Descargar

Historia de la Informática (página 4)


Partes: 1, 2, 3, 4, 5

El chip se empaqueta en el formato PGA (Pin Grid Array) de 168 pines en todas las versiones. En el caso del SX, también existe el formato PQFP (Plastic Quad Flat Pack) de 196 pines. Las frecuencias más utilizadas en estos microprocesadores son: SX: 25 y 33 MHz, DX: 33 y 50 MHz, DX2: 25/50 MHz y 33/66 MHz y DX4: 25/75 y 33/100 MHz. En los dos últimos modelos, la primera cifra indica la frecuencia del bus externo y la segunda la del bus interno. Para tener una idea de la velocidad, el 80486 DX2 de 66 MHz ejecuta 54 millones de instrucciones por segundo. 

El Microprocesador Pentium

 El 19 de octubre de 1992, Intel anunció que la quinta generación de su línea de procesadores compatibles (cuyo código interno era el P5) llevaría el nombre Pentium en vez de 586 u 80586, como todo el mundo estaba esperando. Esta fue una estrategia de Intel para poder registrar la marca y así poder diferir el nombre de sus procesadores del de sus competidores (AMD y Cyrix principalmente).

Este microprocesador se presentó el 22 de marzo de 1993 con velocidades iniciales de 60 y 66 MHz (112 millones de instrucciones por segundo en el último caso), 3.100.000 transistores (fabricado con el proceso BICMOS (Bipolar-CMOS) de 0,8 ), caché interno de 8 KB para datos y 8 KB para instrucciones, verificación interna de paridad para asegurar la ejecución correcta de las instrucciones, una unidad de coma flotante mejorada, bus de datos de 64 bit para una comunicación más rápida con la memoria externa y, lo más importante, permite la ejecución de dos instrucciones simultáneamente. El chip se empaqueta en formato PGA (Pin Grid Array) de 273 pines.

Como el Pentium sigue el modelo del procesador 386/486 y añade unas pocas instrucciones adicionales pero ningún registro programable, ha sido denominado un diseño del tipo 486+. Esto no quiere decir que no hay características nuevas o mejoras que aumenten la potencia. La mejora más significativa sobre el 486 ha ocurrido en la unidad de coma flotante. Hasta ese momento, Intel no había prestado mucha atención a la computación de coma flotante, que tradicionalmente había sido el bastión de las estaciones de ingeniería. Como resultado, los coprocesadores 80287 y 80387 y los coprocesadores integrados en la línea de CPUs 486 DX se han considerado anémicos cuando se les compara con los procesadores RISC (Reduced Instruction Set Computer), que equipan dichas estaciones.

Todo esto ha cambiado con el Pentium: la unidad de coma flotante es una prioridad para Intel, ya que debe competir en el mercado de Windows NT con los procesadores RISC tales como el chip Alpha 21064 de Digital Equipment Corporation y el MIPS R4000 de Silicon Graphics. Esto puede ayudar a explicar por qué el Pentium presenta un incremento de 5 veces en el rendimiento de coma flotante cuando se le compara con el diseño del 486. En contraste, Intel sólo pudo extraer un aumento del doble para operaciones de coma fijo o enteros.

El gran aumento de rendimiento tiene su contraparte en el consumo de energía: 13 watt bajo la operación normal y 16 watt a plena potencia (3,2 amperes x 5 volt = 16 watt), lo que hace que el chip se caliente demasiado y los fabricantes de tarjetas madres (motherboards) tengan que agregar complicados sistemas de refrigeración.

Intel puso en el mercado el 7 de marzo de 1994 la segunda generación de procesadores Pentium. Se introdujo con las velocidades de 90 y 100 MHz con tecnología de 0,6  y posteriormente se agregaron las versiones de 120, 133, 150, 160 y 200 MHz con tecnología de 0,35. En todos los casos se redujo la tensión de alimentación a 3,3 volt. Esto redujo drásticamente el consumo de electricidad (y por ende el calor que genera el circuito integrado). De esta manera el chip más rápido (el de 200 MHz) consume lo mismo que el de 66 MHz. Estos integrados vienen con 296 pines. Además la cantidad de transistores subió a 3.300.000. Esto se debe a que se agregó circuitería adicional de control de clock, un controlador de interrupciones avanzado programable (APIC) y una interfaz para procesamiento dual (facilita el desarrollo de motherboards con dos Pentium).   

El Microprocesador Pentium Pro

 El Pentium Pro a 133 MHz, que fue presentado el día 3 de noviembre de 1995 es el primer microprocesador de la tercera generación de la gama Pentium. Está preparado específicamente para ejecutar aplicaciones compiladas y desarrolladas para 32 bits. Algunas aplicaciones desarrolladas para entornos de 16 bits tienen una reducción de rendimiento en su ejecución en sistemas basados en un Pentium Pro respecto a los Pentium normales a 133 MHz. Perfectamente compatible con sus hermanos menores incorpora nuevas mejoras, de las cuales destaca la ejecución dinámica y la inclusión de una memoria cache secundaria integrada en el encapsulado del chip.

Fabricado en una geometría de 0,6, Intel basó sus desarrollos con vistas a reducirla a 0,35 micrones como la de los Pentium a 133 MHz, lo que reducirá su temperatura y podrá elevarse la frecuencia de reloj hasta los 200 MHz.

Intel ha puesto mucho esfuerzo en probar el Pentium Pro para intentar salvarse de los numerosos bugs que mancharon su gran prestigio. El Pentium Pro no es compatible con todas las placas del mercado. El motivo principal es la inclusión de la memoria cache secundaria dentro del chip. Se utiliza un bus interno que está optimizado para trabajar con las temporizaciones de conexión directa, lo cual imposibilita la conexión de la memoria cache externa.

Este nuevo producto tiene un bus que ha sido diseñado para conectar varios Pentium Pro en paralelo que soporta el protocolo MESI, es un microprocesador de 32 bits que incorpora una instrucción más (mover datos condicionalmente) que supone una mayor predicción de ramificaciones en la ejecución. Tiene 21 millones de transistores, 5,5 millones en el núcleo y 15,5 millones en la memoria cache secundaria. El CPU consta de dos chips colocados en cavidades independientes conectadas internamente. El chip correspondiente a la memoria cache es más pequeño que el del chip del núcleo, ya que la disposición de los transistores permite una mayor concentración.

El Microprocesador Pentium MMX

 En enero de 1997 apareció una tercera generación de Pentium, que incorpora lo que Intel llama tecnología MMX (MultiMedia eXtensions) con lo que se agregan 57 instrucciones adicionales. Están disponibles en velocidades de 66/166 MHz, 66/200 MHz y 66/233 MHz (velocidad externa/interna). Las nuevas características incluyen una unidad MMX y el doble de caché. El Pentium MMX tiene 4.500.000 transistores con un proceso CMOS-silicio de 0,35  mejorado que permite bajar la tensión a 2,8 volt. Externamente posee 321 pines.

Prometían que el nuevo Pentium, con las MMX y el doble de caché (32 KB), podía tener hasta un 60% más de rendimiento. Que en la realidad en ocasiones, la ventaja puede llegar al 25%, y sólo en aplicaciones muy optimizadas para MMX. En el resto, no más de un 10%, que además se debe casi en exclusiva al aumento de la caché interna al doble.

La ventaja del chip es que su precio final acaba siendo igual que si no fuera MMX. Además, consume y se calienta menos por tener voltaje reducido para el núcleo del chip (2,8 V).  

El Microprocesador Pentium II

 Se trata del Pentium Pro, con algunos cambios y en una nueva y fantástica presentación, el cartucho SEC: una cajita negra que en vez de a un zócalo se conecta a una ranura llamada Slot 1.

Los cambios respecto al Pro son:

  • Optimizado para MMX  
  • Nuevo encapsulado y conector a la placa   
  • Rendimiento de 16 bits mejorado  
  • Caché secundaria encapsulada junto al chip (semi-interna), pero a la mitad de la velocidad de éste  
  • Mejor gestión del bus que aumenta las prestaciones
  • Las vías de datos más grandes mejoran el paso de datos
  • Arquitectura de apertura de página dinámica que reduce la latencia del sistema
  • El ECC de la memoria con cancelación del hardware soporta un realismo mayor.

 Extendiendo la capacidad de ancho de banda de 100 MHz del procesador al bus del sistema, el conjunto de chips más nuevo de Intel soporta los últimos componentes SDRAM de 100 MHz. El Intel 440BX AGPset no sólo provee de "vías más anchas" sino de "vías más rápidas".

Eso sí, durante bastante tiempo fue el mejor chip del mercado, especialmente desde que se dejó de fabricar el Pro.   

El Microprocesador Pentium II Xeon

 El procesador Pentium II Xeon a 400 MHz es el primer miembro de la familia de microprocesadores Intel diseñados exclusivamente para los poderosos servidores y estaciones de trabajo. Basado en la arquitectura del procesador Pentium II, el procesador Pentium II Xeon agrega el rendimiento, facilidad de uso y confiabilidad en misión crítica superiores que exigen sus servidores y estaciones de trabajo basados en Intel.

El procesador Pentium II Xeon está disponible con memorias caché grandes y rápidas que procesan los datos a velocidades muy elevadas a través del núcleo del procesador. Además, características superiores de facilidad de uso como protección térmica, comprobación y corrección de errores, comprobación de redundancia funcional y el bus de administración del sistema ayudan a garantizar confiabilidad y tiempo de actividad máximos.

  • Incorpora una memoria caché L2 de 512 KB o 1 MB. La memoria caché L2 opera a la misma velocidad que el núcleo del procesador (400 MHz), lo que pone a disposición del núcleo del procesador una cantidad de datos sin precedentes.
  • Comparte datos con el resto del sistema a través de un bus de sistema multitransacciones de alta capacidad de 100 MHz, otra tecnología de vanguardia que extiende el potencial de velocidad de procesamiento superior al resto del sistema.
  • Se puede direccionar y asignar a caché un máximo de 64 GB de memoria para incrementar el rendimiento con las aplicaciones más avanzadas.
  • El bus del sistema permite múltiples transacciones pendientes de ejecución para incrementar la disponibilidad de ancho de banda. También ofrece compatibilidad sin "suplementos" con un máximo de 8 procesadores. Esto hace posible el multiprocesamiento simétrico con cuatro y ocho procesadores a un bajo costo y ofrece un incremento de rendimiento significativo para sistemas operativos multitareas y aplicaciones con múltiples subprocesos.
  • PSE36: Es una expansión de la compatibilidad con memoria de 36 bits que permite a los sistemas operativos utilizar memoria por arriba de los 4 GB, lo cual incrementa el rendimiento del sistema para aplicaciones con grandes exigencias de lectura y espacio de trabajos grandes.
  • El cartucho Single Edge Contact (S.E.C.) desarrollado por Intel hace posible la disponibilidad en grandes volúmenes, lo cual ofrece protección en el transporte y un factor de forma común para futuros procesadores Intel Pentium II Xeon
  • Compatibilidad con clústeres o la capacidad de agrupar en clústeres varios servidores de cuatro procesadores. Esto permite a los usuarios escalar sus sistemas basados en el procesador Pentium II Xeon para ajustarlos a las necesidades de su organización

El Microprocesador Celeron (Pentium II light)

Es un chip de Intel basado en el Pentium II, que en su primera versión trabaja a 266 MHz.  Es un Pentium II, pero sin una de sus características: carece de memoria caché de segundo nivel en total 512 Kb. menos en el interior del cartucho SEC. Tan sólo quedan los 32 Kb. de primer nivel.

Su función no es otra que sustituir al Pentium MMX en el mercado de micros baratos (el entry level o nivel básico). Su rendimiento es casi idéntico al del Pentium MMX (según pruebas de la misma Intel).

Gracias a este chip eliminan el mercado de placas con socket 7, es decir, las que usan los MMX y toda su competencia (AMD, Cyrix-IBM). Además, se quedan con absolutamente todo el mercado de los chipsets para placas base, ya que en el campo de placas para Pentium II Intel es la única empresa que cuenta a nivel mundial.

Otras características son el uso del Slot 1, bus de 66 MHz y ancho de transistor de 0,25 micrones. El chipset diseñado para el Celeron será el Intel MU440EX. Soporta USB, memorias DIMM, DMA 33… pero, dada la finalidad de los equipos, sólo posee un slot ISA y dos PCI. El SVGA va integrado en la placa base.  

Suele ir con el chipset LX o con uno nuevo llamado EX que sólo dan una velocidad de placa de 66 MHz, mientras que otro nuevo chipset, el BX, ofrece 100 MHz.  

El Microprocesador Pentium III

 Este micro sería al Pentium II lo que el K6-2 era al K6; es decir, que su única diferencia de importancia radica en la incorporación de unas nuevas instrucciones (las SSE, Streaming SIMD Extensions), que aumentan el rendimiento matemático y multimedia… pero sólo en aplicaciones específicamente optimizadas para ello.

Los primeros modelos, con núcleo Katmai, se fabricaron todos en el mismo formato Slot 1 de los Pentium II, pero la actual versión Coppermine de este micro utiliza mayoritariamente el Socket 370 FC-PGA.

Son unos procesadores prácticamente iguales a los Pentium II, pero se diferencian de ellos en que incorporan 70 nuevas instrucciones para "mejorar la experiencia en Internet".

Las nuevas instrucciones se han llamado MMX-2, para referenciarlas como una extensión de las viejas MMX. También KNI, ya que el procesador tenía el nombre en clave de Katmai, de ahí a las Katmai New Instructions (KNI), aunque parece ser que también se referencian como SSE.

El porqué de estas instrucciones es muy simple. Para mejorar la experiencia multimedia, especialmente la decodificación de películas en DVD (para lo que era necesario disponer de una tarjeta decodificadora), la velocidad en el procesamiento de imágenes 2D y 3D, reconocimiento de voz…. Es decir Multimedia.

Estas 70 instrucciones se pueden dividir en 3 grupos:

 En el primero podemos incluir 8 nuevas instrucciones que mejoran el acceso a memoria (para cachear memoria, especialmente para manejar muchos datos, como en el reconocimiento de voz o los vectores de datos 3D).

Existen 12 nuevas instrucciones específicas para   multimedia, para tareas como optimizar el proceso de datos de audio o para mejorar las representaciones MPEG2. Estas instrucciones complementan a las 59 MMX ya existentes.

Y por último, las 50 nuevas instrucciones para el manejo de datos en coma flotante. Especialmente diseñadas para el proceso de datos tridimensionales. Estas son las más parecidas a las 3DNow! de AMD. Pueden producir hasta 4 resultados por ciclo de reloj (como las 3DNow!), aunque estos resultados pueden ser 4 sumas, o 4 multiplicaciones, mientras que las 3DNow! tienen que combinar suma y multiplicación para poder cumplir con sus 4 resultados.

Además, gracias a las nuevas instrucciones, (al igual que ocurría con las 3DNow!) podemos utilizar el modo MMX y la unidad de coma flotante sin ver penalizado el rendimiento (en los primeros MMX y K6, si utilizábamos MMX no podíamos hacer operaciones en coma flotante y al revés). 

El Microprocesador Pentium 4

La última apuesta de Intel, que representa todo un cambio de arquitectura; pese a su nombre, internamente poco o nada tiene que ver con otros miembros de la familia Pentium. Se trata de un micro peculiar: su diseño permite alcanzar mayores velocidades de reloj (más MHz… y GHz), pero proporcionando mucha menos potencia por cada MHz que los micros anteriores; es decir, que un Pentium 4 a 1,3 GHz puede ser MUCHO más lento que un Pentium III a "sólo" 1 GHz. Para ser competitivo, el Pentium 4 debe funcionar a 1,7 GHz o más.

Incluye mejoras importantes: bus de 400 MHz (100 MHz físicos cuádruplemente aprovechados) y nuevas instrucciones para cálculos matemáticos, las SSE2. Éstas son muy necesarias para el Pentium 4, ya que su unidad de coma flotante es muchísimo más lenta que la del Athlon; si el software está específicamente preparado (optimizado) para las SSE2, el Pentium 4 puede ser muy rápido, pero de lo contrario no.

El nuevo procesador Intel Pentium 4 a 3 GHz con un avanzado bus del sistema de 800 MHz ofrece mayores niveles de rendimiento, creatividad y productividad. Basado en la microarquitectura Intel NetBurst y diseñado con tecnología de 0,13 micrones, el procesador Pentium 4 proporciona significativas mejoras en el rendimiento, tanto en su uso doméstico o con soluciones empresariales, y satisface todas sus necesidades de proceso.

El procesador Pentium 4 a 3 GHz también ofrece soporte para la tecnología Hyper-Threading, permitiéndole realizar varias tareas de forma más eficaz cuando ejecuta a la vez aplicaciones que utilizan muchos recursos.

Velocidades disponibles

  • Bus del sistema a 800 MHz: 3 GHz
  • Bus del sistema a 533 MHz: 3,06 GHz, 2,80 GHz, 2,66 GHz, 2,53 GHz, 2,40B GHz, 2,26 GHz
  • Bus del sistema a 400 MHz: 2,60 GHz, 2,50 GHz, 2,40 GHz, 2,20 GHz, 2A GHz
  • Chipset
  • Bus del sistema a 800 MHz: Gama de chipsets Intel 875P 
  • Bus del sistema a 400 MHz y 533 MHz: Gama de chipsets Intel 850 ,  , 845PE , 845GE , 845GV , 845E  y 845G 
  • Bus del sistema a 400 MHz: chipsets Intel 845GL  y 845 
  • Soporte de Pentium 4 Socket 423
  • 4 ranuras RIMM para memoria RDRAM
  • Incluye 2 módulos CRIMM
  • Chipset Intel 850 (82850/82801)
  • 1 ranura AGP 4x 1.5 V
  • 5 ranuras PCI
  • 1 ranura CNR
  • Soporte ATA/100
  • Sonido AC97 integrado
  • 2 puertos USB + 2 opcionales 

La Próxima Generación de Arquitecturas de Microprocesadores

 Intel y Hewlett-Packard han definido conjuntamente una nueva tecnología de arquitectura llamada EPIC llamada así por la habilidad del software de extraer el máximo paralelismo (potencial para trabajar en paralelo) del código original y explícitamente describirlo al hardware.

Intel y HP se han basado en esta tecnología EPIC para definir la arquitectura del set de instrucciones (ISA) que será incorporada en la arquitectura final del microprocesador de 64-bits de Intel. Esta nueva tecnología ISA de 64-bits trae consigo un modus operandi innovador, ya que haciendo uso de su tecnología EPIC, y combinando paralelismo explícito con conceptos y técnicas avanzadas de arquitectura de computadoras llamadas especulación y predicación superará todas las limitaciones de las arquitecturas tradicionales.

Intel anunció el nuevo nombre para su primer microprocesador IA-64 de nombre clave Merced, Itanium.

Itanium supuestamente reemplazara toda la línea de procesadores Xeon, que en este momento esta ocupando un lugar muy importante en la industria de los servidores. Se afirma que tendrá un rendimiento para redes suficiente como para sacarle una ventaja a los RISC de un 20-30% en este rubro. Intel espera que el nuevo procesador opere a una frecuencia de reloj alrededor de los 800 MHz y que entregue entre 45-50 SPECint95 y 70-100 SPECfp95 (base).

Mientras que en modo x86, Itanium podría igualar el rendimiento de un Pentium II de 500-MHz. Consumirá 60 Watts. El chip IA-64 esta más o menos por encima de los 300 mm2.

Itanium mejorará su labor con características como el ECC y lo que Intel llama EMC. Si el chip Itanium cae repetidamente en excepciones de ECC, la arquitectura alerta al sistema operativo.

El CPU del Itanium está combinado con mas de 4M de SRAM en un modulo que está conectado horizontalmente a la tarjeta madre.

El procesador será producido con una tecnología de 0.18 micrones la cual también esta siendo desarrollada por Intel Corporation. Decrementando las características de esa tecnología, permite reducir el poder de disipación, aumentar la frecuencia de operación y agrandar la escala de integración. Esta última permite colocar más unidades funcionales, más registros y más cache dentro del procesador.

Tendrá cache L1 y L2 en el chip, y cache L3 en el paquete Itanium (el cual es más pequeño que una tarjeta de presentación de 3×5"), mas no adentro del chip, el cual se utilizará para reducir el trafico de bus. El Itanium vendrá con 4 MB de cache L3. Incluirá una opción de 2 Mbytes o de 4 Mbytes de cache L2. OEM’s también podrán añadir cache L4.

El primer Itanium será un módulo de estilo cartucho, incluyendo un CPU, cache L1 y L2 y una interface de bus. El cartucho usará un sistema de bus recientemente definido, usando conceptos del bus del Pentium-II. El Itanium será capaz de soportar 6 gigaflops. Tendrá 4 unidades para enteros y dos unidades de coma flotante.

IA-64 es algo completamente diferente, es una mirada anticipada a la arquitectura que usa "palabras de instrucciones largas" (LIW), predicación de instrucciones, eliminación de ramificaciones, carga especulativa, y otras técnicas avanzadas para extraer mas paralelismo del código de programa.

Definitivamente Intel continuará en el futuro con el desarrollo de procesadores IA-32, tal es el caso de Foster.  

Merced proveerá direccionamiento de 64-bits, y tamaños de páginas altamente flexibles para reducir el intercambio de información entre memoria física y virtual, y especulación para reducir los efectos del tiempo de retrieve de memoria. Para máxima disponibilidad, el procesador Itanium incorporará un MCA mejorado que coordina el manejo de errores entre el procesador y el sistema operativo, suministrando oportunidades adicionales para corregir y entender los errores. El Itanium ofrece también otras características como el envenenamiento de datos, el cual permite enclaustrar la data corrupta y así terminar solamente los procesos afectados y con respuestas rebeldes al sistema y también una paridad extensiva y ECC. Estas características complementadas con otras de sistema anticipado como lo es el PCI Hot Plug (cambio de periféricos en tiempo de ejecución, teniendo arquitecturas redundantes obviamente), el soporte de los sistemas operativos mas utilizados y un manejo de instrucciones mejorado permitirán al Itanium satisfacer las demandas computacionales de nuestra era como lo son el e-Business, visualización y edición de gráficos 3D de gran tamaño y toda clase de operación multimedia.

El procesador Itanium extenderá la arquitectura Intel a nuevos niveles de ejecución para los servidores y estaciones de trabajo de alta capacidad, ya que en sus presentaciones Intel no ha dejado duda de que IA-64 tiene como objetivo primario este segmento del mercado.

Inicialmente llevará el chip set lógico de sistema 460GX, incluirá un servidor para entregar el rendimiento y confiabilidad necesarios por estos sistemas de alto costo.

Intel indicó que el 460GX soportará por lo menos 16G de standard SDRAM PC100 a 100 MHz. El 460GX soporta ECC en el bus del sistema y en la memoria principal y puede mapear fallas de las DRAM’s. Puede manejar más de 4 microprocesadores y puede ser usado como bloque de construcción, a pesar de que varios de los clientes de Intel están desarrollando su propia lógica del sistema para conectar 8 o más procesadores Itanium. El 460GX soporta "hot plugging" cuando tiene arriba de cuatro buses PCI, cada uno de 64 bits y 66 MHz de ancho de banda extra. El multi chip set también podrá ser usado para estaciones de trabajo, ya que incluye un puerto AGP de 4x. Ya que Intel y HP están desarrollando la arquitectura EPIC, dicen que es una tecnología de arquitectura fundamental, análoga a lo que es CISC y RISC.

El nuevo formato IA-64 empaqueta tres instrucciones en una sola palabra de 128 bits de longitud para un procesamiento más veloz. Este empaquetamiento es usualmente llamado codificación LIW, pero Intel evita ese nombre. Más bien, Intel llama a su nueva tecnología LIW EPIC.

EPIC es similar en concepto a VLIW ya que ambos permiten al compilador explícitamente agrupar las instrucciones para una ejecución en paralelo. El flexible mecanismo de agrupación del EPIC resuelve dos desperfectos del VLIW: excesiva expansión de código y falta de escalabilidad. 

Redes Informáticas

 Una Red es una manera de conectar varias computadoras entre sí, compartiendo sus recursos e información y estando conscientes una de otra. Cuando las PCs comenzaron a entrar en el área de los negocios, el conectar dos PCs no traía ventajas, pero esto desapareció cuando se empezaron a crear los sistemas operativos y el Software multiusuario.

Topología de Redes

La topología de una red, es el patrón de interconexión entre nodos y servidor, existe tanto la topología lógica (la forma en que es regulado el flujo de los datos), cómo la topología física (la distribución física del cableado de la red).

Las topologías físicas de red más comunes son:

  • Topología de Estrella: Red de comunicaciones en que la que todas las terminales están conectadas a un núcleo central, si una de las computadoras no funciona, esto no afecta a las demás, siempre y cuando el "servidor" esté funcionando.
  • Topología Bus Lineal: Todas las computadoras están conectadas a un cable central, llamado el "bus" o "backbone". Las redes de bus lineal son de las más fáciles de instalar y son relativamente baratas.
  • Topología de Anillo: Todas las computadoras o nodos están conectados el uno con el otro, formando una cadena o círculo cerrado.

Tipos de Redes

 Según el lugar y el espacio que ocupen, las redes, se pueden clasificar en dos tipos:

  • Redes LAN (Local Area Network) o Redes de área local
  • Redes WAN (Wide Area Network) o Redes de área amplia

1)       LAN ( Redes de Área Local)

Es una red que se expande en un área relativamente pequeña. Éstas se encuentran comúnmente dentro de una edificación o un conjunto de edificaciones que estén contiguos. Así mismo, una LAN puede estar conectada con otras LAN  a cualquier distancia por medio de línea telefónica y ondas de radio.

Pueden ser desde 2 computadoras, hasta cientos de ellas. Todas se conectan entre sí por varios medios y topología, a la computadora que se encarga de llevar el control de la red es llamada "servidor" y a las computadoras que dependen del servidor, se les llama "nodos" o "estaciones de trabajo".

Los nodos de una red pueden ser PCs que cuentan con su propio CPU, disco duro y software y tienen la capacidad de conectarse a la red en un momento dado; o pueden ser PCs sin CPU o disco duro y son llamadas "terminales tontas", las cuales tienen que estar conectadas a la red para su funcionamiento.

Las LAN son capaces de transmitir datos a velocidades muy rápidas, algunas inclusive más rápido que por línea telefónica; pero las distancias son limitadas.

2)       WAN (Redes de Área Amplia)

Es una red comúnmente compuesta por varias LAN interconectadas y se encuentran en un área geográfica muy amplia. Estas LAN que componen la WAN se encuentran interconectadas por medio de líneas de teléfono, fibra óptica o por enlaces aéreos como satélites.

Entre las WAN más grandes se encuentran: la ARPANET, que fue creada por la Secretaría de Defensa de los Estados Unidos y se convirtió en lo que es actualmente la WAN mundial: INTERNET, a la cual se conectan actualmente miles de redes universitarias, de gobierno, corporativas y de investigación.

Componentes de una Red

 1.-Servidor (server): El servidor es la máquina principal de la red, la que se encarga de administrar los recursos de la red y el flujo de la información. Muchos de los servidores son "dedicados", es decir, están realizando tareas específicas, por ejemplo, un servidor de impresión solo para imprimir; un servidor de comunicaciones, sólo para controlar el flujo de los datos…etc. Para que una máquina sea un servidor, es necesario que sea una computadora de alto rendimiento en cuanto a velocidad y procesamiento, y gran capacidad en disco duro u otros medios de almacenamiento.

2.- Estación de trabajo (Workstation): Es una computadora que se encuentra conectada físicamente al servidor por medio de algún tipo de cable. Muchas de las veces esta computadora ejecuta su propio sistema operativo y ya dentro, se añade al ambiente de la red

3. -Sistema Operativo de Red: Es el sistema (Software) que se encarga de administrar y controlar en forma general la red. Para esto tiene que ser un Sistema Operativo Multiusuario, como por ejemplo: Unix, Netware de Novell, Windows NT, etc.

4. -Recursos a compartir: Al hablar de los recursos a compartir, estamos hablando de todos aquellos dispositivos de Hardware que tienen un alto costo y que son de alta tecnología. En estos casos los más comunes son las impresoras, en sus diferentes tipos: Láser, de color, plotters, etc.

5. – Hardware de Red: Son aquellos dispositivos que se utilizan para interconectar a los componentes de la red, serían básicamente las tarjetas de red (NIC-> Network Interface Cards) y el cableado entre servidores y estaciones de trabajo, así como los cables para conectar los periféricos.

Tecnologías Futuras

 La nanotecnología basada en el nanómetro, del cual la unidad es la mil millonésima parte de un metro, permite a los científicos tener nuevos conceptos de diagnósticos de enfermedad y tratamiento a una escala molecular y atómica. Al utilizar partículas de nanómetro, un médico puede separar las células del feto de la sangre de una mujer embarazada para ver si el desarrollo del feto es normal. Este método también está siendo utilizado en los diagnósticos tempranos de cáncer y de enfermedades cardíacas.

Uno de los impactos más significativos de la nanotecnología es en la interface de los materiales bio-inorgánicos, de acuerdo con Greg Tegart, consejero ejecutivo del Centro de APEC para la Previsión de Tecnología. Al combinar enzimas y chips de silicona podemos producir biosensores. Estos podrían ser implantados en seres humanos o animales para monitorear la salud y enviar dosis correctivas de drogas.

La nanotecnología podría afectar la producción de virtualmente todo objeto hecho por el hombre, desde automóviles, llantas y circuitos de computadoras, hasta medicinas avanzadas y el reemplazo de tejidos y conducir a la invención de objetos que aún están por imaginarse. Se ha mostrado que los nanotubos de carbón son diez veces más fuertes que el acero, con un sexto del peso, y los sistemas de nanoescala tienen el potencial de hacer el costo del transporte supersónico efectivo e incrementar la eficiencia de la computadora en millones de veces. Al disfrutar más y más gente de la navegación por Internet, los científicos han comenzado la investigación de la nueva generación de Internet. La tercera generación de Internet, conocida como la cuadrícula de servicio de información (ISG, siglas en inglés), conectará no sólo computadoras y sitios web, sino también recursos informativos, incluyendo bases de datos, software y equipo informativo. La cuadrícula proveerá a los suscriptores de servicios integrados precisamente como una computadora supergrande.

Por ejemplo, cuando un suscriptor vaya a viajar, el o ella sólo necesitará introducir datos en el número de turistas, destino, tiempo y otros factores. Entonces el ISG contactará automáticamente aerolíneas, estaciones de tren, agencias de viajes y hoteles para preparar un programa de viaje para el suscriptor y terminar todo el trabajo necesario como la reservación de boletos y de cuartos.

Ordenadores Cuánticos y Moleculares

 La velocidad y el tamaño de los micros están íntimamente relacionadas ya que al ser los transistores más pequeños, la distancia que tiene que recorrer la señal eléctrica es menor y se pueden hacer más rápidos. Al ser los transistores cada vez más pequeños la cantidad de ellos contenidos en un microprocesador, y por consiguiente su velocidad, se ha venido duplicando cada dos años. Pero los estudios revelan que este ritmo no se puede mantener y que el límite será alcanzado tarde o temprano, ya que si se reduce más, las interferencias de un transistor provocarían fallos en los transistores adyacentes.

Con el fin de superar estos límites de tamaño y velocidad se está trabajando en la actualidad en varios centros de investigación de todo el mundo en dos líneas que pueden revolucionar el mundo de la informática: Los ordenadores cuánticos y los ordenadores de ADN.

Los Ordenadores Cuánticos

 Los ordenadores utilizan bits para codificar la información de modo que un bit puede tomar el valor cero o uno. Por contra, los ordenadores cuánticos utilizan los qubits (bits cuánticos) para realizar esta tarea. Un qubit almacena la información en el estado de un átomo, pero por las propiedades de los átomos hacen que el estado no tenga porque ser cero o uno, sino que puede ser una mezcla de los dos a la vez. Así, al poder almacenar una mezcla de ambos valores a la vez en cada qubit podemos tratar toda la información de una sola vez.

Su procesador consta de algunos átomos de hidrógeno y carbono en una molécula de cloroformo con los spines de sus núcleos alineados por radiofrecuencias, usando las técnicas usuales de resonancia magnética de origen nuclear (NMR). Podría ser el inicio de la nanotecnología, idea propuesta por Eric Drexler, quien, como estudiante del MIT en los años 70, consideraba la posibilidad de construir máquinas con unos pocos átomos que puedan programarse para construir otras, eventualmente millones.

Gracias a estas propiedades los ordenadores cuánticos tienen una especial capacidad para resolver problemas que necesitan un elevado número de cálculos en un tiempo muy pequeño. Además, como estarán construidos con átomos, su tamaño será microscópico consiguiendo un nivel de miniaturización impensable en los microprocesadores de silicio.

Por desgracia, en la actualidad aún no se ha llegado a construir ordenadores cuánticos que utilicen más de dos o tres qubits. Aún así, hay un gran número de centros de investigación trabajando tanto a nivel teórico como a nivel práctico en la construcción de ordenadores de este tipo y los avances son continuos. Entre los principales centros destacan los laboratorios del centro de investigación de Almaden de IBM, AT&T, Hewlett Packard en Palo Alto (California), el Instituto Tecnológico de Massachusetts (MIT) y universidades de todo el mundo como la de Oxford Standford, Berkeley, etcétera.

Computadoras de ADN

 La computación molecular consiste en representar la información a procesar con moléculas orgánicas y hacerlas reaccionar dentro de un tubo de ensayo para resolver un problema.

La primera experiencia en laboratorio se realizó en 1994 cuando se resolvió un problema matemático medianamente complejo. Para ello se utilizó la estructura de moléculas de ADN para almacenar la información de partida y se estudió las moléculas resultantes de las reacciones químicas para obtener la solución.

Por una parte, esta técnica aprovecha la facultad de las moléculas de reaccionar simultáneamente dentro de un mismo tubo de ensayo tratando una cantidad de datos muy grande al mismo tiempo. Por otro lado, el tamaño de las moléculas los sitúa a un tamaño equiparable al que se puede conseguir con los ordenadores cuánticos. Otra ventaja importante es que la cantidad de información que se puede almacenar es sorprendente, por ejemplo, en un centímetro cúbico se puede almacenar la información equivalente a un billón de CDs.

Si comparamos un hipotético computador molecular con un supercomputador actual vemos que el tamaño, la velocidad de cálculo y la cantidad de información que se puede almacenar son en extremo mejoradas. La velocidad de cálculo alcanzada por un computador molecular puede ser un millón de veces más rápida y la cantidad de información que puede almacenar en el mismo espacio es un billón de veces (1.000.000.000.000) superior.

Aunque aún no se pueden construir ordenadores de este tipo, desde la primera experiencia práctica esta área ha pasado a formar parte de los proyectos más serios como alternativa al silicio. Buena prueba de ello son las investigaciones llevadas a cabo en el marco del DIMACS o "Centro de Matemática Discreta y Computación Teórica" del cual forman parte las universidades Princeton, los laboratorios de AT&T, Bell entre otros. Otros focos de investigación son el Departamento de Defensa de los Estados Unidos y el Consorcio Europeo de Computación Molecular  formado por un importante número de universidades. Científicos israelitas, presentaron una computadora  de ADN tan diminuta que un millón de ellas podría caber en un tubo de ensayo y realizar 1.000 millones de operaciones por segundo con un 99,8 por ciento de precisión. Es la primera máquina de computación programable de forma autónoma en la cual la entrada de datos, el software y las piezas están formados por biomoléculas. Los programas de la microscópica computadora están formados por moléculas de ADN que almacenan y procesan la información codificada en organismos vivos.  

La Computación Vestible

 La computación vestible o para llevar puesta (Wearable Computing o WC) intenta hacer que la computadora sea verdaderamente parte de la vida diaria del ser humano, integrándola en la forma de un accesorio tan cómodo de vestir como un reloj de pulsera y tan fácil de usar como un teléfono móvil. Se trata de un sistema completo que porta el usuario, desde la placa principal (el motherboard) hasta la fuente de alimentación y todos los dispositivos de entrada/salida, y que interactúan con él basado en el contexto de la situación.

"Para integrar la computadora de forma imperceptible con el entorno, no basta con que se la pueda llevar a la playa, a la selva o a un aeropuerto. La computadora de bolsillo más potente seguiría centrando la atención del usuario sobre una caja individual. Uno debería estar dentro de la computadora más bien que frente a ella, debería estar en un entorno inmersivo"

En una configuración convencional, la WC constará de un chaleco lleno de chips y sensores conectado al cinturón-batería, de donde se extraerá la alimentación del equipo. La energía generada por la respiración, el calor corporal, los latidos cardíacos y el movimiento de los brazos y las piernas podrá usarse para alimentar a las baterías. Como dispositivo de interfaz, cuenta con micrófonos y antenas diminutos, así como también con unos anteojos especiales equipados con microcámaras que integran las funciones de cámaras fotográficas, video-cámaras y escáners. A través del sistema de control visual se puede controlar con la vista muchas de las funciones de la máquina. Aquellas principales se descuelgan de la parte interna de los anteojos en forma de menú de múltiple elección y con sólo mirarlas fijas por un período de 2 segundos o con un simple parpadeo el usuario puede elegir una de ellas. Esta elección puede llevar a un segundo menú en el que se esbozan características secundarias, y así sucesivamente hasta que quede convenientemente detallada la operación que se desea realizar. Aunque resulte increíble, a esa distancia del ojo, la imagen percibida sobre la cara interna de los anteojos, es equivalente a la ofrecida por un monitor común situado a varias decenas de centímetros.

Esto creará una simbiosis íntima entre el hombre y la computadora. La WC responderá a la voz del dueño dándole la información crítica que necesita, en el momento en que la precisa y en cualquier lugar. Por ejemplo, y en el caso de que una persona presencie un hurto, podrá fotografiarlo y enviarlo por Internet ya que, además, uno podrá navegar por la red mientras viaja o camina por cualquier zona del globo. El usuario podrá recibir de manera instantánea aquellas informaciones que particularmente le interesen; podrá enlazarse con la red de posicionamiento global para saber en cualquier momento su ubicación y nunca se olvidará del cumpleaños de ninguno de sus amigos. Asimismo, ofrece la posibilidad para tomar notas y procesarlas en el momento, algo verdaderamente útil ya que evita la sobrecarga de pensamientos y libera a la mente de "recursos" para permitir que surjan nuevas ideas. Incluso, permitirá organizar mejor los pensamientos, ya que recuperará para el usuario todo lo que anteriormente escribió, leyó, vio y escuchó sobre el mismo tema, complementando o aumentando su información.

La principal aplicación de las WC será la adquisición, el almacenamiento y la recuperación de la información, y la idea es que estén "siempre encendidas" en contraste con las computadoras que están "casi siempre apagadas". 

Nanotecnología

 La nanotecnología tiene grandes posibilidades de convertirse en la tecnología clave en las próximas décadas. Las nanotecnologías -técnicas de manipulación o control a escala nanotécnica e incluso molecular o atómica- estarán presentes en todos los campos de las ciencias y supondrán, según los expertos, una revolución.

Los futuros desarrollos de esta tecnología, como la micromecanización tridimensional, microsensores, materiales nanoestructurados, así como los sistemas microelectromecánicos, se aplicarán tanto a la computación, a la producción de medicamentos o al desarrollo de materiales cada vez más diminutos. En todos los países situados a la cabeza del desarrollo tecnológico, cobran cada día más relevancia las investigaciones de la Nanotecnología aplicadas a distintos campos como la aeronáutica y el espacio, las comunicaciones y multimedia, la biomedicina o el control de procesos industriales.

Mantener la tecnología basada en transistores supondría la quiebra para muchos fabricantes de chips porque no podrían soportar los altos costos. Por eso se están investigando nuevos sistemas dentro de la nanotecnología.

Entre las soluciones que se están aplicando actualmente está la de sustituir el aluminio por el cobre en los conductores que conectan los transistores. El cobre es un 40% mejor conductor que el aluminio y mejora la velocidad de los procesadores. Pero presenta otros problemas. No se mezcla bien con el silicio, el material base de los transistores, y, además, es capaz de cambiar las propiedades eléctricas del sustrato.

Para solucionar este problema, la compañía IBM consiguió desarrollar un método, que consiste en introducir una barrera microscópica entre el cobre y el silicio, y que elimina el rechazo. Este sistema está permitiendo fabricar chips con tecnología de 0.12 micras y cuyo coste de procesamiento es entre un 20 y un 30% menor que el de los chips basados en aluminio.

En septiembre de 2001, anunció que había conseguido unir el arsenio de galio, más caro pero mejor conductor de la electricidad, con el silicio. La compañía de telefonía afirmó que el nuevo semiconductor actúa a una velocidad de 70 gigahercios, 35 veces por encima de los actuales gigahercios de los procesadores más rápidos en las computadoras personales.

Intel presentó una nueva estructura para transistores, que permitirá que los chips funcionen más rápido y consuman menos energía. Lo llaman el Transistor TeraHertz, porque su ciclo de encendido y apagado es de un billón de veces por segundo.

El proyecto del chip molecular sustituirá al silicio, en favor de la química, más manipulable. Se prevé que se podrán fabricar computadoras del tamaño de una partícula de polvo y miles de veces más potentes que los existentes. De momento, se ha conseguido simular el cambio de una molécula, mediante su rotura, pero falta crear moléculas que se curven sin romperse.

También es necesario fabricar otros conductores, porque los existentes no sirven. Los experimentos con nanotubos de carbón (milmillonésima parte de un metro) para la conducción de información entre las moléculas ya han dado resultados. IBM acaba de anunciar que ha conseguido crear un circuito lógico de ordenador con una sola molécula de carbono, una estructura con forma de cilindro 100.000 veces más fino que un cabello. Este proyecto permite introducir 10.000 transistores en el espacio que ocupa uno de silicio.

Los desarrollos en Nanotecnología se están aplicando también a los sistemas de seguridad. La empresa taiwanesa Biowell Technology presentó, en agosto, un sintetizado que puede utilizarse para probar la autenticidad de pasaportes y otros documentos y tarjetas, con el fin de evitar el pirateo.

Este chip podrá utilizarse también en tarjetas de débito, carnets, matrículas de automóviles, permisos de conducir, discos compactos, DVD, programas informáticos, títulos y valores, bonos, libretas bancarias, antigüedades, pinturas, y otras aplicaciones en las que se necesite comprobar su autenticidad.

Partes: 1, 2, 3, 4, 5
 Página anterior Volver al principio del trabajoPágina siguiente