Descargar

Historia de la Informática (página 3)


Partes: 1, 2, 3, 4, 5

Microsoft Windows

 De los tantos sistemas operativos que se han hecho famosos a lo largo del desarrollo de la informática en el ocaso del siglo pasado, sin duda, ningún otro posee la peculiaridad del Windows de Microsoft. Rodeado por todo tipo de mitos acerca de su emprendedor y ambicioso creador, solidificado sobre la base de un sistema DOS, cuya irrupción en la primera PC tenía más de suerte que de propósito, amparado por disfrutar de un férreo y despiadado control de mercado es hoy por hoy, odiado o amado, el sistema operativo más extendido del planeta.

MS-DOS

Cuando IBM fabricó la PC hizo que el usuario antes de cargar algún SO, realizara lo que se llamó el POST (Power On Self Test), que determinaba los dispositivos disponibles (teclado, vídeo, discos, etc.) y luego buscaba un disco de arranque. Estas funciones eran realizadas por un conjunto de instrucciones incorporad.as en la máquina mediante una ROM Luego quedó escrito que siempre hubiera algún tipo de software en el sistema aún sin ser cargado el SO. Entre las rutinas del POST tenemos las de revisión del sistema, inicialización y prueba de teclado, habilitación de vídeo, chequeo de la memoria y la rutina de inicialización que preparaba a la máquina para ejecutar el DOS. Después que las pruebas de arranque han sido ejecutadas y el sistema está cargado, la ROM aún sigue siendo importante debido a que contiene el soporte básico de entrada y salida (BIOS). La BIOS provee un conjunto de rutinas que el SO o los programas de aplicación pueden llamar para manipular el monitor, teclado, discos duros, discos flexibles, puertos COM o impresoras.

El trato de IBM con Microsoft tenía entre otras condiciones una particularidad interesante: la administración directa de las tarjetas adaptadoras podría ser manejada sólo por programas que IBM proveía con la ROM del computador. El DOS sería escrito para utilizar estos servicios. De esta manera, si IBM decidía cambiar el hardware, éste podía embarcar nuevos modelos de chips con cambios en la BIOS y no requería que Microsoft cambiara el SO. Ello posibilitó, junto con la clonación de la arquitectura de IBM incluido la BIOS, que el DOS se extendiera por el universo, aun cuando el Gigante Azul rompiera su alianza con Microsoft, en 1991, para producir su propio SO. Microsoft había hecho un trabajo estratégico brillante e IBM había perdido la supremacía de las computadoras para siempre.

Realmente el núcleo del DOS estaba contenido en un par de archivos ocultos llamados IO.SYS y MSDOS.SYS en las versiones de DOS realizadas por Microsoft, e IBMBIO.SYS, para las versiones de DOS hechas por IBM bajo licencia Microsoft. Los servicios del DOS eran solicitados cuando una aplicación llamaba a la interrupción 21 (INT 21) reservada para estos fines. Esta buscaba un punto de entrada del administrador de servicios del DOS en una tabla y saltaba a la rutina en el módulo MSDOS.SYS. En otros SO, la aplicación debía realizar una llamada al sistema (system call) para requerir servicios, como, por ejemplo, en UNIX.

Otro rasgo distintivo del MS-DOS fue la forma en el manejo de la estructura de ficheros: la FAT (File Allocation Table) o Tabla de Asignación de Archivos, que dividía al disco en subdirectorios y archivos. Criticados por muchos como un sistema poco seguro y no eficiente, la herencia sobrevivió por mucho tiempo y no fue hasta época reciente que Microsoft decidió reemplazarlo por un sistema más robusto, el NTFS que destinó a la gama alta de sus SO: el Windows NT, 2000 y XP.

Windows 1.0

 Microsoft hizo su primera incursión en lo que luego se llamaría Microsoft Windows en el año 1981 con el llamado Interface Manager, en tiempos en que las interfaces gráficas de usuario, GUI, eran una quimera de lujo para muchos, en tanto la computación estaba suscripta al área geográfica de los centros académicos, grandes instituciones y empresas. Más que un SO, se trataba en realidad de una interfaz montada sobre su estrenado DOS. Aunque los primeros prototipos usaban una interfaz similar a una de las aplicaciones estrellas de la Compañía en aquel entonces, el Multiplan, luego ésta fue cambiada por menús pulldown y cuadros de diálogo, similares a las usadas en el programa Xerox Star del mencionado fabricante. Al sentir la presión de programas similares en aquel entonces, Microsoft anuncia oficialmente Windows a finales del año 1983. En ese momento, muchas compañías trabajan la línea de las interfaces gráficas, entre ellas Apple, reconocida casi por todos como la primera, DESQ de Quraterdeck, Amiga Workbech, NEXTstep, etc. Windows prometía una interfaz GUI de fácil uso, soporte multitarea y gráfico. Siguiendo el rito de los anuncio-aplazamientos de Microsoft, Windows 1.0 no llegó a los estantes de los negocios hasta noviembre de 1985, disponiendo de un soporte de aplicaciones pobres y un nivel de ventas pírrico. El paquete inicial de Windows 1.0 incluía: MS-DOS Ejecutivo, Calendario, Tarjetero, el Notepad, Terminal, Calculadora, Reloj, Panel de Control, el editor PIF (Program Information File), un Spooler de impresión, el Clipboard, así como el Windows Write y Windows Paint.

Windows 2.0

 Windows/286 y Windows/386, renombrados como Windows 2.0 terminan la saga en el otoño de 1987, al ofrecer algunas mejoras de uso, adicionar íconos y permitir la superposición de ventanas, lo que propició un marco mucho más apropiado para la co-ubicación de aplicaciones de mayor nivel como el Excel, Word, Corel Draw, Ami y PageMakers, etc. Una notoriedad del Windows/386 lo constituyó el hecho de poder correr aplicaciones en modo extendido y múltiples programas DOS de manera simultánea.

Windows 3.0

El Windows 3.0, que aparece en mayo de 1990, constituyó un cambio radical del ambiente Windows hasta entonces. Su habilidad de direccionar espacios de memorias por encima de los 640 k y una interfaz de usuario mucho más potente propiciaron que los productores se estimularan con la producción de aplicaciones para el nuevo programa. Ello, unido a la fortaleza dominante del MS-DOS como SO llevado de la mano de la gula insaciable del gigante corporativo, hizo que el Windows 3.0 se vislumbrara como el primer SO gráfico (siempre con el MS-DOS bajo su estructura) marcado para dominar el mercado de las PCs en el futuro inmediato. Windows 3.0 fue un buen producto, desde el punto de vista de las ventas: diez millones de copias.

Windows 3.1 y 3.11

En 1992 llegaría la saga del Windows 3.1 y 3.11, así como su variante para trabajo en grupo. Con éste se hizo patente el traslado de la mayoría de los usuarios del ambiente de texto que ofrecía el MS-DOS hacia el ambiente gráfico de la nueva propuesta, olvidándonos todos paulatinamente del Copy A: *.* para sustituirlo por el COPIAR Y PEGAR. Las primeras aplicaciones "adquiridas y/o desplazadas" por Microsoft ofrecidas como un todo único, el ambiente de RED peer to peer, los sistemas de upgrade de una versión a otra y el tratamiento diferenciado para los revendedores y los fabricantes OEM, caracterizaron los movimientos de Microsoft para afianzar el mercado de su SO insignia. En el caso de la versión para trabajo en grupo, Microsoft integró por primera vez su SO con un paquete de tratamiento para redes, lo que permitió, sobre un protocolo propio, el compartir ficheros entre PCs (incluso corriendo DOS), compartir impresoras, sistema de correo electrónico y un planificador para trabajo en grupo. Sin embargo, lo realmente llamativo consistió en su plena integración con el ambiente Windows y con ello garantizar, independiente de la calidad del producto final, un seguro predominio.

Windows 95

El año 1995 significó un nuevo vuelco en la línea de los SO de Microsoft. En agosto sale al mercado el controvertido Windows 95, un entorno multitarea con interfaz simplificada y con otras funciones mejoradas.

Parte del código de Windows 95 está implementado en 16 bits y parte en 32 bits. Uno de los motivos por los cuales se ha hecho así, ha sido para conservar su compatibilidad. Con Windows 95 podemos ejecutar aplicaciones de Windows 3.1 ó 3.11, MS-DOS y obviamente las nuevas aplicaciones diseñadas específicamente para

este sistema operativo. Entre las novedades que ofrece Windows 95 cabe destacar el sistema de ficheros de 32 bits, gracias al cual podemos emplear nombres de ficheros de hasta 256 caracteres (VFAT y CDFS), debido a que se trata de un sistema operativo de modo protegido, desaparece la barrera de los 640K, hemos de tener presente que aunque la mayor parte de Windows 3.1 es un sistema de modo protegido, este se está ejecutando sobre un sistema operativo que trabaja en modo real.

La interfaz de Windows 95 también ha sido mejorada. El primer gran cambio que veremos al empezar a trabajar será la desaparición del Administrador de Programas. Ahora tenemos un escritorio al estilo del Sistema 7 de los Macintosh o NeXTStep.

Viene a sustituir al sistema operativo DOS y a su predecesor Windows 3.1. Frente al DOS tiene tres ventajas importantes:

  • En primer lugar toda la información presentada al usuario es gráfica, mientras que el DOS trabaja con comandos en modo texto formados por órdenes difíciles de recordar.
  • En segundo lugar, Windows 95 define una forma homogénea de utilizar los recursos de la computadora, lo cual permite compartir datos entre las distintas aplicaciones, así como utilizar con facilidad los elementos de hardware ya instalados.
  • En tercer lugar Windows 95 es un sistema operativo que permite ejecutar varias aplicaciones a la vez (multitarea), mientras que en DOS sólo se puede ejecutar un programa en cada momento. 

A sólo siete semanas de su lanzamiento ya se habían vendido siete millones de copias. Es la época del despegue de Internet y el WWW, y su visualizador dominante: el Navigator de Netscape. Microsoft, en un error poco común de su timonel no se había dado cuenta que el futuro de las computadoras estaba precisamente en la red y que Internet significaría toda una revolución en la rama.

Además de "empotrar" su navegador y obligar a los fabricantes de PCs a tenerlo en cuenta, ese mismo año se crea The Microsoft Network y mediante su incursión acelerada en los medios masivos de comunicación, surge MSNBC, un año después.

Windows NT

La misión del equipo de desarrolladores que trabajó el NT estaba bien definida: construir un SO que supliera las necesidades de este tipo de programa para cualquier plataforma presente o futura. Con esa idea, el equipo encabezado por un antiguo programador de SO para máquinas grandes, se trazó los siguientes objetivos: portabilidad en otras arquitecturas de 32 bits, escalabilidad y multiprocesamiento, procesamiento distribuido, soporte API y disponer de mecanismos de seguridad clase 2 (C2), según parámetros definidos por el Gobierno estadounidense.

La robustez del sistema, fue un requisito a toda costa: el NT debía protegerse a sí mismo de cualquier mal funcionamiento interno o daño externo, accidental o deliberado, respondiendo de manera activa a los errores de hardware o software. Debía ser desarrollado orientado al futuro, prever las necesidades de desarrollo de los fabricantes de equipos de cómputo, su adaptación tecnológica no sólo al hardware, sino al propio software. Todo ello sin sacrificar el desempeño y eficiencia del sistema. En cuanto al certificado de seguridad, C2 debiera cumplir con los estándares establecidos por éste como la auditoría, la detección de acceso, protección de recursos, etc. Así nació el Windows NT 3.5, devenido 3.51 en el año 1994 y se introdujo poco a poco en un mercado hasta ese momento desterrado para Microsoft.

El NT 4.0 de nombre código Cairo, sale a luz en 1996. Por ahí leíamos que el nuevo sistema operativo cumplía una fórmula muy sencilla: tomar un NT 3.51, sumarle los service packs 1, 2 y 3 y mezclarlo con una interfaz a lo Windows 95 (incluido su papelera de reciclaje, algo realmente útil para un sistema montado sobre NTFS). Un paso más en la integración del SO con Internet lo dio el NT 4.0 al incluir Internet Information Server, servidor de Microsoft para soporte WEB, FTP, etc., como un utilitario más dentro del paquete y que como la lógica indicaba engranaba con éste a las mil maravillas al desplazar en eficiencia y velocidad cualquier producto externo. La cara "Windows 95" se sobrepuso a un inicio incierto, ya que tuvo que vencer la desconfianza que pudo haber generado. Téngase en cuenta, que la familia NT estaba orientada a un cliente en el que la estabilidad y seguridad del sistema eran el requisito número uno y ello contrastaba con la experiencia que había tenido el 95. Sin embargo, el golpe fue genial. Por primera vez, Microsoft mezcló la solidez con el fácil uso y desterró para siempre el concepto impuesto hasta entonces de que para las grandes compañías y las grandes empresas los servidores debían ser cosa de científicos de bata blanca. El crecimiento de los usuarios NT se multiplicó desde ese momento. EL 4.0 se comercializaba en tres versiones: Workstation, Server y Advanced Server para tres variantes de clientes tipo, el profesional de las ingenierías, incluido la informática, la pequeña y mediana empresas y la gran empresa.

Windows 98

 La llegada de Windows 98 no marcó mucha diferencia visual de su predecesor. Sin embargo, en el fondo fue todo un mensaje de lo que Microsoft haría para penetrar en el mercado de Internet y barrer con los que habían dominado en este tema hasta entonces. La indisoluble integración del WEB con el escritorio, el llamado active desktop, la interfaz   "HTML", los canales y la persistente presencia del Explorer 4.0, para situarse por vez primera a la cabeza de los visualizadores de Internet, fueron rasgos distintivos de esta versión. El 98 incluyó utilidades para el tratamiento de FAT16 y su conversión a FAT32, mejor manejo de los discos duros, manipulación múltiple de varios monitores, una lista extendida de soporte plug and play, soporte DVD, AGP, etc. A su vez la promesa de una mejora sustancial en el tratamiento de los drivers de dispositivos y en la disminución de los pantallazos azules, que realmente cumplió y mejoró con la versión SR1 (service release 1), tiempo después.

Las nuevas características de Windows 98 ofrecen sacar mucho más partido del PC. Los programas se ejecutan más rápido, pudiendo ganar una promedio de un 25% o más de espacio en el disco, Internet pasa a ser una parte muy importante en el ordenador, dando un paso gigante en la entrega de contenido multimedia de alta calidad.

El Windows 98 se ha mantenido hasta nuestros días y debe ser la última versión del SO que quede vinculada a lo que fue la línea MS-DOS-Windows (salvando la variante Millenium o Windows Me que no ha convencido a nadie) hasta su total sustitución por Windows 2000 y el XP, en una serie de zigzagueantes cambios que deja a todos adivinando si debe cambiar o no para la próxima versión. Pero tras este errático rumbo, Microsoft persigue sólo una cosa: conservar la supremacía de los SO de por vida.

Windows Millenium

 El 14 de septiembre sale el Windows Millenium, no como un sucesor del 98, sino como un producto orientado al usuario doméstico (interfaz de colores, mucha música y vídeo, soporte para redes LAN inalámbricas, cortafuegos personales), nada del otro mundo, con poca perspectiva de supervivencia.

Windows 2000

 Se ofrece en 4 clasificaciones: Windows 2000 Professional, Windows 2000 Server (anteriormente NT Server), Windows 2000 Advanced Server (anteriormente NT Advanced Server) y Windows 2000 Datacenter Server, un producto nuevo, poderoso y muy específico con posibilidad de manejo de hasta 16 procesadores simétricos y 64 Gb de memoria física.

Lo destacable de este paso estriba en haber llevado la robustez, la seguridad y la portabilidad que daba el NT al mercado masivo de las PCs. Este ofrece una plataforma impresionante para el trabajo en Internet, Intranet, manejo de aplicaciones, todo muy bien integrado. La posibilidad de soporte completo de redes, incluido redes privadas virtuales, encriptación a nivel de disco o de red y riguroso control de acceso son otras de sus bondades.

Windows XP ( Experience)

 Desde que apareció Windows95 las sucesivas versiones han sido una evolución de la original, sin embargo en esta ocasión se ha producido un cambio de mayor envergadura ya que se ha cambiado el núcleo o Kernel del sistema operativo.

Aunque de cara al usuario no se noten cambios radicales, se puede decir que Windows XP no es solo una versión más de Windows sino que supone prácticamente un nuevo sistema.

Hasta ahora Microsoft disponía de dos sistemas operativos diferentes, para el entorno personal o doméstico tenía Windows98 y para el entorno profesional (o de negocios) el Windows NT/2000.

Con Windows XP se produce una convergencia entre ambas versiones ya que se ha partido del núcleo del sistema de Windows 2000 para crear Windows XP y a partir de ahí se han realizado algunos retoques para diferenciar dos versiones de Windows XP, una para el ámbito personal llamada Windows XP Home Edition, y otra para el ámbito profesional denominada Windows XP Professional.

El principal beneficio de esta estrategia para los usuarios domésticos va a ser que Windows XP ha adquirido la robustez y estabilidad de Windows NT/2000, esto debe suponer que Windows XP se quedará menos veces bloqueado, habrá menos ocasiones en la que tengamos que reiniciar el sistema como consecuencia de un error. La mejora para los usuarios profesionales se debe a que Windows XP tiene mayor compatibilidad con el hardware de la que gozaba Windows NT/2000.

Windows XP dispone de un nuevo sistema de usuarios completamente diferente respecto a Windows98. Este nuevo sistema ha sido heredado de Windows NT/2000.

Ahora se pueden definir varios usuarios con perfiles independientes. Esto quiere decir que cada usuario puede tener permisos diferentes que le permitirán realizar unas determinadas tareas. Cada usuario tendrá una carpeta Mis documentos propia que podrá estar protegida por contraseña, un menú de inicio diferente. También se dispone de una carpeta a la que tienen acceso todos los usuarios y donde se pueden colocar los documentos que se quieren compartir con los demás usuarios.

Para pasar de un usuario a otro no es necesario apagar el ordenador, ni siquiera que un usuario cierre lo que estaba haciendo, simplemente hay que iniciar una nueva sesión con otro usuario, más tarde podremos volver a la sesión del primer usuario que permanecerá en el mismo estado que la dejó. El sistema se encarga de manejar a los distintos usuarios activos y sin interferencias.

 

El Desarrollo de los Lenguajes y Técnicas de Programación

Paralelo al desarrollo de la ciencia de la computación y de las máquinas correspondientes fue tomando auge la técnica relativa a los métodos de suministrar las instrucciones a las máquinas con vistas a realizar un determinado trabajo de cálculo. Fueron dos mujeres las grandes pioneras de las técnicas e idiomas de programación, independientemente del aporte que los hombres también brindaron.

Se reconoce generalmente como la primera gran pionera en este campo a Lady Ada Augusta Lovelace, única hija legitima del poeta ingles Lord Byron, nacida en 1815.

Entre los muchos aportes que hizo a la ciencia de la computación Lady Lovelace, mientras estudiaba la máquina de Babbage, el más sobresaliente probablemente fue el que estaba relacionado con el concepto de lo que hoy llamamos 'lazos' o 'subrutinas'

Lady Lovelace planteó que en una larga serie de instrucciones debía haber necesariamente varias repeticiones de una misma secuencia. Y que consecuentemente debía ser posible establecer un solo grupo de tarjetas perforadas para este grupo de instrucciones recurrentes. Sobre este mismo principio trabajaron posteriormente los conocidos matemáticos ingleses Alan Turing y John Von Neumann.

En 1989 el único lenguaje aceptado por el Departamento de Defensa Norteamericano es el llamado ADA, este en honor de la Condesa ADA Lovelace. ADA surgió por la necesidad de unificar los más de 400 lenguajes y dialectos que dicho departamento utilizaba en sus proyectos, de forma que el tiempo y dinero invertidos en el desarrollo de software para uno de ellos fuera utilizable en otro de similares características.

Poco más de un siglo después de la muerte de Lady Lovelace, otra mujer, que con el paso del tiempo demostró ser eminente, estaba empeñada en la programación de la primera computadora digital, la Mark I.

Grace M. Hooper fue una de las pioneras en el campo de los idiomas de programación, especialmente en el desarrollo de Cobol (Common Business Oriented Languaje), un idioma concebido para su utilización con equipos de diferentes fabricantes y que expresa los problemas de manipulación y elaboración de datos en forma narrativa ordinaria en Ingles.

Su trabajo relacionado con la programación de Mark I y las subsiguientes generaciones Mark II y Mark III le valieron ganar un prestigioso premio otorgado por la Marina. Luego de tres años trabajando en el departamento de computación de la Marina, Grace Hooper se unió a la Eckert Mauchly Corp. como experta en matemáticas. En la fecha en que Hooper se unió a la compañía de Eckert Mauchly, éstos estaban empeñados en la construcción de Univac I, en la programación de la cual la Sra. Hooper tuvo gran participación.

En 1952 Grace Hooper publicó su primer ensayo sobre autoprogramadores (Compilers), que le valió ser nombraba directora e ingeniero de sistemas de la División Univac de la Sperry Rand Corp. Este documento de gran importancia técnica sería el primero de muchos otros (más de 50) publicados por ella relacionados con idiomas y otros elementos de programación.

Los trabajos de Grace Hooper en materia de programación llevaron al desarrollo de las subrutinas (subprograms) y por extensión a la creación de colecciones de las subrutinas, un procedimiento eficiente y económico de eliminar errores en la programación y de disminuir considerablemente el esfuerzo requerido para poder programar.

Los lenguajes de programación se dividen en:

Lenguaje de máquina: El lenguaje de máquina está orientado hacia la máquina.  Este lenguaje es fácil de entender por la computadora, pero difícil para el usuario.  Es el lenguaje original de la computadora el cual es generado por el "software", y no por el programador.

 Bajo Nivel: Son dependientes de la máquina, están diseñados para ejecutarse en una determinada computadora. A esta categoría pertenecen las 2 primeras generaciones. Ejemplo: lenguaje ensamblador.

Alto Nivel: Son independientes de la máquina y se pueden utilizar en cualquier computadora. Pertenecen a esta categoría la tercera y la cuarta generación. Los lenguajes de más alto nivel no ofrecen necesariamente mayores capacidades de programación, pero si ofrecen una interacción programador/computadora más avanzada. Cuanto más alto es el nivel del lenguaje, más sencillo es comprenderlo y utilizarlo.

 Cada generación de lenguajes es más fácil de usar y más parecida a un lenguaje natural que sus antecesores.

Los lenguajes posteriores a la cuarta generación se conocen como lenguajes de muy alto nivel. Son lenguajes de muy alto nivel los generadores de aplicaciones y los naturales.

En cada nuevo nivel se requieren menos instrucciones para indicar a la computadora que efectúe una tarea en particular. Pero los lenguajes de alto nivel son sólo una ayuda para el programador. Un mayor nivel significa que son necesarios menos comandos, debido a que cada comando o mandato de alto nivel reemplaza muchas instrucciones de nivel inferior.

Programas traductores Son los que traducen instrucciones de lenguajes de programación de alto nivel al código binario del lenguaje de la máquina.

  • Código fuente ("source code") Es un conjunto de instrucciones del programa que están escritas en un lenguaje de programación.
  • Código del objeto ("object code") Es un conjunto de instrucciones binarias traducidas y que la computadora puede ejecutar.

Ejemplos de programas traductores

Compilador Es un programa que traduce un lenguaje de alto nivel al lenguaje de máquina de una computadora. Según va ejecutando la traducción, coteja los errores hechos por el programador.  Traduce un programa una sola vez, generalmente, y es cinco veces más rápido que los programas intérpretes. Ejemplos: ALGOL, BASIC, COBOL, FORTRAN, PASCAL y PL/1.

Intérprete Es un programa que traduce un lenguaje de alto nivel al lenguaje de máquina de una computadora.  El programa siempre permanece en su forma original (programa fuente) y traduce cuando está en la fase de ejecución instrucción por instrucción.  Ejemplo:  BASIC

Ensamblador Es un programa de bajo nivel que traduce el lenguaje de ensamble a lenguaje de máquina.  Utiliza letras del alfabeto para representar los diferentes arreglos del código binario de la máquina.  Los programadores de ensamble deben conocer profundamente la arquitectura y el lenguaje de máquina de su computadora.  El programa ensamblador traduce cada instrucción de ensamble escrita por el programador a la instrucción en lenguaje de máquina binario equivalente.  En general, las instrucciones ("software") de un sistema se escriben en este lenguaje.  Ejemplos: Sistema operativo y Sistemas de manejo de base de datos.

Lenguajes de alto nivel más comunes

 BASIC (Beginners All-purpose Symbolic Instruction Code)

Fue el lenguaje de programación interactivo más popular en la década de los 70.  Es un lenguaje de propósito general.  Desarrollado por John Kemeny y Thomas Kurtz en "Dartmouth College" en 1963.  Existen numerosas versiones, algunas son compiladores y otras son intérpretes.

COBOL (Common Business Oriented Language)

Es un lenguaje compilador diseñado para aplicaciones de negocios.  Desarrollado en 1959 por el gobierno federal de los Estados Unidos y fabricantes de computadoras bajo el liderazgo de Grace Hopper.  Es el más utilizado por los "mainframe".  COBOL está estructurado en cuatro divisiones; a saber:

1)       División de identificación – identifica el programa.  

2)       División ambiental – identifica a las computadoras fuente y objeto.

3)       División de datos – identifica las memorias "buffer", constantes y áreas de trabajo.  

4)       División de procedimiento – describe el procesamiento (la lógica del programa).

PASCAL Este programa recibió su nombre en honor a Blas Pascal.  Fue desarrollado por el científico suizo Niklaus Wirth en 1970 y diseñado para enseñar técnicas de programación estructurada.  Es fácil de aprender y de usar y no utiliza línea sino ";" (semicolon).  Existen versiones de compilador, como de intérprete.  Estas varían según la versión.

FORTRAN (FORmula TRANslator)

Es uno de los primeros lenguajes de alto nivel desarrollado en 1954 por John Backus y un grupo de programadores de IBM.  Es un lenguaje compilador que se diseñó para expresar con facilidad las fórmulas matemáticas, resolver problemas científicos y de ingeniería.

   ADA Es un lenguaje desarrollado como una norma del Departamento de Defensa de los Estados Unidos.

Es un lenguaje basado en PASCAL, pero más amplio y específico.  Fue diseñado tanto para aplicaciones comerciales como científicas.  Es un lenguaje de multitareas que puede ser compilado por segmentos separados.  Se llama ADA en honor de Augusta Ada Byron, condesa de Lovelace e hija del poeta inglés Lord Byron.

APL (A Programming Language)

Este programa fue desarrollado por Kenneth Inverson a mediados de la década de 1960 para resolver problemas matemáticos.  Este lenguaje se caracteriza por su brevedad y por su capacidad de generación de matrices y se utiliza en el desarrollo de modelos matemáticos.

PL/1 (Programming Language 1)

Este programa fue desarrollado por IBM.  Es un lenguaje de propósito general que incluye características de COBOL y de FORTRAN.  Su principal utilidad es en los "mainframes".

RPG (Report Program Generator)

Fue desarrollado por IBM en 1964 y diseñado para generar informes comerciales o de negocios.

Lenguaje C

Fue desarrollado a principios de la década de los 70 en Bell Laboratories por Brian Kernigham y Dennis Ritchie.  Ellos necesitaban desarrollar un lenguaje que se pudiera integrar con UNIX, permitiendo a los usuarios hacer modificaciones y mejorías fácilmente.  Fue derivado de otro lenguaje llamado BCPL.

Lenguaje C++

Se pronuncia "ce plus plus".  Fue desarrollado por Bjarne Stroustrup en los Bell Laboratories a principios de la década de los '80.  C++ introduce la programación orientada al objeto en C.  Es un lenguaje extremadamente poderoso y eficiente.  C++ es un súper conjunto de C, para aprender C++ significa aprender todo acerca de C, luego aprender programación orientada al objeto y el uso de éstas con C++.

Visual BASIC

Este programa fue creado por Microsoft.  Es un programa moderno que da apoyo a las características y métodos orientados a  objetos.

Programación orientada al objeto

Las metas de la programación orientada al objeto es mejorar la productividad de los programadores haciendo más fácil de  usar y extender los programas y manejar sus complejidades.  De esta forma, se reduce el costo de desarrollo y mantenimiento de los programas.  En los lenguajes orientados al objeto los datos son considerados como objetos que a su vez pertenecen a alguna clase.  A las operaciones que se definen sobre los objetos son llamados métodos.  Ejemplo de programas orientados al objeto: Visual BASIC y C++. 

Generaciones de los Lenguajes de Programación

 1.       Primera Generación: Lenguaje de máquina. Empieza en los años 1940-1950. Consistía en sucesiones de dígitos binarios. Todas las instrucciones y mandatos se escribían valiéndose de cadenas de estos dígitos. Aún en la actualidad, es el único lenguaje interno que entiende la computadora; los programas se escriben en lenguajes de mayor nivel y se traducen a lenguaje de máquina.

2.       Segunda Generación: Lenguajes ensambladores. Fines de los 50. Se diferencian de los lenguajes de máquina en que en lugar de usar códigos binarios, las instrucciones se representan con símbolos fáciles de reconocer, conocidos como mnemotécnicos. Aún se utilizan estos lenguajes cuando interesa un nivel máximo de eficiencia en la ejecución o cuando se requieren manipulaciones intrincadas. Al igual que los lenguajes de máquina, los lenguajes ensambladores son únicos para una computadora en particular. Esta dependencia de la computadora los hace ser lenguajes de bajo nivel.

3.       Tercera Generación: Años ’60. Los lenguajes de esta generación se dividen en tres categorías, según se orienten a:

       Procedimientos: Requieren que la codificación de las instrucciones se haga en la secuencia en que se deben ejecutar para solucionar el problema. A su vez se clasifican en científicos (ej.: FORTRAN), empresariales (ej.: COBOL), y de uso general o múltiple (ej.: BASIC). Todos estos lenguajes permiten señalar cómo se debe efectuar una tarea a un nivel mayor que en los lenguajes ensambladores. Hacen énfasis en los procedimientos o las matemáticas implícitas, es decir en lo que se hace (la acción).

       Problemas: Están diseñados para resolver un conjunto particular de problemas y no requieren el detalle de la programación que los lenguajes orientados a procedimientos. Hacen hincapié en la entrada y la salida deseadas.

       Objetos: El énfasis se hace en el objeto de la acción. Los beneficios que aportan estos lenguajes incluyen una mayor productividad del programador y claridad de la lógica, además de ofrecer la flexibilidad necesaria para manejar problemas abstractos de programación.

4.       Cuarta Generación: Su característica distintiva es el énfasis en especificar qué es lo que se debe hacer, en vez de cómo ejecutar una tarea. Las especificaciones de los programas se desarrollan a un más alto nivel que en los lenguajes de la generación anterior. La característica distintiva es ajena a los procedimientos, el programador no tiene que especificar cada paso para terminar una tarea o procesamiento. Las características generales de los lenguajes de cuarta generación son:

  • Uso de frases y oraciones parecidas al inglés para emitir instrucciones.
  • No operan por procedimientos, por lo que permiten a los usuarios centrarse en lo que hay que hacer no en cómo hacerlo.
  • Al hacerse cargo de muchos de los detalles de cómo hacer las cosas, incrementan la productividad.

Hay dos tipos de lenguajes de cuarta generación, según se orienten:

  • A la producción: Diseñados sobre todo para profesionales en la computación.
  • Al usuario: Diseñados sobre todo para los usuarios finales, que pueden escribir programas para hacer consultas en una base de datos y para crear sistemas de información. También se llama lenguaje de consultas (SQL, Structured Query Language: lenguaje estructurado para consultas).   

GENERACIONES DE COMPUTADORAS

Primera Generación (1951-1958)

Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos. El voltaje de los tubos era de 300v y la posibilidad de fundirse era grande. Eckert y Mauchly contribuyeron al desarrollo de computadoras de la 1era Generación formando una Cia. privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el de 1950. La programación en lenguaje máquina, consistía en largas cadenas de bits, de ceros y unos, por lo que la programación resultaba larga y compleja

  • Usaban tubos al vacío para procesar información.
  • Usaban tarjetas perforadas para entrar los datos y los programas.
  • Usaban cilindros magnéticos para almacenar información e instrucciones internas

En 1953 se comenzó   a construir computadoras electrónicas y su primera entrada fue con la IBM 701.

Después de un lento comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.

Segunda Generación (1959-1964)

El invento del transistor hizo posible una nueva generación de computadora

s, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones. Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computadora. Las computadoras de la 2da Generación eran substancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a utilizar las computadoras en tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad, la velocidad de las operaciones ya no se mide en segundos sino en microsegundos (ms). Memoria interna de núcleos de ferrita.

  • Instrumentos de almacenamiento: cintas y discos.
  • Mejoran los dispositivos de entrada y salida, para la mejor lectura de tarjetas perforadas, se disponía de células fotoeléctricas.
  • Introducción de elementos modulares.

La marina de EE.UU. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los años 60  se conocieron como el grupo BUNCH 

Tercera Generación (1964-1971)

Circuitos integrados (chips)

Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

Multiprogramación

Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos. La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos.

Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

Minicomputadora

Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation (DEC) redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las minicomputadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.

  • Generalización de lenguajes de programación de alto nivel
  • Compatibilidad para compartir software entre diversos equipos
  • Tiempo Compartido: Uso de una computadora por varios clientes a tiempo compartido, pues el aparato puede discernir entre diversos procesos que realiza simultáneamente
  • Se desarrollaron circuitos integrados para procesar información.
  • Se desarrollaron los "chips" para almacenar y procesar la información.
  • Un "chip" es una pieza de silicio que contiene los componentes electrónicos en miniatura llamados semiconductores.  

Cuarta Generación (1971-1982)

 El microprocesador: El proceso de reducción del tamaño de los componentes llega a operar a escalas microscópicas. La microminiaturización permite construir el microprocesador, circuito integrado que rige las funciones fundamentales del ordenador.

Las aplicaciones del microprocesador se han proyectado más allá de la computadora y se encuentran en multitud de aparatos, sean instrumentos médicos, automóviles, juguetes, electrodomésticos, el tamaño reducido del microprocesador de chips hizo posible la creación de las computadoras personales. (PC)

Memorias Electrónicas: Se desechan las memorias internas de los núcleos magnéticos de ferrita y se introducen memorias electrónicas, que resultan más rápidas. Al principio presentan el inconveniente de su mayor costo, pero este disminuye con la fabricación en serie.

Sistema de tratamiento de base de datos: El aumento cuantitativo de las bases de datos lleva a crear formas de gestión que faciliten las tareas de consulta y edición. Los sistemas de tratamiento de base de datos consisten en un conjunto de elementos de hardware y software interrelacionados que permiten un uso sencillo y rápido de la información

En 1981, IBM develó su computador personal y, en 1984, Apple su Macintosh. A medida que estas máquinas se hacían más poderosas, se pudieron enlazar en redes, lo cual eventualmente condujo al desarrollo de Internet. Otros de los adelantos que se han desarrollado en esta generación son el uso de interfaces gráficas (Windows y Mac OS), el mouse y aparatos portátiles.

Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un clip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupara un cuarto completo.

  • Se minimizan los   circuitos, aumenta la capacidad de almacenamiento.
  • Reducen el tiempo de respuesta.
  • Gran expansión del uso de las Computadoras.
  • Memorias electrónicas más rápidas.
  • Sistemas de tratamiento de bases de datos.
  • Multiproceso.
  • Microcomputadora.  

Categorías de las Computadoras

Supercomputadora La supercomputadora es lo máximo en computadoras, es la más rápida y, por lo tanto, la más cara.  Cuesta millones de dólares y se hacen de dos a tres al año.  Procesan billones de instrucciones por segundo.  Son utilizadas para trabajos científicos, particularmente para crear modelos matemáticos del mundo real, llamados simulación.  Algunos ejemplos de uso son:  exploración y producción petrolera, análisis estructural, dinámica de fluidos computacional, física, química, diseño electrónico, investigación de energía nuclear, meteorología, diseño de automóviles, efectos especiales de películas, trabajos sofisticados de arte, planes gubernamentales y militares y la fabricación de naves espaciales por computadoras.  Ejemplo: Cray 1, Cray 2.

Mainframe Los "mainframe" son computadoras grandes, ligeras, capaces de utilizar cientos de dispositivos de entrada y salida.  Procesan millones de instrucciones por segundo.  Su velocidad operacional y capacidad de procesar hacen que los grandes negocios, el gobierno, los bancos, las universidades, los hospitales, compañías de seguros, líneas aéreas, etc. confíen en ellas.  Su principal función es procesar grandes cantidades de datos rápidamente.  Estos datos están accesibles a los usuarios del "mainframe" o a los usuarios de las microcomputadoras cuyos terminales están conectados al "mainframe".  Su costo fluctúa entre varios cientos de miles de dólares hasta el millón.  Requieren de un sistema especial para controlar la temperatura y la humedad.  También requieren de un personal profesional especializado para procesar los datos y darle el mantenimiento.  Ejemplo: IBM 360.

Minicomputadora La minicomputadora se desarrolló en la década de 1960 para llevar a cabo tareas especializadas, tales como el manejo de datos de comunicación.  Son más pequeñas, más baratas y más fáciles de mantener e instalar que los "mainframes". Usadas por negocios, colegios y agencias gubernamentales.  Su mercado ha ido disminuyendo desde que surgieron las microcomputadoras.  Ejemplos: PDP-1, PDP-11, Vax 20, IBM sistema 36.

Microcomputadora La microcomputadora es conocida como computadora personal o PC.  Es la más pequeña, gracias a los microprocesadores, más barata y más popular en el mercado.   Su costo fluctúa entre varios cientos de dólares hasta varios miles de dólares.  Puede funcionar como unidad independiente o estar en red con otras microcomputadoras o como un terminal de un "mainframe" para expandir sus capacidades.  Puede ejecutar las mismas operaciones y usar los mismos programas que muchas computadoras superiores, aunque en menor capacidad.  Ejemplos: MITS Altair, Macintosh, serie Apple II, IBM PC, Dell, Compaq, Gateway, etc.

Tipos de microcomputadoras:

a.   Desktop: Es otro nombre para la PC que está encima del escritorio.

b.  Portátil: Es la PC que se puede mover con facilidad.  Tiene capacidad limitada y la mayoría usa una batería como fuente de poder.  Pesan entre 7Kg y 9Kg.               Laptop: La computadora "laptop" tiene una pantalla plana y pesa alrededor de 6 Kg.               Notebook La computadora "notebook" es más pequeña y pesa alrededor de 4Kg.  

c.   Palmtop: Es la computadora del tamaño de una calculadora de mano.  Utiliza batería y puede ser conectada a la desktop para transferir datos.          

Microprocesadores

 Es el cerebro del ordenador. Se encarga de realizar todas las operaciones de cálculo y de controlar lo que pasa en el ordenador recibiendo información y dando órdenes para que los demás elementos trabajen. En los equipos actuales se habla fundamentalmente de los procesadores Pentium4 de Intel y Athlon XP de AMD. Además, están muy extendidos procesadores no tan novedosos, como los Pentium MMX y Pentium II/III de Intel y los chips de AMD (familias K6 y los primeros K7/Athlon).

Tipos de conexión

 El rendimiento que dan los microprocesadores no sólo depende de ellos mismos, sino de la placa donde se instalan. Los diferentes micros no se conectan de igual manera a las placas:

Socket: Con mecanismo ZIF (Zero Insertion Force). En ellas el procesador se inserta y se retira sin necesidad de ejercer alguna presión sobre él. Al levantar la palanquita que hay al lado se libera el microprocesador, siendo extremadamente sencilla su extracción. Estos zócalos aseguran la actualización del microprocesador. Hay de diferentes tipos:

     Socket  423 y 478: En ellos se insertan los nuevos Pentium 4 de Intel. El primero hace referencia al modelo de 0,18  (Willamete) y el segundo al construido según la tecnología de 0,13  (Northwood). También hay algunos de 478 con núcleo Willamete. El tamaño de  mencionado hace referencia al tamaño de cada transistor, cuanto menor sea tu tamaño más pequeño será el micro y más transistores será posible utilizar en el mismo espacio físico. Además, la reducción de tamaño suele estar relacionada con una reducción del calor generado y con un menor consumo de energía. En el zócalo 478 también se insertan micros Celeron de Intel de última generación similares a los p4 pero más económicos

      Socket 462/Socket A: Ambos son el mismo tipo. Se trata donde se insertan los procesadores Athlon en sus versiones más nuevas:

Athlon Duron: Versión reducida, con sólo 64 Kb de memoria caché, para configuraciones económicas.

Athlon Thunderbird: Versión normal, con un tamaño variable de la memoria caché, normalmente 256 Kb.

  • Athlon XP: Con el núcleo Palomino fabricado en 0,18  o Thoroughbred fabricado en 0,13, es un Thunderbird con una arquitectura totalmente remodelada con un rendimiento ligeramente superior a la misma frecuencia (MHz), con un 20% menos de consumo y el nuevo juego de instrucciones SEC de Intel junto con el ya presente 3DNow! de todos los procesadores AMD desde el K6-2. o con el núcleo T.
  • Athlon MP: Micro que utiliza el núcleo Palomino al igual que el XP, con la salvedad que éste accede de forma diferente al acceso a la memoria a la hora de tener que compartirla con otros micros, lo cual lo hace idóneo para configuraciones
  • multiprocesador.
  • Socket 370 o PPGA: Es el zócalo que utilizan los últimos modelos del Pentium III y Celeron de Intel.
  • Socket 8: Utilizado por los procesadores Pentium Pro de Intel, un micro optimizado para código en 32 bits que sentaría las bases de lo que conocemos hoy día.
  • Socket 7: Lo usan los micros Pentium/Pentium MMX/K6/K6-2 o K6-3 y muchos otros.
  • Otros socket: como el zócalo ZIF Socket-3 permite la inserción de un 486 y de un Pentium Overdrive.
  • Slot A /Slot 1 /Slot 2: Es donde se conectan respectivamente los procesadores Athlon antiguos de AMD, los procesadores Pentium II y antiguos Pentium III, los procesadores Xeon de Intel dedicados a servidores de red. Todos ellos son cada vez más obsoletos. El modo de insertarlos es similar a una tarjeta gráfica o de sonido, ayudándonos de dos guías de plástico insertadas en la placa base.
  • En las placas base más antiguas, el micro iba soldado, de forma que no podía actualizarse (486 a 50 MHz hacia atrás). Hoy día esto no se ve en lo referente a los microprocesadores de PC.

El Microprocesador 4004

 En 1969, Silicon Valley, en el estado de California (EEUU) era el centro de la industria de los semiconductores. Por ello, gente de la empresa Busicom, una joven empresa japonesa, fue a la compañía Intel (fundada el año anterior) para que hicieran un conjunto de doce chips para el corazón de su nueva calculadora de mesa de bajo costo.

Durante el otoño (del hemisferio norte) de 1969 Hoff, ayudado por Stanley Mazor, definieron una arquitectura consistente en un CPU de 4 bits, una memoria ROM (de sólo lectura) para almacenar las instrucciones de los programas, una RAM (memoria de lectura y escritura) para almacenar los datos y algunos puertos de entrada/salida para la conexión con el teclado, la impresora, las llaves y las luces. Además definieron y verificaron el conjunto de instrucciones con la ayuda de ingenieros de Busicom (particularmente Masatoshi Shima).

En abril de 1970 Federico Faggin se sumó al staff de Intel. El trabajo de él era terminar el conjunto de chips de la calculadora. Se suponía que Hoff y Mazor habían completado el diseño lógico de los chips y solamente quedarían por definir los últimos detalles para poder comenzar la producción. Esto no fue lo que Faggin encontró cuando comenzó a trabajar en Intel ni lo que Shima encontró cuando llegó desde Japón.

Shima esperaba revisar la lógica de diseño, confirmando que Busicom podría realizar su calculadora y regresar a Japón. Se puso furioso cuando vio que estaba todo igual que cuando había ido seis meses antes, con lo que dijo (en lo poco que sabía de inglés) "Vengo acá a revisar. No hay nada para revisar. Esto es sólo idea". No se cumplieron los plazos establecidos en el contrato entre Intel y Busicom. De esta manera, Faggin tuvo que trabajar largos meses, de 12 a 16 horas por día.

Finalmente pudo realizar los cuatro chips arriba mencionados. El los llamó "familia 4000". Estaba compuesto por cuatro dispositivos de 16 pines: el 4001 era una ROM de dos kilobits con salida de cuatro bits de datos; el 4002 era una RAM de 320 bits con el port de entrada/salida (bus de datos) de cuatro bits; el 4003 era un registro de desplazamiento de 10 bits con entrada serie y salida paralelo; y el 4004 era el CPU de 4 bits.

El 4001 fue el primer chip diseñado y terminado. La primera fabricación ocurrió en octubre de 1970 y el circuito trabajó perfectamente. En noviembre salieron el 4002 con un pequeño error y el 4003 que funcionó correctamente. Finalmente el 4004 vino unos pocos días antes del final de 1970. Fue una lástima porque en la fabricación se habían olvidado de poner una de las máscaras. Tres semanas después vinieron los nuevos 4004, con lo que Faggin pudo realizar las verificaciones. Sólo encontró unos pequeños errores. En febrero de 1971 el 4004 funcionaba correctamente. En el mismo mes recibió de Busicom las instrucciones que debían ir en la ROM.

A mediados de marzo de 1971, envió los chips a Busicom, donde verificaron que la calculadora funcionaba perfectamente. Cada calculadora necesitaba un 4004, dos 4002, cuatro 4001 y tres 4003. Tomó un poco menos de un año desde la idea al producto funcionando correctamente.

Luego de que el primer microprocesador fuera una realidad, Faggin le pidió a la gerencia de Intel que utilizara este conjunto de chips para otras aplicaciones. Esto no fue aprobado, pensando que la familia 4000 sólo serviría para calculadoras. Además, como fue producido mediante un contrato exclusivo, sólo lo podrían poner en el mercado teniendo a Busicom como intermediario.

Después de hacer otros dispositivos utilizando la familia 4000, Faggin le demostró a Robert Noyce (entonces presidente de Intel) la viabilidad de estos integrados para uso general. Finalmente ambas empresas llegaron a un arreglo: Intel le devolvió los 60.000 dólares que había costado el proyecto, sólo podría vender los integrados para aplicaciones que no fueran calculadoras y Busicom los obtendría más baratos (ya que se producirían en mayor cantidad).

El 15 de noviembre de 1971, la familia 4000, luego conocida como MCS-4 (Micro Computer System 4-bit) fue finalmente introducida en el mercado.

El Microprocesador 8080

 El 8080 realmente creó el verdadero mercado de los microprocesadores. El 4004 y el 8008 lo sugirieron, pero el 8080 lo hizo real. Muchas aplicaciones que no eran posibles de realizar con los microprocesadores previos pudieron hacerse realidad con el 8080. Este chip se usó inmediatamente en cientos de productos diferentes. En el 8080 corría el famoso sistema operativo CP/M (siglas de Control Program for Microcomputers) de la década del '70 que fue desarrollado por la compañía Digital Research.

Como detalle constructivo el 8080 tenía alrededor de 6000 transistores MOS de canal N (NMOS) de 6 , se conectaba al exterior mediante 40 patas (en formato DIP) y necesitaba tres tensiones para su funcionamiento (típico de los circuitos integrados de esa época): +12V, +5V y -5V. La frecuencia máxima era de 2 MHz.

La competencia de Intel vino de Motorola. Seis meses después del lanzamiento del 8080, apareció el 6800. Este producto era mejor en varios aspectos que el primero. Sin embargo, la combinación de tiempos (el 8080 salió antes), "marketing" más agresivo, la gran cantidad de herramientas de hardware y software, y el tamaño del chip (el del 8080 era mucho menor que el del 6800 de Motorola) inclinaron la balanza hacia el 8080.

El mayor competidor del 8080 fue el microprocesador Z-80, que fue lanzado en 1976 por la empresa Zilog (fundada por Faggin). Entre las ventajas pueden citarse: mayor cantidad de instrucciones (158 contra 74), frecuencia de reloj más alta, circuito para el apoyo de refresco de memorias RAM dinámicas, compatibilidad de código objeto (los códigos de operación de las instrucciones son iguales) y una sola tensión para su funcionamiento (+5V).

Los Microprocesadores 8086 y 8088

 En junio de 1978 Intel lanzó al mercado el primer microprocesador de 16 bits: el 8086. En junio de 1979 apareció el 8088 (internamente igual que el 8086 pero con bus de datos de 8 bits) y en 1980 los coprocesadores 8087 (matemático) y 8089 (de entrada y salida). El primer fabricante que desarrolló software y hardware para estos chips fue la propia Intel.

Los ordenadores con estos microprocesadores eran conocidos como ordenadores XT

Esto significa que los datos iban por   buses que eran de 8 ó 16 bits, bien por dentro del chip o cuando salían al exterior, por ejemplo para ir a la memoria. Este número reducido de bits limita sus posibilidades en gran medida.

El desarrollo más notable para la familia 8086/8088 fue la elección del CPU 8088 por parte de IBM (International Business Machines) cuando en 1981 entró en el campo de las computadoras personales. Esta computadora se desarrolló bajo un proyecto con el nombre "Acorn" (Proyecto "Bellota") pero se vendió bajo un nombre menos imaginativo, pero más correcto: "Computadora Personal IBM"(con 48KB de memoria RAM y una unidad de discos flexibles con capacidad de 160KB). Esta computadora entró en competencia directa con las ofrecidas por Apple (basado en el 6502) y por Radio Shack (basado en el Z-80).

Los Microprocesadores 80186 y 80188

 Estos microprocesadores altamente integrados aparecieron en 1982. Por "altamente integrados" se entiende que el chip contiene otros componentes aparte de los encontrados en microprocesadores comunes como el 8088 u 8086. Generalmente contienen, aparte de la unidad de ejecución, contadores o "timers", y a veces incluyen memoria RAM y/o ROM y otros dispositivos que varían según los modelos. Cuando contienen memoria ROM, a estos chips se los llama microcomputadoras en un sólo chip (no siendo éste el caso de los microprocesadores 80186/80188).

Externamente se encapsulaban en el formato PGA (Pin Grid Array) de 68 pines.

El Microprocesador 80286

 Este microprocesador apareció en febrero de 1982. Los avances de integración que permitieron agregar una gran cantidad de componentes periféricos en el interior del 80186/80188, se utilizaron en el 80286 para hacer un microprocesador que soporte nuevas capacidades, como la multitarea (ejecución simultánea de varios programas).

 El 80286 tiene dos modos de operación: modo real y modo protegido. En el modo real, se comporta igual que un 8086, mientras que en modo protegido, las cosas cambian completamente.

El 80286 contiene 134.000 transistores dentro de su estructura (360% más que el 8086). Externamente está encapsulado en formato PLCC (Plastic Leaded Chip Carrier) con pines en forma de J para montaje superficial, o en formato PGA (Pin Grid Array), en ambos casos con 68 pines.

El microprocesador 80286 ha añadido un nuevo nivel de satisfacción a la arquitectura básica del8086, incluyendo una gestión de memoria con la extensión natural de las capacidades de direccionamiento del procesador. El 80286 tiene elaboradas facilidades incorporadas de protección de datos. Otras características incluyen todas las características del juego de instrucciones del 80186, así como la extensión del espacio direccionable a 16 MB, utilizando 24 bits para direccionar (224 = 16.777.216).

El 80286 revisa cada acceso a instrucciones o datos para comprobar si puede haber una violación de los derechos de acceso. Este microprocesador está diseñado para usar un sistema operativo con varios niveles de privilegio. En este tipo de sistemas operativos hay un núcleo que, como su nombre lo indica, es la parte más interna del sistema operativo. El núcleo tiene el máximo privilegio y los programas de aplicaciones el mínimo. Existen cuatro niveles de privilegio. La protección de datos en este tipo de sistemas se lleva a cabo teniendo segmentos de código (que incluye las instrucciones), datos (que incluye la pila aparte de las variables de los programas) y del sistema (que indican los derechos de acceso de los otros segmentos).

Para un usuario normal, los registros de segmentación (CS, DS, ES, SS) parecen tener los 16 bits usuales. Sin embargo, estos registros no apuntan directamente a memoria, como lo hacían en el 8086. En su lugar, apuntan a tablas especiales, llamadas tablas de descriptores, algunas de las cuales tienen que ver con el usuario y otras con el sistema operativo. Paralelamente a los 16 bits, cada registro de segmento del 80286 mantiene otros 57 bits invisibles para el usuario. Ocho de estos bits sirven para mantener los derechos de acceso (sólo lectura, sólo escritura y otros), otros bits mantienen la dirección real (24 bits) del principio del segmento y otros mantienen la longitud permitida del segmento (16 bits, para tener la longitud máxima de 64 KB). Por ello, el usuario nunca sabe en qué posición real de memoria está ejecutando o dónde se ubican los datos y siempre se mantiene dentro de ciertas fronteras. Como protección adicional, nunca se permite que el usuario escriba en el segmento de código (en modo real se puede escribir sobre dicho segmento). Ello previene que el usuario modifique su programa para realizar actos ilegales y potencialmente peligrosos. Hay también provisiones para prever que el usuario introduzca en el sistema un "caballo de Troya" que pueda proporcionarle un estado de alto privilegio.

El 80286 tiene cuatro nuevos registros. Tres de ellos apuntan a las tablas de descriptores actualmente en uso. Estas tablas contienen información sobre los objetos protegidos en el sistema. Cualquier cambio de privilegio o de segmento debe realizarse a través de dichas tablas. Adicionalmente hay varios indicadores nuevos.

Existen varias instrucciones nuevas, además de las introducidas con el 80186. Todas estas instrucciones se refieren a la gestión de memoria y protección del sistema haciendo cosas tales como cargar y almacenar el contenido de los indicadores especiales y los punteros a las tablas de descriptores.

El Microprocesador 80386

 El 80386 consiste en una unidad central de proceso (CPU), una unidad de manejo de memoria (MMU) y una unidad de interfaz con el bus (BIU).

El CPU está compuesto por la unidad de ejecución y la unidad de instrucciones. La unidad de ejecución contiene los ocho registros de 32 bits de propósito general que se utilizan para el cálculo de direcciones y operaciones con datos y un barrel shifter de 64 bits que se utiliza para acelerar las operaciones de desplazamiento, rotación, multiplicación y división. Al contrario de los microprocesadores previos, la lógica de división y multiplicación utiliza un algoritmo de 1 bit por ciclo de reloj. El algoritmo de multiplicación termina la interacción cuando los bits más significativos del multiplicador son todos ceros, lo que permite que las multiplicaciones típicas de 32 bits se realicen en menos de un microsegundo.

El 80386 tiene dos modos de operación: modo de direccionamiento real (modo real), y modo de direccionamiento virtual protegido (modo protegido). En modo real el 80386 opera como un 8086 muy rápido, con extensiones de 32 bits si se desea. El modo real se requiere primariamente para preparar el procesador para que opere en modo protegido. El modo protegido provee el acceso al sofisticado manejo de memoria y paginado.

Finalmente, para facilitar diseños de hardware de alto rendimiento, la interfaz con el bus del 80386 ofrece pipelining de direcciones, tamaño dinámico del ancho del bus de datos (puede tener 16 ó 32 bits según se desee en un determinado ciclo de bus) y señales de habilitación de bytes por cada byte del bus de datos

Versiones del 80386

  • 80386: En octubre de 1985 la empresa Intel lanzó el microprocesador 80386 original de 16 MHz, con una velocidad de ejecución de 6 millones de instrucciones por segundo y con 275.000 transistores. La primera empresa en realizar una computadora compatible con IBM PC AT basada en el 80386 fue Compaq con su Compaq Deskpro 386 al año siguiente.
  • 386SX: Para facilitar la transición entre las computadoras de 16 bits basadas en el 80286, apareció en junio de 1988 el 80386 SX con bus de datos de 16 bits y 24 bits de direcciones (al igual que en el caso del 80286). Este microprocesador permitió el armado de computadoras en forma económica que pudieran correr programas de 32 bits. El 80386 original se le cambió de nombre: 80386 DX.
  • 386SL: En 1990 Intel introdujo el miembro de alta integración de la familia 386: el 80386 SL con varias características extras (25 MHz, frecuencia reducida ó 0 MHz, interfaz para caché opcional externo de 16, 32 ó 64 KB, soporte de LIM 4.0 (memoria expandida) por hardware, generación y verificación de paridad, ancho de bus de datos de 8 ó 16 bits) que lo hacen ideal para equipos portátiles.  

El Microprocesador 80486

Este microprocesador es básicamente un 80386 con el agregado de una unidad de coma flotante compatible con el 80387 y un caché de memoria de 8 KBytes.

Versiones del 80486

  • 80486 DX: En abril de 1989 la compañía Intel presentó su nuevo microprocesador: el 80486 DX, con 1.200.000 transistores a bordo, el doble de la velocidad del 80386 y 100% de compatibilidad con los microprocesadores anteriores. El consumo máximo del 486DX de 50 MHz es de 5 watt.
  • 80486 SX: En abril de 1991 introdujo el 80486 SX, un producto de menor costo que el anterior sin el coprocesador matemático que posee el 80486 DX (bajando la cantidad de transistores a 1.185.000).
  • 80486 DX2: En marzo de 1992 apareció el 80486 DX2, que posee un duplicador de frecuencia interno, con lo que las distintas funciones en el interior del chip se ejecutan al doble de velocidad, manteniendo constante el tiempo de acceso a memoria. Esto permite casi duplicar el rendimiento del microprocesador, ya que la mayoría de las instrucciones que deben acceder a memoria en realidad acceden al caché interno de 8 KBytes del chip.
  • 80486 SL: En el mismo año apareció el 80486 SL con características especiales de ahorro de energía.
  • 80486 DX4: Siguiendo con la filosofía del DX2, en 1994 apareció el 80486 DX4, que triplica la frecuencia de reloj y aumenta el tamaño del caché interno a 16 KBytes.
Partes: 1, 2, 3, 4, 5
 Página anterior Volver al principio del trabajoPágina siguiente