchie

Un grupo de investigadores de los Laboratorios Bell (hoy AT&T) desarrolló un sistema operativo experimental llamado Multics (Información multiplexada y Sistema de Computación) para usar con un computador General Electric. Los laboratorios Bell abandonaron el proyecto, pero en 1969, Ken Thompson, uno de los investigadores del Multics, diseñó un juego para dicho computador, que simulaba el sistema solar y una nave espacial. Con la ayuda de Dennis Ritchie, Thompson volvió a escribirlo, ahora para un computador DEC (Digital Equipment Corporation), aprovechando que, junto con Ritchie había creado también un sistema operativo multitarea, con sistema de archivos, intérprete de órdenes y algunas utilidades para el computador DEC. Se le llamó UNICS (Información Uniplexada y Sistema de Computación) y podía soportar dos usuarios simultáneamente. En 1970 se renombró Unix. Su licencia de uso era muy costosa, lo cual lo ponía fuera del alcance de muchas personas. Esto motivaría luego la creación del Proyecto GNU para el desarrollo de software libre.

1969

La organización ARPA junto con la compañía Rand Corporation desarrolló una red sin nodos centrales basada en conmutación de paquetes tal y como había propuesto Paul Baran. La información se dividía en paquetes y cada paquete contenía la dirección de origen, la de destino, el número de secuencia y una cierta información. Los paquetes al llegar al destino se ordenaban según el número de secuencia y se juntaban para dar lugar a la información. Al viajar paquetes por la red, era más difícil perder datos ya que, si un paquete concreto no llegaba al destino o llegaba defectuoso, el computador que debía recibir la información sólo tenía que solicitar al computador emisor el paquete que le faltaba. El protocolo de comunicaciones se llamó NCP. Esta red también incluyó un gran nivel de redundancia (repetición) para hacerla más confiable.

ARPANET conectó los ordenadores centrales vía ordenadores de pasarela pequeños, o "routers", conocidos como Interface Message Processors (IMPs). El 1 de septiembre de 1969 el primer IMP llegó a UCLA. Un mes después el segundo fue instalado en Stanford. Después en UC Santa Barbara y después en la Universidad de Utah.

1971

Correo electrónico y FTP

Se creó el primer programa para enviar correo electrónico. Fue Ray Tomlinson, del BBN, y combinaba un programa interno de correo electrónico y un programa de transferencia de ficheros. También en este año un grupo de investigadores del MIT presentaron la propuesta del primer "Protocolo para la transmisión de archivos en Internet". Era un protocolo muy sencillo basado en el sistema de correo electrónico pero sentó las bases para el futuro protocolo de transmisión de ficheros (FTP).

Las instituciones académicas se interesaron por estas posibilidades de conexión. La NSF dio acceso a sus seis centros de supercomputación a otras universidades a través de la ARPANET. A partir de aquí se fueron conectando otras redes, evitando la existencia de centros, para preservar la flexibilidad y la escalabilidad.

1973

ARPA cambia su nombre por DARPA, inicia un programa para investigar técnicas y tecnologías para interconectar redes de tipos diferentes y se lanzan dos nuevas redes: ALOHAnet, conectando siete computadores en cuatro islas, y SATNET, una red conectada vía satélite, enlazando dos naciones: Noruega e Inglaterra.

Lawrence Roberts se propone interconectar a DARPA con otras redes, PRNET y SATNET, con diferentes interfaces, tamaños de paquetes, rotulados, convenciones y velocidades de transmisión.

1974

Vinton Cerf, conocido como el padre de Internet, junto con Bob Kahn, publican "Protocolo para Intercomunicación de Redes por paquetes", donde especifican en detalle el diseño de un nuevo protocolo, el Protocolo de control de transmisión (TCP, Transmission Control Protocol), que se convirtió en el estándar aceptado. La implementación de TCP permitió a las diversas redes conectarse en una verdadera red de redes alrededor del mundo.

Se crea el sistema Ethernet para enlazar a través de un cable único a las computadoras de una red local (LAN).

1975

En enero la revista Popular Electronics hace el lanzamiento del Altair 8800, el primer computador personal reconocible como tal. Tenía una CPU Intel de 8 bits y 256 bytes de memoria RAM. El código de máquina se introducía por medio de interruptores montados en el frente del equipo, y unos diodos luminosos servían para leer la salida de datos en forma binaria. Costaba 400 dólares, y el monitor y el teclado había que comprarlos por separado. Se funda Microsoft al hacer un interpretador BASIC para esta máquina.

1976

Se funda Apple. Steve Wozniak desarrolla el Apple I para uso personale, a Steve Jobs se le ocurre comercializarlo.

1977

El Apple II

Se hace popular el ordenador Apple II, desarrollado por Steve Jobs y Steve Wozniak en un garaje, y al año siguiente se ofrece la primera versión del procesador de texto WordStar.

1979

Hoja de cálculo

Dan Bricklin crea la primera hoja de cálculo, más tarde denominada VisiCalc, la cual dio origen a Multiplan de Microsoft, Lotus 1-2-3 (en 1982), Quattro Pro, y Excel.

ARPA crea la primera comisión de control de la configuración de Internet y en 1981 se termina de definir el protocolo TCP/IP (Transfer Control Protocol / Internet Protocol) y ARPANET lo adopta como estándar en 1982, sustituyendo a NCP. Son las primeras referencias a Internet, como "una serie de redes conectadas entre sí, específicamente aquellas que utilizan el protocolo TCP/IP". Internet es la abreviatura de Interconnected Networks, es decir, Redes interconectadas, o red de redes.

1980

En octubre, la IBM comenzó a buscar un sistema operativo para su nueva computadora personal que iba a lanzar al mercado, cosa de la cual se enteraron Bill Gates y su amigo Paul Allen, autores del lenguaje de programación Microsoft BASIC, basado en el ya existente lenguaje BASIC. Ellos compraron los derechos de QDOS (Quick and Dirty Operating System), un sistema operativo desarrollado por Tim Paterson y basado en CP/M, un sistema escrito por Gary Kildall, y lo negociaron con IBM como Microsoft DOS.

1981

IBM PC 5150

El 12 de Agosto, IBM presenta el primer computador personal, el IBM PC reconocido popularmente como tal, con sistema operativo PC DOS y procesador Intel 8088. IBM y Microsoft son coautores del sistema operativo PC-DOS/MS-DOS, ya que IBM ayudó a Microsoft a pulir los muchos errores que el MS DOS tenía originalmente.

1983

Proyecto GNU

IBM presenta el IBM XT con un procesador 8088 de 4,77 Mhz de velocidad y un disco duro de 10 MB, Microsoft ofrece la versión 1.0 del procesador de palabras Word para DOS y ARPANET se separa de la red militar que la originó, de modo que ya sin fines militares se puede considerar esta fecha como el nacimiento de Internet. Es el momento en que el primer nodo militar se desliga, dejando abierto el paso para todas las empresas, universidades y demás instituciones que ya por esa época poblaban la red.

Richard Stallman, quien por ese entonces trabajaba en el Instituto Tecnológico de Massachusetts (MIT), decidió dedicarse al proyecto de software libre que denominó GNU.

1984

IBM presenta el IBM AT, un sistema con procesador Intel 286, bus de expansión de 16 bits y 6 Mhz de velocidad. Tenía 512 KB de memoria RAM, un disco duro de 20 Mb y un monitor monocromático. Precio en ese momento: 5.795 dólares.

Apple Computer presenta su Macintosh 128K con el sistema operativo Mac OS, el cual introduce la interfaz gráfica ideada por Xerox.

1985

Microsoft presenta el sistema operativo Windows, demostrando que los computadores compatibles IBM podían manejar también el entorno gráfico, usual en los computadores Mac de Apple.

1986

Compaq lanza el primer computador basado en el procesador Intel 80386, adelantándose a IBM.

1990

WWW

Tim Berners-Lee ideó el hipertexto para crear el World Wide Web (www) una nueva manera de interactuar con Internet. Su sistema hizo mucho más fácil compartir y encontrar datos en Internet.

Berners-Lee también creó las bases del protocolo de transmisión HTTP, el lenguaje de documentos HTML y el concepto de los URL.

1991

Linux

Linus Torvalds, un estudiante de Ciencias de la Computación de la Universidad de Helsinki (Finlandia), al ver que no era posible extender las funciones del Minix, decidió escribir su propio sistema operativo compatible con Unix, y lo llamó Linux (el parecido con su nombre personal es mera coincidencia).

Miles de personas que querían correr Unix en sus PCs vieron en Linux su única alternativa, debido a que a Minix le faltaban demasiadas cosas. El proyecto GNU que Stallman había iniciado hacía ya casi diez años había producido para este entonces un sistema casi completo, a excepción del kernel, que es el programa que controla el hardware de la máquina, el cual desarrolló Torvalds y agregó al GNU para formar Linux.

A mediados de los años noventa Linux se había convertido ya en el Unix más popular entre la gente que buscaba alternativas al sistema Windows de Microsoft.

1992

Es indroducida Arquitectura Alpha diseñada por DEC e bajo el nombre AXP, como reemplazo a la serie VAX que comúnmente utilizaba el sistema operativo VMS y que luego originaría el openVMS. Cuenta con un set de instrucciones RISC de 64 bits especialmente orientada a cálculo de punto flotante. No se ha hecho muy popular pero si es reconocida su tecnología en el entorno corporativo.

1993

Un grupo de investigadores descubrieron que un rasgo de la mecánica cuántica, llamado entrelazamiento, podía utilizarse para superar las limitaciones de la teoría del cuanto (quantum) aplicada a la construcción de computadoras cuánticas y a la teleportación (teleportation).

1995

Lanzamiento de Windows 95. Desde entonces Microsoft ha sacado al mercado varias versiones tales como Windows 98, 2000 (Server y Professional), NT Workstation, NT SMB (Small Business Server), ME, XP (Professional y Home Edition) y VISTA.

1996

Se creó Internet2, más veloz que la Internet original, lo cual permite el manejo de archivos muy grandes y aplicaciones en videoconferencia, telemedicina y muchas otras cosas imprácticas por Internet 1. Fue resultado de la unión de 34 de las principales universidades de los Estados Unidos.

2000

Es presentado el prototipo de computador cuántico construido por el equipo de investigadores de IBM que constaba de 5 átomos, se programaba mediante pulsos de radiofrecuencia y su estado podía ser leído mediante instrumentos de resonancia magnética, similares a los empleados en hospitales y laboratorios de química. En este computador, cada uno de los átomos de flúor que lo componen actúa como un qubit; un qubit es similar a un bit en un computador electrónico tradicional, pero con las diferencias que comporta su naturaleza explícitamente cuántica (superposición de estados, entrelazamiento de los estados de dos qubits…).

2005

Los usuarios de internet con conexión de banda ancha superan a los usuarios de internet con conexión vía modem en la mayoría de países desarrollados. Sin duda alguna, la computación ha venido a revolucionar el mundo a nivel global.

2007

Es posible adquirir computadores con microprocesadores muy potentes y recientes que sobrepasan los limites de velocidad para la mayoría de utilidades de aprendizaje y estudio de niños y jóvenes, que para empresas y asociaciones pueden ser poco en el desarrollo de procesos de mantenimiento y transmisión de información, los microprocesadores son el alma de una computadora, dentro de los cuales pueden ser mencionados de Intel: Celeron M y Pentium M (especial para Notebooks), Pentium 4, Pentium D, Core 2 duo(que constan de doble núcleo),Core 2 Quad (de 4 núcleos), Celeron, Celeron D y Xeon, alcanzando velocidades de hasta 3.6 GHz y 4 Ghz en el caso de Xeon. De AMD existen algunos como: Athlon XP, Athlon 64, Athlon x2 (doble núcleo), Duron, Opteron, Athlon FX, etc… que presentan una mayor estabilidad que los de Intel, también así un menor precio, pero con la llegada de Core 2 Duo Intel ha recuperado su trono siendo el procesador más potente y estable actualmente. Actualmente la información esta al alcance de la mano de todo tipo de personas, Y es posible adquirir implementaciones de hadware para sacar el maximo rendimiento de una computadora personal, incluyendo las interfaces gráficas para la visualización de película y videos con una gran calidad, así como también la reproducción y manejo de sonidos y musica en varios formatos, ha habido un gran avance en el desarrollo de escritorios basados en GNU/Linux la cantidad de software disponible para el mismo es cada vez mayor, los sistemas basados en Windows siguen siendo mayoría en el mercado de escritorios. Aun así, en el mundo de las redes corporativas los sistemas *nix (GNU/Linux, BSD, etc) son utilizados en mayor extension que los sistemas operativos de Microsoft.

Enlaces externos

  • Commons alberga contenido multimedia sobre Historia de la informática.
  • Historia Cronológica de las computadoras Contiene fotografías.
  • Historia del PC Breve historia de la evolución del PC.

Obtenido de "http://es.wikipedia.org/wiki/Historia_de_la_inform%C3%A1tica"

Conclusión

Desde sus comienzos el Hombre ha buscado (y casi siempre con éxito) la manera de superar los obstáculos impuestos por sus propias limitaciones, desde la invención de la escritura como una forma de romper la barrera que le impedía interactuar con sus pares, pasando por etapas en las que su ingenio lo llevara a construir máquinas que simplificaran y resolvieran las tareas administrativas, estadísticas y contables, disminuyendo los esfuerzos del trabajo humano y acelerando el tiempo de cada proceso.

Las computadoras son el reflejo de la inteligencia humana, representan la materialización de todos aquellos aspectos del pensamiento que son automáticos, mecánicos y determinísticos. Ellas potencian enormemente las capacidades intelectuales del hombre.

Obviamente, las computadoras han invadido ya todos y cada uno de los campos de la actividad humana: ciencia, tecnología, arte, educación, recreación, administración, comunicación, defensa y de acuerdo a la tendencia actual, nuestra civilización y las venideras dependerán cada vez más de éstas.

Se están desarrollando nuevas investigaciones en las que un programa informático de Inteligencia Artificial al equivocarse puede aprender de sus errores y utilizar fórmulas alternativas para no volver a cometerlos.

Está claro que estamos transitando una nueva era en la que se avanza a pasos agigantados, sin mirar a veces el terreno por el que caminamos.

Así como Julio Verne nunca imaginó al escribir "20.000 Leguas de viaje Submarino" que el Nautilus un siglo después sería una realidad, (convirtiéndolo en un visionario), deberíamos replantearnos, a la velocidad que avanzan la ciencia y la tecnología, si lo que hoy vemos como ciencia ficción (como por ejemplo Matrix) no será algún día realidad, y en lugar de estar las maquinas al servicio del hombre, este pase a ser esclavo de ellas.

Por eso creo firmemente que "Aún nos queda mucho por Aprender", y espero que sepamos utilizar toda esa tecnología en pos de un futuro mejor para toda la humanidad.

Bibliografía

"Electrónica." Enciclopedia Microsoft Encarta 2001. 1993-2000 Microsoft Corporation. http://www.iacvt.com.ar/generaciones.htm http://www.formarse.com.ar/informatica/generaciones.htm

http://itesocci.gdl.iteso.mx/~ia27563/basico.htm

http://www.infosistemas.com.mx/soto10.htm

http://www.fciencias.unam.mx/revista/temas/contenido.html

http://www.monografias.com

Enciclopedia Microsoft Encarta 98  

 "Introducción a las Computadoras y al Procesamiento de la Información"; Cuarta Edición Joyanes A. Luis; Metodología de la Programación"; McGrawHill

 

Maria Esmelda Sánchez Ortiz

Partes: 1, 2, 3, 4, 5
 Página anterior Volver al principio del trabajoPágina siguiente