Sir Isaac Newton
Isaac Newton nació el día de Navidad del antiguo calendario en 1642 (correspondiente al 4 de Enero de 1643 del nuevo calendario), año en que moría Galileo, en el pueblecito de Woolsthorpe, unos 13 Km. al sur de Grantham, en el Lincolnshire. Fue un niño prematuro y su padre murió antes de su nacimiento, a los treinta y siete años. Isaac fue educado por su abuela, preocupada por la delicada salud de su nieto. Su madre, mujer ahorrativa y diligente, se casó de nuevo cuando su hijo no tenía más que tres años. Newton frecuentó la escuela del lugar y, siendo muy niño, manifestó un comportamiento completamente normal, con un interés marcado por los juguetes mecánicos.
El reverendo William Ayscough, tío de Newton y diplomado por el Trinity College de Cambridge, convenció a su madre de que lo enviara a Cambridge en lugar de dejarlo en la granja familiar para ayudarla. En junio de 1661, a los dieciocho años, era pues alumno del Trinity College, y nada en sus estudios anteriores permitía entrever o incluso esperar la deslumbrante carrera científica del fundador de la mecánica y la óptica. Por otra parte, el Trinity College tenía fama de ser una institución sumamente recomendable para aquellos que se destinaban a las órdenes. Afortunadamente, esta institución le brindó hospitalidad, libertad y una atmósfera amistosa que le permitieron tomar contacto verdadero con el campo de la ciencia.
Al comienzo de su estancia en Cambridge, se interesó en primer lugar por la química, y este interés, según se dice, se manifestó a lo largo de toda su vida. Durante su primer año de estudios, y probablemente por primera vez, leyó una obra de matemáticas sobre la geometría de Euclides, lo que despertó en él el deseo de leer otras obras. Parece también que su primer tutor fue Benjamin Pulleyn, posteriormente profesor de griego en la Universidad. En 1663, Newton leyó la Clavis mathematicae de Oughtred, la Geometria a Renato Des Cartes de Van Schooten, la Optica de Kepler, la Opera mathematica de Vieta, editadas por Van Schooten y, en 1644, la Aritmética de Wallis que le serviría como introducción a sus investigaciones sobre las series infinitas, el teorema del binomio, ciertas cuadraturas. También a partir de 1663 Newton conoció a Barrow, quien le dio clase como primer profesor lucasiano de matemáticas. En la misma época, Newton entró en contacto con los trabajos de Galileo, Fermat, Huygens y otros, a partir probablemente de la edición de 1659 de la Geometria de Descartes por Van Schooten.
Desde finales de 1664, Newton parece dispuesto a contribuir personalmente al desarrollo de las matemáticas. Aborda entonces el teorema del binomio, a partir de los trabajos de Wallis, y el cálculo de fluxiones. Después, al acabar sus estudios de bachiller, debe volver a la granja familiar a causa de una epidemia de peste bubónica. Retirado con su familia durante los años 1665-1666, conoce un período muy intenso de descubrimientos: descubre la ley del inverso del cuadrado, de la gravitación, desarrolla su cálculo de fluxiones, generaliza el teorema del binomio y pone de manifiesto la naturaleza física de los colores. Sin embargo, Newton guarda silencio sobre sus descubrimientos y reanuda sus estudios en Cambridge en 1667.
De 1667 a 1669, emprende activamente investigaciones sobre óptica y es elegido fellow del Trinity College. En 1669, Barrow renuncia a su cátedra lucasiana de matemáticas y Newton le sucede y ocupa este puesto hasta 1696. El mismo año envía a Collins, por medio de Barrow, su Analysis per aequationes numero terminorum infinitos. Para Newton, este manuscrito representa la introducción a un potente método general, que desarrollará más tarde: su cálculo diferencial e integral. En 1672 publicó una obra sobre la luz con una exposición de su filosofía de las ciencias, libro que fue severamente criticado por la mayor parte de sus contemporáneos, entre ellos Robert Hooke (1638-1703) y Huygens, quienes sostenían ideas diferentes sobre la naturaleza de la luz. Como Newton no quería publicar sus descubrimientos, no le faltaba más que eso para reafirmarle en sus convicciones, y mantuvo su palabra hasta 1687, año de la publicación de sus Principia, salvo quizá otra obra sobre la luz que apareció en 1675.
Desde 1673 hasta 1683, Newton enseñó álgebra y teoría de ecuaciones, pero parece que asistían pocos estudiantes a sus cursos. Mientras tanto, Barrow y el astrónomo Edmond Halley (1656-1742) reconocían sus méritos y le estimulaban en sus trabajos. Hacia 1679, verificó su ley de la gravitación universal y estableció la compatibilidad entre su ley y las tres de Kepler sobre los movimientos planetarios.
Newton descubrió los principios de su cálculo diferencial e integral hacia 1665-1666, y durante el decenio siguiente elaboró al menos tres enfoques diferentes de su nuevo análisis. Desde 1684, su amigo Halley le incita a publicar sus trabajos de mecánica, y finalmente, gracias al sostén moral y económico de este último y de la Royal Society, publica en 1687 sus célebres Philosophiae naturalis principia mathematíca. Los tres libros de esta obra contienen los fundamentos de la física y la astronomía escritos en el lenguaje de la geometría pura. El libro I contiene el método de las "primeras y últimas razones" y, bajo la forma de notas o de escolios, se encuentra como anexo del libro III la teoría de las fluxiones. Aunque esta obra monumental le aportó un gran renombre, resulta un estudio difícil de comprender, y parece que Newton quiso que fuera así con el fin «de evitar ser rebajado por pequeños semisabios en matemáticas». Quiso escapar así a las críticas suscitadas por sus textos sobre la luz.
En 1687, Newton defendió los derechos de la Universidad de Cambridge contra el impopular rey Jacobo II y, como resultado tangible de la eficacia que demostró en esa ocasión, fue elegido miembro del Parlamento en 1689, en el momento en que el rey era destronado y obligado a exiliarse. Mantuvo su escaño en el Parlamento durante varios años sin mostrarse, no obstante, muy activo durante los debates. Durante este tiempo prosiguió sus trabajos de química, en los que se reveló muy competente, aunque no publicara grandes descubrimientos sobre el tema. Se dedicó también al estudio de la hidrostática y de la hidrodinámica además de construir telescopios.
Después de haber sido profesor durante cerca de treinta años, Newton abandonó su puesto para aceptar la responsabilidad de Director de la Moneda en 1696. Durante los últimos treinta años de su vida, abandonó prácticamente sus investigaciones y se consagró progresivamente a los estudios religiosos. Fue elegido presidente de la Royal Society en 1703 y reelegido cada año hasta su muerte. En 1705 fue hecho caballero por la reina Ana, como recompensa a los servicios prestados a Inglaterra.
Los últimos años de su vida se vieron ensombrecidos por la desgraciada controversia, de envergadura internacional, con Leibniz a propósito de la prioridad de la invención del nuevo análisis, Acusaciones mutuas de plagio, secretos disimulados en criptogramas, cartas anónimas, tratados inéditos, afirmaciones a menudo subjetivas de amigos y partidarios de los dos gigantes enfrentados, celos manifiestos y esfuerzos desplegados por los conciliadores para aproximar a los clanes adversos, he aquí en pocas palabras los detalles de esta célebre controversia, que se terminó con la muerte de Leibniz en 1716, pero cuyas malhadadas secuelas se harán sentir hasta fines del siglo XVIII.
Después de una larga y atroz enfermedad, Newton murió durante la noche del 20 de marzo de 1727, y fue enterrado en la abadía de Westminster en medio de los grandes hombres de Inglaterra.
"No sé cómo puedo ser visto por el mundo, pero en mi opinión, me he comportado como un niño que juega al borde del mar, y que se divierte buscando de vez en cuando una piedra más pulida y una concha más bonita de lo normal, mientras que el gran océano de la verdad se exponía ante mí completamente desconocido."
Esta era la opinión que Newton tenía de sí mismo al fin de su vida. Fue muy respetado, y ningún hombre ha recibido tantos honores y respeto, salvo quizá Einstein. Heredó de sus predecesores, como él bien dice "si he visto más lejos que los otros hombres es porque me he aupado a hombros de gigantes"- los ladrillos necesarios, que supo disponer para erigir la arquitectura de la dinámica y la mecánica celeste, al tiempo que aportaba al cálculo diferencial el impulso vital que le faltaba
Leyes del movimiento de Newton
Las leyes del movimiento tienen un interés especial aquí; tanto el movimiento orbital como la ley del movimiento de los cohetes se basan en ellas.
Newton planteó que todos los movimientos se atienen a tres leyes principales formuladas en términos matemáticos y que implican conceptos que es necesario primero definir con rigor. Un concepto es la fuerza, causa del movimiento; otro es la masa, la medición de la cantidad de materia puesta en movimiento; los dos son denominados habitualmente por las letras F y m. "Las tres leyes del movimiento de Newton" se enuncian abajo en palabras modernas: como hemos visto todas necesitan un poco de explicación.
- En ausencia de fuerzas, un objeto ("cuerpo") en descanso seguirá en descanso, y un cuerpo moviéndose a una velocidad constante en línea recta, lo continuará haciendo indefinidamente.
- Cuando se aplica una fuerza a un objeto, se acelera. La aceleración es en dirección a la fuerza y proporcional a su intensidad y es inversamente proporcional a la masa que se mueve:
a = k(F/m)
donde k es algún número, dependiendo de las unidades en que se midan F, m y a. Con unidades correctas (volveremos a ver esto), k = 1 dando
a = F/m
ó en la forma en que se encuentra normalmente en los libros de texto
F = m a
De forma más precisa, deberíamos escribir
F = ma
siendo F y a vectores en la misma dirección (indicados aquí en negrita, aunque esta convención no se sigue siempre en este sitio web). No obstante, cuando se sobreentiende una dirección única, se puede usar la forma simple.
- "La ley de la reacción" enunciada algunas veces como que "para cada acción existe una reacción igual y opuesta". En términos más explícitos:
"Las fuerzas son siempre producidas en pares, con direcciones opuestas y magnitudes iguales. Si el cuerpo nº 1 actúa con una fuerza F sobre el cuerpo nº 2, entonces el cuerpo nº 2 actúa sobre el cuerpo nº 1 con una fuerza de igual intensidad y dirección opuesta."
La Primera Ley
El primer ejemplo de movimiento y, probablemente, el único tipo que se podía describir matemáticamente antes de Newton, es el de la caída de objetos. No obstante existen otros movimientos, de manera especial movimientos horizontales, en los que la gravedad no juega un papel principal. Newton se aplicó también a ellos.
Considere un disco de hockey deslizándose sobre la superficie helada. Puede viajar grandes distancias y cuanto más liso sea el hielo, más allá irá. Newton observó que, a fin de cuentas, lo que para estos movimientos es importante es la fricción sobre la superficie. Si se pudiera producir un hielo ideal completamente liso, sin fricción, el disco continuaría indefinidamente en la misma dirección y con la misma velocidad .
Este es el quid de la primera ley: "el movimiento en línea recta a velocidad constante no requiere ninguna fuerza". Sumar este movimiento a cualquier otro no trae ninguna nueva fuerza en juego, todo queda igual: en la cabina de un avión moviéndose en línea recta a la velocidad constante de 600 mph, nada cambia, el café sale de la misma forma y la cuchara continua cayendo en línea recta.
La Tercera Ley
La tercera ley, la ley de reacción, afirma que las fuerzas nunca ocurren de forma individual, sino en pares iguales y opuestos. Siempre que una pistola dispara una bala, da un culatazo. Los bomberos que apuntan al fuego con la tobera de una manguera gruesa deben agarrarla firmemente, ya que cuando el chorro de agua sale de ella, la manguera retrocede fuertemente (los aspersores de jardín funcionan por el mismo principio). De forma similar, el movimiento hacia adelante de un cohete se debe a la reacción del rápido chorro a presión de gas caliente que sale de su parte posterior.
Los que están familiarizados con los botes pequeños saben que antes de saltar desde el bote a tierra, es más acertado amarrar el bote antes al muelle. Si no, en cuando haya saltado, el bote, "mágicamente", se mueve fuera del muelle, haciendo que, muy probablemente, pierda su brinco y empuje al bote fuera de su alcance. Todo está en la 3ª ley de Newton: Cuando sus piernas impulsan su cuerpo hacia el muelle, también se aplica al bote una fuerza igual y de sentido contrario, que lo empuja fuera del muelle.
Una máquina es un instrumento que transforma las fuerzas que sobre ella se aplican a fin de disminuir el esfuerzo necesario para llevar a cabo una tarea.
Dependiendo de la complejidad, las máquinas se clasifican en:
Máquinas simples son aquellas que sólo tienen un punto de apoyo. Las principales son: la palanca, la polea, el plano inclinado, la cuña y el tornillo.
Máquinas compuestas son aquellas que están formadas por dos o más máquinas simples. Por ejemplo: la bicicleta, la grúa, el motor.
Las máquinas están constituidas por elementos mecánicos que se agrupan formando mecanismos, cada uno de los cuales realiza una función concreta dentro de la máquina.
Los mecanismos se pueden describir partiendo del tipo de movimiento que originan. Así, podemos distinguir cuatro tipos:
* Movimiento lineal: El movimiento en línea recta o en una sola dirección
* Movimiento alternativo: El movimiento adelante y atrás a lo largo de una recta se llama movimiento alternativo
* Movimiento de rotación: El movimiento circular se llama movimiento de rotación
* Movimiento oscilante: El movimiento hacia delante y hacia atrás formando un arco (o parte de un círculo).
El teorema del binomio, descubierto hacia 1664-1665, fue comunicado por primera vez en dos cartas dirigidas en 1676 a Henry Oldenburg (hacia 1615-1677), secretario de la Royal Society que favorecía los intercambios de correspondencia entre los científicos de su época. En la primera carta, fechada el 13 de junio de 1676, en respuesta a una petición de Leibniz que quería conocer los trabajos de matemáticos ingleses sobre series infinitas, Newton presenta el enunciado de su teorema y un ejemplo que lo ilustra, y menciona ejemplos conocidos en los cuales se aplica el teorema. Leibniz responde, en una carta fechada el 17 de agosto del mismo año, que está en posesión de un método general que le permite obtener diferentes resultados sobre las cuadraturas, las series, etc., y menciona algunos de sus resultados. Interesado por las investigaciones de Leibniz, Newton le responde también con una carta fechada el 24 de octubre en la que explica en detalle cómo ha descubierto la serie binómica.
Aplicando los métodos de Wallis de interpolación y extrapolación a nuevos problemas, Newton utilizó los conceptos de exponentes generalizados mediante los cuales una expresión polinómica se transformaba en una serie infinita. Así estuvo en condiciones de demostrar que un buen número de series ya existentes eran casos particulares, bien directamente, bien por diferenciación o integración.
El descubrimiento de la generalización de la serie binómica es un resultado importante de por sí; sin embargo, a partir de este descubrimiento Newton tuvo la intuición de que se podía operar con series infinitas de la misma manera que con expresiones polinómicas finitas. El análisis mediante las series infinitas parecía posible, porque ahora resultaban ser una forma equivalente para expresar las funciones que representaban.
Newton no publicó nunca el teorema del binomio. Lo hizo Wallis por primera vez en 1685 en su Algebra, atribuyendo a Newton este descubrimiento.
El De analysi
Compuesto en 1669 a partir de conceptos elaborados en 1665-1666, el De analysi no fue publicado hasta 1711, aunque era conocido entre los próximos a Newton porque circulaba en forma manuscrita desde 1669.
Al comienzo de sus investigaciones sobre las propiedades de las líneas curvas, Newton se apoya principalmente en el método de las tangentes de Descartes, aunque también recurre a la regla de Hudde para la determinación de los extremos. Newton se dispone desde el principio a elaborar algoritmos que le permitan simplificar la resolución de los problemas de tangentes, cuadratura y rectificación de curvas. El De analysi contiene los fundamentos de su método de las series infinitas que se manipulan mediante operaciones de división y extracción de raíces. Toma también de la física ciertos conceptos que se revelan útiles para sus métodos infinitesimales y para traducir su concepción cinemática de las curvas. En 1666 todavía no ha desarrollado completamente su notación de las fluxiones, pero en 1669, en el momento de la redacción de su De analysi, utiliza todavía la notación más o menos convencional y reserva para una ulterior publicación sus fluxiones como concepto operacional a nivel algorítmico.
Utiliza la relación de reciprocidad entre la diferenciación y la integración y aplica su método para obtener el área comprendida bajo diversas curvas y para resolver numerosos problemas que requieren sumaciones. Enuncia y utiliza también la regla moderna: la integral indefinida de una suma de funciones es la suma de las integrales de cada una de las funciones.
Se sirve también de las series infinitas para integrar curvas utilizando la regla de integración término a término.
Añadamos que, con motivo de ciertas observaciones a propósito de la utilización de las series infinitas, Newton parece estar preocupado por el concepto de convergencia, pero no aporta ninguna solución a este problema.
El método de las fluxiones
Se franquea una segunda etapa en el momento en que Newton acaba, en 1671, su obra Methodus fluxionum et serierum infiniturum, comenzada en 1664. Newton tenía intención de publicarla, en particular en su Opticks, pero a causa de las críticas formuladas anteriormente con respecto a sus principios sobre la naturaleza de la luz, decidió no hacerlo. De hecho, será publicada en 1736 en edición inglesa, y no será publicada en versión original hasta 1742. Newton expone en este libro su segunda concepción del análisis introduciendo en sus métodos infinitesimales el concepto de fluxión.
En su prefacio, Newton comenta la decisión de Mercator de aplicar al álgebra la «doctrina de las fracciones decimales», porque, dice, «esta aplicación abre el camino para llegar a descubrimientos más importantes y más difíciles». Después habla del papel de las sucesiones infinitas en el nuevo análisis y de las operaciones que se pueden efectuar con esas sucesiones.
La primera parte de la obra se refiere justamente a la reducción de «términos complicados» mediante división y extracción de raíces con el fin de obtener sucesiones infinitas.
Newton introduce su nueva concepción de fluxiones y fluentes al abordar dos problemas; el primero consiste en encontrar la velocidad del movimiento en un tiempo dado cualquiera, dada la longitud del espacio descrito. El segundo problema es la inversa del primero.
Disponiendo de su método general, determina los máximos y mínimos de relaciones, las tangentes a curvas (parábola, concoide de Nicomedes, espirales, cuadratrices), el radio de curvatura, los puntos de inflexión y el cambio de concavidad de las curvas, su área y su longitud.
Newton incluye también en esta obra tablas de curvas clasificadas según diez órdenes y once formas, que comprenden también la abscisa y la ordenada para cada una de las formas y el área de cada una de ellas (tabla de integrales). También incluye nuevas clases de ordenadas, una fórmula de aproximación para la solución de las ecuaciones que llevan su nombre, y el paralelogramo de Newton, útil para el desarrollo de series infinitas y para el trazado de curvas.
Cuando Newton aborda el problema de «trazar las tangentes de las curvas», expone nueve maneras diferentes de hacerlo, teniendo en cuenta las «diferentes relaciones de las curvas con las líneas rectas». En la tercera manera, recurre a las «coordenadas bipolares», poco utilizadas actualmente. Pero en la exposición de la séptima manera encontramos por primera vez la utilización de las coordenadas polares.
Newton expone en el artículo XX de su Método un procedimiento para la determinación aproximada de las raíces de una ecuación. Lo presenta como un método para efectuar «la reducción de las ecuaciones afectadas», para reducirlas a sucesión infinita.
Este método fue modificado ligeramente por Joseph Raphson en 1690, y después por Thomas Simpson en 1740, para dar la forma actual.
El De quadratura curvarum
La tercera concepción de Newton a propósito del nuevo análisis aparece en su De quadratura curvarum, escrita en 1676 pero no publicada hasta 1704, como apéndice a su Opticks. Newton se propone esta vez fundamentar su cálculo sobre bases geométricas sólidas, por lo que hace hincapié en la concepción cinemática de las curvas.
Más adelante, Newton describe la distinción entre el uso de elementos discontinuos y las nuevas consideraciones cinemáticas con referencia a las fluxiones, abandonando así las cantidades infinitamente pequeñas en beneficio de una ampliación del concepto de fluxión que requiere la comparación de velocidades instantáneas en la razón última de los pequeños crecimientos.
La tercera concepción de Newton se presenta en forma operacional mediante el método de las «primeras y últimas razones».
Sin embargo, el mismo Newton es consciente de las precauciones que hay que tomar para aplicar su método de las «primeras Y últimas razones» a la determinación de la fluxión, porque añade en su introducción:
"Los menores errores en matemáticas no deben ser despreciados."
Newton precisa sus concepciones, sin introducir sus notaciones, al comienzo de los Principia en lo que llama método de «las primeras y últimas razones».
Los Principia
La primera información publicada acerca de su cálculo diferencial e integral aparece indirectamente en sus famosos Philosophiae naturalis principia mathematica, de 1687. Aunque en esta obra predomina la forma sintética y, por otra parte, Newton utiliza métodos geométricos en sus demostraciones, se encuentran sin embargo algunos pasajes analíticos, en particular la sección primera del libro I, titulada: «El método de las primeras y últimas razones».
Entre los numerosos pasajes que explican su método de «las primeras y últimas razones», el que sigue, que proviene de un escolio que acompaña al lema XI en la segunda edición traducida por Andrew Motte, parece ser el más claro:
"Las razones últimas en las que las cantidades desaparecen no son realmente las razones de cantidades últimas, sino los límites hacia los cuales se aproximan constantemente las razones de cantidades, que decrecen sin límite, y hacia los cuales pueden aproximarse tanto como cualquier diferencia dada, pero sin sobrepasarlos o alcanzarlos antes de que las cantidades disminuyan indefinidamente."
Es interesante observar la explicación de Newton relativa a sus razones últimas, porque nos permite ver mejor la semejanza entre su última concepción y nuestra derivada actual. En particular, la idea intuitiva de esta razón última se encuentra en el problema de las tangentes. Newton considera una tangente como la posición límite de una secante.
Newton introduce la noción de «diferencial», designada por la palabra «momento», el cual es producido por una cantidad variable llamada «genita». Este constituye una aproximación al concepto de función, y se presenta en el libro II, sección 11 de los Principia. Parece que estas cantidades llamadas «genita» son variables e indeterminadas, y que aumentan o decrecen mediante un movimiento continuo, mientras que sus momentos son crecimientos temporales que pueden generar partículas finitas. En aritmética, las «genita» son generadas o producidas por la multiplicación, la división o la extracción de raíces de cualquier término, mientras que la búsqueda del contenido de los lados o de los extremos y medias proporcionales constituye «genita». Así, las «genita» pueden ser productos, cocientes, raíces, rectángulos, cuadrados, cubos, etc. Sin embargo, Newton no llega a esclarecer el concepto de momento lo suficiente como para que se pueda hablar aquí de una concepción neta de la diferencial de una función.
En el prefacio de sus Principia, Newton ofrece la definición de conceptos de mecánica tales como inercia, momento y fuerza, y después enuncia las tres célebres leyes del movimiento que son generalizaciones de las concepciones de Galileo sobre el movimiento.
A continuación, Newton asocia las leyes astronómicas de Kepler y la ley centrípeta de Huygens en el movimiento circular para establecer el principio de su célebre ley de la gravitación universal.
Este libro I, titulado: El movimiento de los cuerpos, trata abundantemente de mecánica y comprende también un estudio y una descripción orgánica de las cónicas.
El libro II está consagrado al movimiento de los cuerpos en medios que ofrecen una resistencia como el aire y los líquidos. Es la verdadera introducción a la ciencia del movimiento de los fluidos. Se puede encontrar en él, entre otras cosas, un estudio de la forma de los cuerpos para ofrecer menos resistencia, una sección sobre la teoría de las ondas, una fórmula para la velocidad del sonido en el aire y un estudio de las ondas en el agua.
El libro III, titulado Sobre el sistema del mundo, contiene las aplicaciones al sistema solar de la teoría general desarrollada en el libro I. Newton demostró cómo calcular la masa del Sol en términos de la masa de la Tierra y de los otros planetas que tienen un satélite. Calculó la masa volúmica media de la Tierra y demostró que tenía la forma de un esferoide aplanado, y que, por consiguiente, la atracción no era constante en su superficie. Hizo también un estudio de la precesión de los equinoccios y de las mareas, explicó que la Luna constituía la causa principal de este fenómeno y que el Sol también ejercía en él una influencia. Dedicó también un estudio detallado al movimiento de la Luna, porque debía servir para mejorar la determinación de las longitudes.
Newton realizó también contribuciones a otros temas matemáticos, entre los que podemos mencionar una clasificación de las curvas de tercer grado y trabajos sobre la teoría de las ecuaciones.
En un pequeño tratado, publicado como apéndice a su Opticks en 1704 y titulado Enumeratio linearum tertii ordinis, Newton, que compuso esta obra en 1676, divide las cúbicas en catorce genera que comprenden setenta y dos especies, de las que faltan seis. Para cada una de estas especies, traza cuidadosamente un diagrama y el conjunto de estos diagramas presenta todas las formas posibles (salvo las que son degeneradas) de las curvas de tercer grado. Subrayemos el uso sistemático de dos ejes y el empleo de coordenadas negativas.
En una obra publicada por primera vez en 1707, y de la que aparecen muchas ediciones en el siglo XVIII, Newton expone su visión de la teoría de las ecuaciones. Evidentemente nos referimos a su Aritmetica universalis, compuesta al parecer entre 1673 y 1683 a partir de los cursos que impartió en Cambridge. Entre las contribuciones importantes de esta obra, mencionemos las «identidades de Newton» para la suma de las potencias de las raíces de una ecuación polinómica, un teorema que generaliza la regla de los signos de Descartes para la determinación del número de raíces imaginarias de un polinomio, un teorema sobre la cota superior de las raíces de una ecuación polinómica, y el descubrimiento de la relación entre las raíces y el discriminante de una ecuación. Señalemos que las cuestiones geométricas ocupan una parte importante en esta obra, porque Newton parece pensar que es muy útil construir geométricamente la ecuación con el fin de estimar más fácilmente las raíces buscadas.
COLLETTE, J.P. (1985). Historia de las Matemáticas. 1ª edición, Madrid, Siglo XXI de España Editores, S.A.
BOYER, C.B. (1986) Historia de la matemática. 1ª edición, Madrid, Alianza Editorial, S.A.
REY PASTOR, J., BABINI, J. (1984). Historia de la Matemática. 1ª edición, Barcelona, Gedisa, S.A.
INTERNET. Universidad de las matemáticas británica. (www.univmath.com.uk)
Por:
Marcos Ivan Gritti