Descargar

Los Precursores de la ecología (página 4)

Enviado por latiniando


Partes: 1, 2, 3, 4, 5, 6, 7, 8

¿Cuáles son las consecuencias de la competencia interespecífica para aquellas especies o tipos de especies en las que se presenta? En primer lugar, la competencia, al ser una presión selectiva, tiene consecuencias adaptativas directas para aquellas especies que han evolucionado bajo su influencia. Las diferencias ("segregación") en los nichos de especies competidoras son a menudo atribuidas a los efectos de la competencia. Por ejemplo, cuando dos especies de ciertos ratones habitan el mismo sitio, sus tamaños promedio no se superponen. Esto es, una especie es algo menor en tamaño que la otra. En áreas diferentes, donde las mismas especies no coexisten, los tamaños promedio son aproximadamente iguales. Se explica la observación anterior como un resultado de la competencia que ha promovido la especialización en semillas más pequeñas por una especie y más grandes por la otra, para evitar esta interacción competitiva en aquellas regiones en que ambas especies viven juntas.

De manera similar, la competencia afecta las áreas de distribución de los organismos competidores, de tal forma que especies cercanas o de ecología muy parecida deben de coexistir geográficamente mucho menos a menudo que especies muy distintas. David Lack ha demostrado que tal es el caso para un buen número de grupos de aves de todo el mundo. Sin embargo, deberían encontrarse excepciones a la regla anterior en medios ambientes complejos, en donde se presentan posibilidades de subdividir el hábitat en diferentes zonas, o los recursos en diferentes partes, segregando los nichos, como se mencionó anteriormente.

En segundo lugar, la competencia puede inducir importantes similitudes en grupos completos de organismos en diferentes partes del mundo. Por ejemplo, James Brown ha estudiado diversas comunidades de roedores en el desierto sonorense. En sitios similares climática y topográficamente, las comunidades convergen hasta un grado sorprendente. Tanto el número de especies, como sus tamaños y la forma de utilizar los recursos son muy parecidos de un sitio a otro, pese a que las especies son diferentes en los distintos sitios. Algo muy semejante ha sido reportado por Martin Cody en las comunidades de aves de los chaparrales californianos y los matorrales chilenos: pese a la enorme distancia y la composición totalmente diferente de especies, la estructura de las comunidades (el número de especies, sus tamaños, la sobreposición de nichos, etc.), en ambas localidades es muy parecida.

En resumen, el estudio de las interacciones competitivas en la ecología de poblaciones ha tenido una gran importancia teórica, y aunque en la actualidad resulta muy claro que la competencia no es un fenómeno tan extendido, ni sus consecuencias son tan importantes como se pensaba hace pocos años, tampoco hay duda de que en ciertos sistemas y grupos biológicos constituye una interacción de gran relevancia y capaz de proporcionar cierta estructura a las comunidades.DEPREDACIÓN

LA SEGUNDA gran clase de interacción entre dos especies es la relación llamada depredador-presa. Corresponde a los cambios demográficos representados por los signos +-, lo que significa que la presencia de la especie A incrementa la tasa de crecimiento de la especie B, mientras que la presencia de la especie B disminuye la tasa de crecimiento de la especie A. Esta sencilla definición en términos demográficos es una fachada neoclásica que oculta un altar churrigueresco. Los tipos de interacción biológica que presentan las consecuencias demográficas son en extremo variados.

Como consecuencia de las importantes diferencias biológicas entre los tipos arriba mencionados, existen también diferencias metodológicas y teóricas en su estudio. A continuación presentaremos brevemente la teoría más general, haciendo uso del espacio de fase, para luego particularizar en cada uno de los cuatro tipos principales de interacción +- La teoría básica de las interacciones depredador-presa fue propuesta en las décadas de los veinte y treinta por los pioneros Alfred Lotka y Vito Volterra. Lotka propuso sus ecuaciones haciendo una analogía con ciertas reacciones químicas, en tanto que Volterra se inspiró en un problema sobre pesquerías en el mar Adriático. Las ecuaciones, sin embargo, resultaron idénticas. El modelo de depredador-presa propuesto por Lotka y Volterra no tiene más que una importancia histórica. En la actualidad, los modelos generales de depredador-presa son modificaciones o extensiones de las ecuaciones de Lotka-Volterra. En términos generales, dichos modelos son particularizaciones del siguiente:

edu.red

Los detalles biológicos correspondientes a un sistema o clase de sistemas en particular se traducirán en una forma específica para las ecuaciones anteriores. Por ejemplo, la ecuación para las presas será diferente si se trata de gacelas que cuando se trata de orugas. Sin embargo, existen algunas formas generales, cualitativamente semejantes a un gran número de ecuaciones particulares. Analizaremos, utilizando la herramienta del espacio de fase, una de estas formas muy generales con el objeto de derivar conclusiones cualitativas y generales.

En el espacio de fase, ubicaremos en el eje horizontal o de las X a la densidad de las presas, y por lo tanto, sus tasas de crecimiento en cualquier punto estarán representadas por flechas en el mismo sentido horizontal. La abundancia de los depredadores se representa en el eje vertical, y sus tasas, por flechas verticales.

La isoclina cero del depredador debe tener, en general, una pendiente positiva, puesto que resulta lógico suponer que a mayor abundancia de las presas corresponde una más alta densidad de los depredadores en el equilibrio. Sin embargo, es muy posible que la población de depredadores se sature de presas, es decir, que si la densidad de presas crece por encima de cierto valor, el incremento en la población de depredadores llega a ser despreciable. Esto puede ocurrir si otros factores diferentes al alimento se vuelven limitantes para los depredadores, como, por ejemplo, el espacio para establecer territorios. Por lo tanto, la isoclina para los depredadores tendrá una forma semejante a la de las curvas en la gráfica de la figura IV. 1a. Si la isoclina del depredador parte del eje de las X, significa que se trata de un depredador específico de una presa, esto es, que no puede sobrevivir en ausencia de dicha especie de presa. En efecto, se requiere al menos una cantidad umbral, P0 de presas (véase la figura IV.1a) para que exista una cantidad positiva de depredadores. Por el contrario, si la isoclina cero del depredador cruza el eje de las Y por encima del origen, entonces se trata de un depredador generalista, que incluso en ausencia de la especie de presas en cuestión es capaz de mantenerse en el área, a una densidad D0, alimentándose de otras presas cuyas ecuaciones no se consideran en el modelo (véase la figura IV.1b).

edu.red

Figura IV.1. La isoclina del depredador, suponiendo un depredador especialeista (a), y uno generalista (b).

La forma de la isoclina mencionada corresponde cualitativamente a las de un buen número de modelos para el depredador. Los detalles cuantitativos varían, pero no la forma general.

La isoclina de la presa debe tener al menos una región de pendiente negativa; esto es consecuencia de que al aumentar el número de presas, los factores intrínsecos de regulación de la población de presas (mortalidad dependiente de la densidad debida a competencia, enfermedades, etc.) se acentúan, por lo que son necesarios , menos depredadores para mantener el crecimiento de las presas en cero. Por lo tanto, la parte de la isoclina de las presas más alejada del origen debe tener una pendiente negativa. Sin embargo, en las cercanías del origen, la pendiente puede ser positiva o negativa, ya que existen varios fenómenos que producen una región de pendiente positiva. Por ejemplo, si con bajas densidades las presas tienen problemas para encontrar pareja, un número reducido de depredadores puede ser suficiente para disminuir la tasa de crecimiento de las presas hasta cero. O bien, si las presas se defienden mediante mecanismos de tipo social (todos o muchos de los individuos de un grupo participan en la defensa de éste), entonces, cuando hay bajas densidades de presas se necesitan menos depredadores para mantener a aquéllas en el equilibrio. Un último mecanismo que puede producir regiones de pendiente positiva es el hecho de que los depredadores pueden tener una limitada capacidad de manejo de las víctimas, de modo que su eficiencia sea mayor con bajas densidades de presas. Este mecanismo, denominado respuesta funcional, es de suma importancia en las interacciones depredador-presa.

En resumen, por una variedad de razones, deberíamos de esperar que la isoclina de las presas tuviera una región de pendiente positiva y otra negativa; o sea una forma jorobada como aparece en la figura IV.2.

edu.red

Figura IV.2. Isoclina de una presa con efecto Allee.

La topografía de flechitas que nos indica la dirección en la que se moverá el sistema compuesto por las presas y los depredadores aparece en la figura IV.3. Notemos que hay varias posibilidades que dependen de que el cruce de las dos isoclinas (o sea el punto de equilibrio del sistema) quede a la izquierda o a la derecha de la joroba de la isoclina de la presa. Se puede demostrar rigurosamente, para modelos particulares de este tipo, que los posibles resultados cualitativamente diferentes son tres:

1) El equilibrio es estable y las trayectorias se acercan a él monótonamente, o sea, sin subidas y bajadas. Esto corresponde a la figura IV. 3a. 2) El equilibrio es estable, pero las trayectorias se acercan a él en forma oscilatoria, es decir, a veces excediendo y a veces por debajo del valor de equilibrio (figura IV.3b). 3) El equilibrio es inestable, pero existe una región en forma de curva cerrada dentro del plano que atrae a las trayectorias. Esta región representa un equilibrio más complejo que los simples puntos que hemos encontrado hasta ahora. En otras palabras, existe dentro del plano una curva cerrada (que rodea al punto de equilibrio inestable) hacia la cual tienden las trayectorias, acercándose más y más en el tiempo. Este "ciclo límite" (según la terminología matemática) es estable. Biológicamente, esta región atractora corresponde a valores de la densidad de las poblaciones de depredador y su presa, que oscilan con regularidad en ciclos de baja y alta abundancia de cada uno. La estabilidad del ciclo límite radica en que, similarmente a lo que ocurría con los puntos de equilibrio, las perturbaciones en las densidades de las especies componentes del sistema tienden a desaparecer con el paso del tiempo, pues el ciclo límite atrae a las densidades hacia una pauta regular establecida por las ecuaciones que describen la dinámica (véase la figura IV.3c).

edu.red

Figura IV.3. Espacios de face de una interacción depredador presa, con un equilibrio no oscilatorio (a), oscilatorio (b), y un ciclo límite (c).

Resumiendo la teoría expuesta, nuestro simplificado modelo matemático nos llevaría a esperar que las interacciones -+ tendieran a oscilar, aunque los detalles de las oscilaciones dependerían de la forma particular de las ecuaciones. En la naturaleza se observan todas las posibilidades mencionadas.

Como ya se dijo antes, las interacciones -+ incluyen a una gran variedad de tipos biológicamente muy distintos. Posiblemente las más conocidas, o más obvias, son las depredador-presa en un sentido estricto. ¿Quién no ha visto a un gato acechando a un pájaro? ¿O a una mosca o abeja presa en la tela de una araña? ¿O incluso, en esta época de televisión y cine, magníficas y sorprendentes imágenes de leones o cheetas en el momento mismo de capturar a su presa? Como dijera el célebre ecólogo Charles Elton, posiblemente la forma de muerte más común para los animales en la naturaleza sea la de ser devorados por algún otro. Los depredados en general son animales (aunque existen también plantas) de un tamaño similar al de sus presas, y el acto de la depredación, cuando es exitoso, culmina invariablemente con la muerte de la presa.

Claramente, los depredadores deben de representar un papel importante en la economía de la naturaleza. Hoy día, las interacciones -+ se consideran sumamente importantes para la estructura de las comunidades, por el hecho de que los depredadores pueden tanto impedir la presencia de algunas especies, como facilitar la de otras, tal como ilustra apropiadamente el trabajo realizado por Richard Paine. En la década de los sesenta, Paine realizó un experimento, considerado ahora clásico, que consistió en eliminar al depredador más importante (una estrella marina del género Pisaster) de una comunidad de invertebrados marinos de la zona de intermarea. Inesperadamente, el resultado fue que el número de especies presente disminuyó de manera brusca de cerca de quince a ocho. La razón de este decaimiento es que la estrella de mar mantenía las poblaciones de muchos potenciales competidores muy por debajo de los niveles en los que la competencia se habría hecho significativa. Al eliminarse al depredador, algunas especies de presas ejercieron una interacción competitiva tan severa en las otras que las excluyeron por completo de la comunidad. Sin embargo, el efecto de la depredación no siempre es igual. Un depredador que no distinga entre sus presas puede producir un efecto reductor de la diversidad de la comunidad, al disminuir por parejo las densidades de todas o muchas de las especies.

Hay muchas formas de ser depredador, así como modos de defenderse. Desde tiempo antiguo, el hombre se ha admirado de las maneras que los animales, reales o míticos, tienen de atacar o defenderse. Como ejemplo, tomemos este pasaje de la Historia natural de Cayo Plinio Segundo, tal como lo presenta don Francisco Hernández:

Mira pues el dragón por dónde va el elephante a sus pastos, y arrójase desde un árbol alto a él. Entiende el elephante que no podrá valerse contra sus ataduras y ansí busca árboles y peñascos, donde estregándose lo mate. Guárdanse los dragones desto y por lo tanto les atajan los pasos con la cola. Desatan los elephantes con la trompa su ñudo, mas ellos les meten la cabeza en las narices e impidiéndoles el haliento les roen aquellas partes ternísimas.

No necesitamos buscar ejemplos mitológicos para descubrir la variedad de formas de la interacción depredador-presa. Un gran número de especies de depredadores son del estilo denominado emboscadores, o sea organismos que acechan inmóviles a sus presas hasta tenerlas muy cerca, o bien hasta que caen en alguna trampa. Ejemplos de depredadores que cazan con trampa son las arañas que tejen redes, las hormigas león que construyen embudos en la arena, las plantas carnívoras que producen sustancias pegajosas, el pejesapo que simula un gusano enfrente de la boca para atraer pececillos hambrientos, etc. Acechadores, que aguardan hasta que la presa está cerca, son algunos felinos (jaguares, gatos, leopardos), algunas serpientes, arañas como los thomísidos, muchos reptiles (camaleones), etc. Otra amplia categoría de depredadores son los que buscan de manera activa a sus presas, ya sea colectivamente, como los lobos y a veces los leones, o solitariamente, como muchas aves de presa, peces y mamíferos carnívoros, arañas como los saltícidos, etcétera.

Por su parte, las presas también han desarrollado algunos estilos típicos de defensa, como son el ocultarse (insectos crípticos), los movimientos ágiles y rápidos (gacelas, aves), la posesión de armaduras (pangolín, puerco espines, algunos moluscos) y defensas químicas internas (toxicidad o mal sabor) o externas (tinta de pulpos y calamares, mal olor en zorrillos, etcétera).

A lo largo de la historia, la selección natural favorece a aquellos depredadores que son más eficientes y al mismo tiempo a las presas que evitan mejor a sus enemigos. Hay muchos casos en los que a cada nueva adaptación del depredador sigue (en el tiempo evolutivo) una contraadaptación de las presas, a la cual subsecuentemente responden los depredadores. A este fenómeno se le llama coevolución, y es claro que el proceso por el cual depredadores y presas desarrollan cada vez mejores adaptaciones como una respuesta a las de su contraparte no tiene por qué acabar. Esta "carrera armamentista", como ha sido llamada por Dawkins, debe de producir cada vez más finas adaptaciones, y en efecto, un catálogo de adaptaciones para resolver tanto el problema de depredar como el de no ser depredado sería interminable. Veremos ahora unos pocos ejemplos ilustrativos.

Una interacción típica entre un gremio de depredadores y otro de presas es aquella que se puede observar entre las aves insectívoras y sus insectos presas, en particular mariposas. Una de las vías evolutivas que las mariposas han seguido y que las hacen presas menos fáciles es la cripsis. La cripsis es el fenómeno por el cual una especie se asemeja a alguna parte de su hábitat (suelo, piedras, hojas, varas, etcétera). Existen mariposas y palomillas asombrosamente semejantes a su entorno. Muchas especies del género tropical Anea imitan no sólo la coloración de las hojas secas, sino también las venaciones y marcas de dichas hojas, incluyendo las manchitas producidas por los hongos. Una Anea parada sobre el umbrío suelo de una selva resulta casi imposible de diferenciar de las hojas semiputrefactas.

Por supuesto, la coloración críptica no está limitada a las mariposas. Los famosos insectos palo no sólo poseen una coloración, inclusive tienen una forma que los asemeja notablemente a su entorno. Los camaleones africanos, los pulpos y muchos peces, son capaces de cambiar de color por medios fisiológicos (dilatación y contracción de pequeñas estructuras coloreadas), con el resultado de que en minutos pueden confundirse con el medio.

Otros organismos se "disfrazan" activamente, para asemejarse a su medio ambiente. Tal es el caso de los cangrejos marinos de la familia Majidae. Muchas especies dentro de esta familia cubren su caparazón con algas, pequeñas esponjas, anémonas, piedrecillas, etc. El proceso es complicado y requiere de la obtención del "decorado" y su preparación, para lo cual el cangrejo mastica un extremo del alga, esponja o lo que sea, hasta dejarlo rugoso. Posteriormente, se coloca la pieza del decorado sobre el caparazón, y para ello el cangrejo cuenta con unos pequeños ganchitos, a manera de vellosidad, que sirven para sujetar la decoración. Un cangrejo bien disfrazado reposando sobre un sustrato rocoso es prácticamente invisible para el ojo humano, y probablemente también para los depredadores tales como pulpos, una variedad de peces, nutrias marinas, etc. Pero el decorado también sirve para que las presas potenciales se acerquen al cangrejo, por lo que su función es doble: protege al organismo de sus depredadores y lo oculta de sus presas.

La cripsis es una adaptación obvia en contra de los depredadores, pero hay algunas más sutiles. Existe otra vía evolutiva que da respuesta al problema de los depredadores en una forma opuesta a la cripsis. La llamada coloración aposemática consiste en dibujos y colores (y pautas de conducta) muy conspicuos que avisan al depredador que la supuesta presa no es tal. Las larvas de muchos insectos se alimentan de plantas que contienen sustancias altamente tóxicas para las aves o los mamíferos. Muchas especies de insectos son capaces no sólo de tolerar dichas toxinas, sino de acumularlas durante su desarrollo hasta el estado adulto, resultando de ello que el insecto es tóxico o de sabor repugnante para un depredador potencial. Experimentalmente es posible demostrar que un pájaro que prueba una de estas mariposas "protegidas" aprende a reconocer el diseño de coloración de la presa protegida y rechaza subsecuentemente ofrecimientos de mariposas de la misma especie. Los trabajos de Lincoln y Jane Brower indican que un ave puede recordar el dibujo de la mariposa tóxica hasta por unos tres meses después de su primera experiencia.

Obviamente, un diseño de coloración conspicuo y fácil de recordar (desde un punto de vista de ave) debe proteger mejor a las especies tóxicas; y en efecto, en una selva alta tropical, muchas de las especies de mariposas protegidas (por ejemplo de las familias Heliconidae e Ithomidae) presentan pautas de coloración brillantes y muy visibles, asociadas a un vuelo lento y descuidado.

Posiblemente a estas alturas más de un lector ya se haya planteado la pregunta de cómo puede evolucionar la coloración aposemática, puesto que los beneficiados por ella son siempre los individuos no atacados. Enseñarle a un depredador que una cierta pauta de coloración corresponde a cosas-que-no-son-comida, muy posiblemente le cueste la vida al primer insecto vistoso, y por lo tanto los genes responsables de la coloración vistosa no deberían de propagarse en la población. La solución teórica a esta aparente paradoja yace en el concepto de "selección de parentesco, propuesto originalmente por Maynard-Smith hace unas tres décadas. El punto está en percibir que cualquier gene de un individuo tiene ciertas probabilidades de encontrarse en otros individuos. Dichas probabilidades son más altas mientras más cercano es el parentesco entre los individuos en cuestión. Por lo tanto, una mariposa muy vistosa que es devorada por un ave, aunque ya no generará directamente copias de sus genes, puede muy bien proteger a aquellas copias residentes en sus parientes y que resultarán promovidas por el hecho de que el ave evitará en lo sucesivo la pauta de coloración asociada con el sabor desagradable. Es obvio que para que este mecanismo trabaje se requiere que los individuos de una localidad tengan un grado alto de consanguineidad. Tenemos entonces una explicación plausible (aunque aún hipotética) de la existencia de la coloración vistosa en mariposas tóxicas.

Una tercera adaptación, aún más sutil que las mencionadas antes, para evitar a los depredadores, es la que presentan muchas mariposas vistosas pero que no son tóxicas ni de sabor desagradable. Existen especies que son perfectamente aceptables como alimento para sus depredadores, y que además se parecen en color e incluso en pautas de vuelo a especies aposemáticas protegidas por su toxicidad. El resultado es que las mariposas no tóxicas son evitadas por los depredadores que han aprendido de las tóxicas a rechazar la pauta de coloración común a ambas. Este fenómeno, denominado mimetismo de Bates, se encuentra particularmente bien representado en los trópicos, donde el parecido entre algunas especies llega a ser casi perfecto.

Por supuesto, los depredadores pueden incrementar su tasa de captura de presas siguiendo vías evolutivas del tipo de las descritas para presas. Por ejemplo, la piel de leones, tigres y leopardos se asemeja bastante a la coloración del hábitat preferido por estas especies. Existen otros casos, menos conocidos, de depredadores espectacularmente bien ocultos a la vista de sus presas, como muchas arañas y campamochas crípticas. También se conocen ejemplos de depredadores que atraen a sus presas, como la campamocha africana Hymenopus coronatus, la cual tiene color y forma de flor y atrapa a los insectos que, engañados, acuden a buscar néctar o polen. Esta clase de mimetismo (llamado de Peckham) ha sido adoptado por grupos completos de arañas (los Misuménidos) y de chinches (los Phymátidos).

Muchos estilos de depredación implican haber resuelto el problema de detectar a presas pequeñas, muy móviles o simplemente activas durante la noche, cuando la luz disponible es pobre o inexistente. Los ojos de muchos depredadores están finamente adaptados para resolver este problema: por ejemplo, la retina de los felinos que acechan de noche puede abrirse para ocupar casi toda el área disponible del ojo y dejar pasar un máximo de luz. Las víboras de cascabel cuentan con la capacidad de "ver" el calor, y por lo tanto pueden detectar a sus presas en la oscuridad por contraste con las áreas frías inertes. Los órganos termosensibles de las víboras de cascabel están localizados en pequeñas cavidades abajo y un poco adelante de los ojos, y son tan sensibles que empiezan a responder ante cambios de temperatura ¡desde tres milésimas de grado centígrado!

El sentido del oído también se ha desarrollado mucho en algunos depredadores. Por ejemplo, los búhos o tecolotes localizan a sus presas (ratones, principalmente) por el ruido que éstas hacen al desplazarse por el suelo, muchas veces en una oscuridad total. El búho debe determinar el ángulo y la posición horizontal a la que se encuentra la presa. Como Eric Knudsen ha demostrado, la anatomía de la cara de los búhos (en particular los de la familia Tytonidae) está exquisitamente adaptada para los fines de percibir e interpretar los tenues sonidos producidos por los movimientos de un ratón en la hojarasca. La cara redonda y cubiertade plumas muy densas y apretadas es un excelente reflector de sonidos de alta frecuencia. La estructura ósea del cráneo de los búhos es tal que el oído derecho es más sensible a los sonidos de alta frecuencia que llegan de arriba, y el izquierdo a los sonidos que llegan de abajo. La diferencia de intensidades provee al búho de información sobre la elevación de una fuente de sonido y sobre su posición horizontal.

Tanto los búhos como los crótalos están delicadamente adaptados para encontrar a sus presas. Sin embargo, posiblemente el conjunto de adaptaciones más fascinantes para resolver el problema de detectar presas pequeñas en la oscuridad es el ejemplificado por el "sonar" de los murciélagos y analizado por Richard Dawkins para ilustrar los fantásticos resultados de los procesos selectivos.

En los años cuarenta se descubrió que muchas especies de murciélagos eran capaces de detectar la presencia de objetos y presas aun en completa oscuridad. Desde esa fecha se ha avanzado mucho en el entendimiento de los mecanismos de "ecolocalización". La idea básica es muy simple: el murciélago emite sonidos de muy alta frecuencia (y por lo tanto en su mayoría inaudibles para nosotros) que al reflejarse en los obstáculos enfrente de él (por ejemplo, los insectos que constituyen su alimento), son detectados por el animal y le informan de la posición, el tamaño e incluso la velocidad y dirección del movimiento de la presa. Ésta es la misma idea del radar y del sonar, con la salvedad de que la selección natural, actuando sobre los murciélagos, la desarrolló posiblemente unos 50 millones de años antes que las invenciones humanas. Para que un sistema de ecolocalización aérea funcione bien, es necesario resolver un gran número de problemas técnicos. Mencionaremos solamente dos de ellos: el primero radica en que el sonido, al ser emitido por su fuente, pierde intensidad de manera muy rápida (cuadráticarnente), es decir que si la onda sonora avanza dos metros, la intensidad del sonido se reduce no a la mitad, sino a la cuarta parte; si son cinco metros, la intensidad se reduce a la vigésima quinta parte. Como, además, el sonido emitido por el murciélago debe de reflejarse (tal vez desde un blanco de pocos milímetros cuadrados de superficie) y recorrer una distancia similar a la del viaje de ida, tenemos que el sonido que regresa al animal puede ser de una intensidad bajísima. Por lo tanto, un murciélago con un ecolocalizador eficiente debe: 1) emitir sonidos de muy alta intensidad, y 2) poseer receptores de una grandísima sensibilidad. Tenemos entonces dos requerimientos que podrían parecer contradictorios, porque los gritos (ultrasónicos) que emite el murciélago cada fracción de segundo deben de ser ensordecedores, literalmente, para sus hipersensibles receptores. Este mismo problema se presentó a quienes diseñaron el radar, y fue resuelto mediante un sistema que desconecta el receptor un instante antes de que se emita el pulso de radio. Pues bien, el mismo sistema se encuentra en muchas especies de murciélagos, las cuales tienen ciertos músculos adosados a los huesecillos auditivos que trasmiten el sonido desde el tímpano. Un instante antes de que el murciélago grite, estos músculos se contraen y detienen el paso del sonido, evitando así el ensordecimiento. Hay especies que realizan este proceso de "prendido y apagado" hasta cincuenta veces por segundo.

Otro importante problema adaptativo es conocer la velocidad a la que se mueve la presa. Para resolverlo, muchas especies de murciélagos tienen mecanismos que se basan en el llamado efecto Doppler. Todos conocemos, aun sin saber su nombre, este efecto. Cuando una ambulancia o patrulla viene hacia nosotros, la sirena se escucha con un tono agudo, pero cuando la ambulancia pasa y empieza a alejarse, el tono cambia y se hace más grave. La razón es que las sucesivas compresiones en el aire que constituyen la onda sonora se reciben más frecuentemente cuando viajan hacia nosotros que cuando se alejan, y la frecuencia es lo que da la agudez del sonido. Cuando el murciélago recibe un eco de un objeto que se aproxima a él, cada percepción del eco es más aguda que la anterior. Cuando, por el contrario, el objeto se aleja del murciélago, el eco de cada emisión de sonido es de tono más bajo. Comparando las diferencias de tono, el cerebro y el aparato auditivo de las especies de murciélagos que cuentan con este mecanismo pueden calcular la velocidad relativa de los objetos que se encuentran enfrente de ellos.

Existen otras maravillosas adaptaciones en el mecanismo de ecolocalización de los murciélagos, pero para terminar la sección sólo diremos que muchas presas de los murciélagos han respondido evolutivamente con sus propias contradefensas, desde un oído capaz de percibir el sonar del murciélago para seguir la conducta de evasión adecuada (como en algunas mariposas nocturnas), hasta la emisión de sonidos que interfieren con el ecolocalizador del atacante (algunas ranas tropicales). La carrera coevolutiva entre depredadores y presas nunca termina, mientras las especies competidoras permanezcan en el juego.

Parasitoides

El siguiente tipo de interacción -+ del que hablaremos, es el de los parasitoides y sus hospederos. Los parasitoides son insectos, en su mayoría avispas (en su sentido taxonómico, esto es, himenópteros) y moscas. Los parasitoides depositan sus huevecillos, o a veces a sus larvas, dentro o muy cercanamente a sus hospederos, quienes habitualmente son otros insectos y a veces arañas. El parasitoide crece, se desarrolla dentro del hospedero, y acaba matándolo. De un insecto parasitado puede surgir de uno a muchas decenas de parasitoides, dependiendo de la especie de éste, el tamaño del hospedero, etcétera.

A diferencia de lo que ocurre con los depredadores "verdaderos", los parasitoides son totalmente desconocidos para el común de la gente, al grado de que se pudiera pensar que son meras curiosidades de la biología sin mayor importancia ecológica o económica. Nada podría estar más alejado de la verdad. Los parasitoides, numéricamente, son uno de los grupos ecológicos más importantes, compuesto por no menos de unas ciento cuarenta mil especies. Es muy probable que la mayoría de los insectos herbívoros (importantes plagas agrícolas) se mantengan en niveles poblacionales bajos como consecuencia de la acción de los parasitoides. La gran cantidad de ejemplos exitosos de control biológico de plagas utilizando parasitoides (algunos de ellos se presentarán en el capítulo final) subrayan la importancia que esta interacción tiene para determinar los números de muchas especies de insectos. En efecto, no es raro que la introducción de un parasitoide reduzca en varios órdenes de magnitud la densidad de la presa, con el resultado de que ambas pueden aparecer como especies raras y poco importantes, y solamente el conocimiento de la historia de la interacción podría demostrar lo contrario.

El "frijolarium", ya sea físico o programado que se describe en el apéndice, puede ilustrar la tendencia oscilatoria de las interacciones -+, pero no constituye un buen modelo del fenómeno descrito porque no se puede representar bien la heterogeneidad medioambiental, que resulta esencial para entender las relaciones dinámicas entre parasitoides y hospederos.

Para ilustrar la caída de una población de hospederos como consecuencia de la introducción de parasitoides se puede recurrir a un modelo simple, que considera los ataques de los parasitoides sobre sus hospederos como una variable aleatoria con algún tipo de distribución "agregada". Esto es, como consecuencia de la heterogeneidad medioambiental, algunos hospederos tienen mucha más alta probabilidad de ser atacados que otros. Si representamos la frecuencia de hospederos con x ataques como f(x), entonces, si en un tiempo t había n(t) hospederos, se librarán simplemente n(t) f(Ø). Si cada uno de ellos produce en promedio F descendientes, tenemos que en el tiempo t + 1 habrá:

n (t + 1) = F n (t) f(Ø).

Similarmente, si f(Ø) hospederos no fueron atacados, entonces el reciproco 1 – f(Ø) sí lo fue, y como para muchas especies de parasitoides ocurre que no se dan ataques múltiples, o bien, el número que emerge de un hospedero no depende del número de ataques, sino de factores como el tamaño del hospedero, etc., tenemos que cada hospedero atacado producirá en promedio una cantidad a de nuevos parasitoides. Denotando los parasitoides en el tiempo t con p(t), tenemos entonces:

P (t + 1) = a n (t) [ 1 – f (Ø)].

Ahora escogeremos a la distribución llamada "binomial negativa" para representar el número de ataques. Esto es, supondremos que la probabilidad de encontrar hospederos con cero ataques, con un ataque, con dos ataques, etc., está dada por la fórmula de la binomial negativa. Esta suposición se hace por razones empíricas: se sabe que la distribución de ataques en muchos casos es agregada, como la distribución binomial negativa. Sustituyendo, obtenemos:

f (Ø) = [ 1 + bp (t) / k]k

edu.red

Figura IV.4. Dinámica temporal de una interacción parasitoide-hospedero con una distribución de ataques contagiosa. En este modelo, la introducción del parasitoide produce un abatimiento de la población hospedera a un 2% del valor original.

edu.red

Figura IV.5. Valores observados para la interacción entre Operophtera brumata y Cyzenis Albicans. Datos de Varley, G., G. Gradwell, y M. Hasell (1973). Blackwell Press.

donde k es el índice de agregación (k < 1 implica agregación en la distribución. k>>1 corresponde a una distribución de Poisson, o sea al azar) y b es un índice de la capacidad del parasitoide para encontrar a los hospederos. Simulando este modelo en una computadora, se obtienen gráficas como las de la figura IV.4, en las que se puede apreciar el abatimiento en el número de hospederos que pueden darse por la acción de parasitoides.

Otra consecuencia importante del uso del modelo binomial negativo es que con él resulta fácil imitar una característica importante de las interacciones parasitoide-hospedero observadas en el campo, a saber: que las densidades de equilibrio son muy bajas y rara vez oscilan (véase la figura IV.5). Si se supone que el medio ambiente es homogéneo, lo cual implicaría una distribución de ataques de tipo Poisson, la k del modelo resulta grande y los equilibrios tienden a ser inestables y darse sólo con alta densidad. Si se modela la heterogeneidad ambiental por medio de la disminución de la k para simular una distribución agregada de ataques, se obtienen equilibrios mucho más parecidos a los que ocurren en la naturaleza.

Las adaptaciones producidas por esta interacción no podían dejar de ser múltiples y fascinantes. Al igual que para los depredadores, el problema de localizar a los hospederos es central para los parasitoides. Muchos de ellos localizan primero al microhábitat o la planta de alimentación de sus hospederos, para luego buscarlos. Otros son atraídos por los olores que la planta produce al ser devorada por el hospedero, y hay otros capaces de detectar el ruido que hace el hospedero al masticar las hojas. Ciertas avispas parasitoides de la familia de los Ichneumónidos atacan a hospederos que se ocultan bajo la corteza de los árboles. La hembra localiza primero el sitio de la corteza bajo el cual se encuentra su víctima, y entonces introduce el ovipositor atravesando a veces más de un centímetro de corteza dura, hasta dejar sus huevecillos en el cuerpo del insecto.

Por supuesto, también en los hospederos se han generado adaptaciones como una respuesta a las presiones selectivas producidas por los parasitoides. Existen soluciones morfológicas, tales como largas sedas y pelos que cubren a las larvas de muchas mariposas y palomillas, y que dificultan a los parasitoides efectuar la oviposición. Muchos insectos del orden de los Homópteros se cubren de sustancias céreas o espumas que también pueden servir de protección contra parasitoides. En otros casos, la respuesta es de tipo conductual. Por ejemplo, hay larvas de mariposas que al percibir la cercanía del parasitoide se dejan caer de la hoja, manteniendo un "cable de seguridad" de seda adherido a la misma. Pasados unos cuantos minutos, la larva regresa a su hoja trepando por el cable. Finalmente. existen defensas inmunológicas, que permiten al hospedero combatir a su enemigo cuando éste ya se halla dentro del cuerpo del primero.

Michael Rosenzweig, analizando un modelo del tipo de los de la figura IV.3, propuso que la coevolución entre los depredadores y sus presas podía estabilizar el régimen oscilatorio como consecuencia de un incremento en la capacidad defensiva de las presas. Esta hipótesis se ve claramente apoyada por los experimentos clásicos de Francisco Pimentel, quien encontró que, en un sistema de laboratorio, las violentas oscilaciones de moscas caseras y sus parasitoides (Nasonia vitripennis) se amortiguaban hasta desaparecer al ser seleccionados genotipos de moscas resistentes al ataque de los parasitoides.

edu.red

Figura IV.6. Disminisión de la población de parasitoides como consecuencia de aumentos en eficiencia per capita.

Decir que los hospederos son más resistentes equivale a señalar que los parasitoides son menos efectivos como tales. Ahora bien, sería de esperarse que la selección natural favoreciera depredadores cada vez más eficientes, puesto que éstos son los que con mayor probabilidad deberían pasar sus genes a su progenie. Es decir, se esperaría que la selección natural actuara para incrementar el parámetro b de la ecuación 4.3. Si se simula esto en el modelo, se obtiene el resultado de que aumentos en la eficiencia de los parasitoides redundan en una disminución conjunta de las poblaciones de hospederos y parasitoides, con el consecuente incremento del riesgo de extinguirse (véase la figura IV.6). Por lo tanto, aunque en teoría esperaríamos que la selección natural en un corto plazo favoreciera la evolución de depredadores más eficientes, en poblaciones de depredadores muy cerradas, sin flujos migratorios, el grupo completo podría extinguirse como consecuencia de la selección individual. La hipótesis del "depredador prudente" entonces sugiere que la selección debería de favorecer depredadores con eficiencias intermedias. Esta hipótesis depende sobre todo de la suposición de que la población de depredadores es cerrada a la emigración, cosa que posiblemente no sea común entre los parasitoides. En la siguiente sección veremos algunos candidatos más verosímiles para el título de depredadores prudentes.

Parásitos

Las interacciones -+ de las que hablaremos ahora son las de los parásitos y sus hospederos. Los parásitos son organismos pequeños en relación con sus hospederos, que no necesariamente mueren a consecuencia de la interacción; normalmente, provienen de líneas evolutivas muy diferentes a las de sus hospederos, y viven en una relación muy estrecha (simbiótica) con el hospedero del cual obtienen su alimentación.

Gran cantidad de estas interacciones han sido muy bien estudiadas, en particular aquellas que afectan al ser humano (diarreas, infecciones respiratorias, peste bubónica, SIDA, paludismo, etc.), aunque sólo recientemente los ecólogos se han dedicado a estudiar las enfermedades parasitarias como un factor importante en la dinámica de las poblaciones naturales.

El modo de vida parasítico es uno de los más numerosos que se conocen, y resulta muy difícil hacer generalizaciones que sean válidas para virus, bacterias, protozoarios, nemátodos, helmintos, ácaros, hongos, etc. Por lo tanto, hay que subdividir y tratar de definir subclases más o menos homogéneas dentro del universo de las interacciones parásito-hospedero. Una subdivisión que ha resultado útil para los ecólogos de poblaciones es la presentada por Roy Anderson. Se separa a los parásitos en dos grandes grupos: en el primero se encuentran especies por lo general microscópicas (virus, bacterias) y que inducen en sus hospederos una reacción inmunológica más o menos permanente. En los modelos matemáticos correspondientes se divide a la población de hospederos en clases: susceptibles, inmunes y enfermos; cada clase tiene su propia dinámica, por lo qué el espacio de fase de estos modelos rara vez se puede representar en el plano, como sucedía en casos anteriores. En el segundo grupo se incluyen parásitos de tamaño macroscópico (nemátodos, helmintos, ácaros, etc.) que no generan reacciones inmunes notables, ni a largo plazo. Sus modelos matemáticos a menudo incluyen términos para representar la distribución estadística de los parásitos dentro de sus hospederos.

Obviamente, la anterior es una clasificación arbitraria y llena de excepciones, pero preserva un cierto grado de realismo y resulta muy conveniente en la medida en que separa tipos extremos de parasitismos con sus correspondientes tipos de modelos. Por otra parte, hay una serie de propiedades ecológicas comunes a ambos tipos de enfermedades y que se hacen evidentes como consecuencia de la modelación matemática. Un concepto importante es la llamada tasa reproductiva básica de la enfermedad, denotada por R. Para el primer grupo de enfermedades (como las virales y las bacrianas), R representa el número promedio de infecciones que un hospedero infectado genera durante el tiempo de su infección. Claramente, si la infección ha de prosperar en la población, cada enfermo debe, en promedio, de infectar a cuando menos otro susceptible. Esto es, R> 1. Por ejemplo, Roy Anderson ha calculado que la R para el paludismo en cierta localidad de África Oriental es de 39, es decir que un enfermo infecta en promedio a otros 39 antes de sanar. La R para la rubeola en Cirencester, Gran Bretaña, era de alrededor de 14. Para el grupo de enfermedades producidas por nematodos, platelmintos, etc., R se interpreta como el número de parásitos que alcanzan la edad reproductiva, producidos por un parásito promedio. Nuevamente, para que la infección prospere se requiere que R sea mayor que uno. Como veremos con un poco más de detalle en el último capítulo, el estudio de los factores que afectan a R es de gran utilidad para el diseño de estrategias de control de las enfermedades.

¿Cuáles pueden ser los resultados de las mutuas presiones selectivas entre parásitos y hospederos? Se han escrito monografías dedicadas exclusivamente a explorar y responder esta pregunta. Dado el carácter de este libro, tendremos que limitarnos a presentar unos cuantos ejemplos y mencionar algunas generalizaciones. Principiaremos retomando la pregunta de la sección anterior. ¿Podemos esperar la evolución de "parásitos prudentes"? En este caso nos referiríamos a organismos poco virulentos, capaces de coexistir con sus hospederos sin matarlos. Se mencionó antes que uno de los requisitos importantes para esperar la evolución de los depredadores prudentes era una gran cohesión en el grupo, de tal forma que los grupos formados por depredadores muy efectivos tuvieran una alta probailidad de desaparecer al acabar con sus presas antes de poder difundir los genes responsables de la efectividad.

En el caso de los parásitos, la selección de grupos se facilita. Una de las propiedades ecológicas esenciales de la relación parásito-hospedero es su estructura en mosaico. En otras palabras, los parásitos viven en pequeñas islas de medio ambiente favorable (sus hospederos), rodeadas de un mar de medio inhóspito (el exterior del hospedero). Si la isla desaparece (el hospedero muere) sin que el grupo de parásitos contenidos en él haya invadido otras islas (infectado otros hospederos), cualquier novedad evolutiva producida por el grupo desaparecerá. Por lo tanto, entre los parásitos es donde deberíamos encontrar los mejores ejemplos de depredadores prudentes, que en este caso aparecerían como parásitos poco virulentos. Existen algunos casos que apoyan esta idea. Por ejemplo, se han realizado experimentos en los que se mantenían creciendo poblaciones de Escherichia coli junto con algunos de sus virus parásitos (los fagos T3, T4 y T7). Un resultado general de estos experimentos era que, pasado un tiempo de iniciada la interacción, la bacteria se hacía más resistente y las líneas de bacteriófagos menos virulentas. Por otro lado, un buen ejemplo de campo de este fenómeno lo encontramos en la myxomatosis del conejo. La invasión de conejos que sufrieron los australianos a principios de siglo fue controlada introduciendo un virus, el myxoma, el cual resultó totalmente eficaz para abatir la plaga de conejos. Estudios subsecuentes indican que no sólo los conejos que sobrevivieron son más resistentes que sus progenitores a la cepa original de myxoma, sino que las cepas del virus actualmente prevalecientes en el campo son menos virulentas.

Por supuesto, el hacerse menos virulentos no es la única adaptación de los parásitos frente al problema de tener que explotar islas de recursos muy concentrados e inestables temporalmente. Otra adaptación consiste en presentar formas de resistencia que permitan al organismo mantenerse vivo e inactivo mientras resida en el mar de medio inhóspito que rodea a sus hospederos. Por ejemplo, hay nemátodos que pueden permanecer inactivos, fuera de sus hospederos, hasta por unos 30 años; las cercarias de algunos tremátodos pueden sobrevivir hasta cinco años; las esporas de un hongo parásito de las cigarras periódicas, que aparecen de manera sincronizada cada 17 años exactamente, deben permanecer vivas por ese periodo de tiempo.

El lector interesado en el amplísimo tema de la parasitología deberá remitirse a las obras especializadas para profundizar en este campo fascinante.

Mutualismo

EL ÚLTIMO tipo de interacción biespecífica que trataremos es aquel en el cual ambas especies participantes se benefician, por lo que se puede simbolizar por ++. Algunas de estas interacciones (llamadas técnicamente mutualismos) son bien conocidas por todo el mundo (por ejemplo, las de los polinizadores y sus plantas), y siempre han interesado a los naturalistas. Sin embargo, sólo hasta tiempos relativamente recientes los ecólogos de poblaciones han empezado a considerar las interacciones ++ como importantes e interesantes. Hasta la década de los setenta los mutualismos se catalogaban como parte de una historia natural fascinante, pero sin mayor importancia poblacional.

Obviamente, hay una larga lista de precursores que desde el siglo pasado se preocuparon por las interacciones ++, pero siempre al margen de la corriente principal de la ecología teórica. Es interesante preguntarse por qué en los países anglosajones los fenómenos de la competencia y la depredación fueron considerados interacciones sobre las cuales valía la pena teorizar, mientras que el mutualismo fue tradicionalmente del interés de biólogos con antecedentes anarquistas (Kropotkin), revolucionarios (Kostitzin) o cuáqueros (Allee). Fuera cual fuese la razón, el hecho es que actualmente ya ningún ecólogo duda de la importancia de las interacciones ++. Incluso se ha propuesto que los eucariontes (los organismos cuyas células poseen un núcleo verdadero; o sea la totalidad de los organismos, con excepción de las bacterias y algunos otros grupos menores) se originaron a partir de una interacción mutualista.

A semejanza de las interacciones -+, hay una gran variedad de mecanismos biológicos que producen el balance demográfico ++. Para tratar de ordenar esta diversidad, comenzaremos mencionando las principales "monedas" con las que se "paga" el mutualismo. Existen tres tipos principales de beneficios:

En primer lugar, los beneficios tróficos o alimentarios. Una especie puede ofrecer alimentos en forma directa a sus mutualistas, como el néctar y/o el polen que proporcionan las flores a sus polinizadores; los parásitos y desechos que los organismos limpiadores reciben de sus clientes, etc. El beneficio alimentario también se puede dar en forma indirecta, como la flora y fauna intestinales de los animales, que ayudan a digerir compuestos que el animal en cuestión sería incapaz de asimilar por sí solo (por ejemplo, la celulosa de las plantas); o como las bacterias nitrificantes de las leguminosas, que convierten en amonio el nitrógeno atmosférico; o las micorrizas de los bosques, que aceleran grandemente los procesos de degradación y absorción de la materia orgánica por las raíces de los árboles.

En segundo lugar, hay beneficios derivados de la transportación de gametos, propágulos o individuos adultos. Las plantas, al ser en general incapaces de moverse de un sitio a otro, requieren de ayuda para dispersar su polen y sus semillas. Existe además una gran variedad de especies de animales que necesitan obligadamente de dispersores. Por ejemplo, como señala la doctora Ana Hoffmann en otro volumen de esta misma serie, muchos ácaros e insectos pequeños son foréticos, esto es, se transportan en las patas de escarabajos o mariposas, en los picos de las aves, etcétera.

Una tercera gran categoría de beneficios es la protección. Ésta puede ser muy directa, como en el caso de las anémonas, cuyos tentáculos venenosos dan refugio a los peces payaso en los arrecifes tropicales; o las hormigas, que protegen a las acacias y los guarumos (Cecropia) tropicales del ataque de herbívoros y parásitos; u otras especies de hormigas, que protegen muy eficientemente a las larvas de ciertas mariposas, o a los pulgones, de la presencia de los parasitoides. También puede existir protección en un sentido más amplio, como el ambiente relativamente estable y seguro que los endosimbiontes (la flora y la fauna intestinales de muchos animales; las micorrizas de las plantas, etc.) encuentran dentro de sus hospederos. Asimismo, se considera protección el servicio de limpieza que muchos organismos realizan sobre otros, para remover parásitos o partículas inutilizadas de comida, como hacen ciertas aves con los búfalos, los rinocerontes o los cocodrilos, y los peces limpiadores que incluso ocupan territorios fijos a los que acuden los "clientes" en demanda de "servicios".

Una especie mutualista puede estar necesariamente ligada a su "socio", en cuyo caso la desaparición de éste conduce a la desaparición de la población del mutualista obligado. Los ejemplos del primer caso abundan entre los mutualismos simbióticos, es decir, aquellos en los que la asociación es íntima, como las bacterias digestivas, los hongos y las algas en los líquenes, etc. También se encuentran algunos mutualismos obligados no simbióticos, por ejemplo, ciertas orquídeas del género Catasetum que son obligatoriamente polinizadas por abejas Euglossidas. Es posible que también éste sea el caso del árbol Calvaria major de la isla Mauricio: se ha argumentado que las poblaciones de esta especie no han producido ni una sola plántula en los últimos 300 años, debido a que estaban asociadas obligadarnente a los dodos. Éstos eran unas aves grandes, torpes y mansas que hasta finales del siglo XVII habitaban la isla Mauricio. Los marineros europeos que llegaban ahí las mataban, en parte por su carne y en parte por gusto. En efecto, eran muy dóciles y mansas y no podían volar, por lo que había quien consideraba que matarlas a palos, nada más porque sí, resultaba divertido. Como consecuencia de este "deporte", antes de que finalizara el siglo XVIII los dodos ya se habían extinguido. Ahora bien, se sabe que las semillas de muchas especies de plantas necesitan pasar por el tracto digestivo de las aves para poder germinar, y entonces se propuso la hipótesis de que las semillas de Calvaria major requerían de ser tragadas y luego excretadas por los dodos para su germinación. Temple, en 1977, reportó el resultado de un experimento que consistió en dar semillas de Calvaria a guajolotes (lo más cercano a los dodos que Temple encontró): un 17% de las semillas que estos animales excretaron germinó, lo cual apoya la hipótesis de que, en la naturaleza, Calvaria dependía obligatoriamente del dodo para su reproducción.

Posiblemente la mayoría de los mutualismos sean facultativos (no obligados). Hay grupos (llamados gremios) de especies que realizan tareas similares dentro de una comunidad particular. Por ejemplo, hay varios gremios de polinizadores, constituidos por especies con características similares, que se reparten las visitas a los distintos gremios de plantas. Así tenemos a los colibríes y abejorros de proboscis larga que visitan a las plantas del gremio de flores rojas con corola estrecha y alargada. La remoción de una sola especie del gremio posiblemente no afecte de modo severo a cualquier otra del gremio asociado, puesto que existen especies alternativas que pueden realizar las funciones de la desaparecida.

Para explorar un poco las principales diferencias en la dinámica poblacional de los mutualismos facultativos y los obligados, plantearemos ahora algunos modelos de espacio de fase semejantes a los de los capítulos anteriores.

En general, debemos esperar que las isoclinas de especies mutualistas tengan pendiente positiva, puesto que a mayor número de individuos de una de las dos especies, se requerirá de un mayor número de mutualistas para compensar los efectos negativos de la competencia intraespecífica. Por otra parte, el beneficio demográfico derivado de la presencia del mutualista no puede aumentar indefinidamente. Por ejemplo, por muchos polinizadores que existan, no es posible fecundar más óvulos que los que cada planta tenga, y por mucho néctar y polen que las plantas provean, las abejas no podrán aumentar su población más allá de lo que otros factores limitantes determinen. Por lo tanto, las isoclinas deben de curvarse para reflejar este efecto de saturación, de tal forma que cada pequeño aumento en la densidad de una especie requerirá cada vez más mutualistas para compensar los efectos negativos. Algunas isoclinas típicas de esta situación se muestran en la figura V.l.

edu.red

edu.redFigura V.1. Espacios de fase de una interacción entre dos especies de mutualistas facultativos.

Figura V.2. Espacio de la fase de una interacción entre un mutualista facultativo y otro obligado (a), y de dos mutualistas obligados, ambos con un umbral de densidad de la especie mutualista (b).

La topografía del espacio de flechas indica que se alcanzará un equilibrio estable en el cual la densidad de cada especie es superior a la que se obtendría en ausencia del mutualista. Como en el caso de la competencia, es posible demostrar que no se presentarán ciclos en este tipo de espacio de fase. Hay que notar que se supone que cada especie puede sobrevivir en ausencia de su mutualista; esta suposición corresponde al caso de mutualistas facultativos. Tendremos entonces una interacción sumamente sólida, en la que las únicas perturbaciones capaces de simplificar la asociación son aquellas que excluyan completamente a una de las dos especies.

¿Qué pasaría si una de las dos especies, digamos la A, fuera facultativa? Esto se representa corriendo la isoclina de la especie A hacia la izquierda, para que su equilibrio se haga cero o negativo. Un equilibrio negativo se interpreta biológicamente diciendo que la población A necesita una densidad mínima B* de su socio para poder establecerse. En la figura V.2a tenemos ejemplos de ambos casos. Nótese que se sigue obteniendo un solo punto de equilibrio sobre el plano y que éste es estable. Si en cambio ahora hacemos que ambas poblaciones dependan obligadamente de los socios, entonces las isoclinas pueden cruzarse en dos puntos de equilibrio. Uno estable y otro inestable (Figura V.2b). Ahora el sistema entero puede desaparecer si alguna causa externa a la interacción mueve las poblaciones a la zona de atracción del origen. Por lo tanto, esperaríamos que los mutualismos obligados fueran menos comunes que los facultativos, pues los primeros resultarían más sensibles a las fluctuaciones medioambientales.

Hasta donde sabemos ahora, éste es el caso. Es casi seguro que ejemplos de asociaciones consideradas tradicionalmente obligadas, como las yucas y sus polinizadores, las de algunas micorrizas de ciertas especies de árboles, o la microfauna del tracto digestivo de las termitas (la cual digiere la celulosa que las termitas comen) en realidad lo sean, pero no se han realizado los experimentos de remoción de uno de los dos mutualistas que permitirían determinar el grado de obligatoriedad de la relación. En cambio, abundan los ejemplos de mutualismos difusos, en donde los "socios" mutualistas son gremios de especies que actúan similarmente. Por ejemplo, los gremios de dispersores de semillas (varias especies de aves) y las especies de árboles cuyas semillas dispersan. En este mutualismo, los dispersores obtienen las sustancias nutritivas de los frutos, y las plantas reciben transporte a sitios alejados de donde está la planta materna, lo cual puede ser benéfico si en la vecindad de la planta madre la competencia (por luz, por ejemplo) resultara más intensa. En esta área todavía hace falta realizar mucho trabajo experimental, de manipulación de densidades de especies, para entender bien el funcionamiento de las interacciones ++.

Sin embargo, con la información disponible ya se puede afirmar que los mutualismos son tan importantes como las otras interacciones en sus efectos a nivel de la comunidad. Pensemos solamente en la importancia de las micorrizas como mutualismos que permiten la existencia de los bosques y selvas. Es muy probable que si se removieran las micorrizas de los bosques, éstos sufrirían una profunda transformación e incluso muchas especies de árboles desaparecerían. De manera similar, sin dispersores de semillas, las selvas tropicales adquirirían una fisonomía muy diferente, pues su diversidad se debe en mucho a que las semillas son transportadas por una variedad de organismos que las mezclan y remezclan en extensiones muy amplias. Sin los dispersores, lo más probable es que muy pocas especies de árboles dominarían la composición de la selva, en lugar de la escasa dominancia específica que se observa. También en este caso queda por realizar casi toda la labor experimental que permitiría rechazar las hipótesis arriba mencionadas. El estudio ecológico de las interacciones ++ está aún "en pañales".

Sin embargo, aunque en muchos casos falta evidencia experimental, las adaptaciones que observamos en los participantes en las asociaciones ++ sugieren claramente que, por lo menos en el pasado, se produjeron los cambios demográficos necesarios para que actuara la selección natural. Por ejemplo, la morfología y la pauta de coloración en muchas flores promueve la visita eficiente de los polinizadores. Las rayas, manchas alargadas o hileras de puntos que muchas especies de flores poseen pueden servir para guiar a los polinizadores hacia las recompensas (néctar o polen) y aumentar así la eficiencia del polinizador. Esta eficiencia se mide por el número de visitas "exitosas" que el polinizador realiza por unidad de tiempo. La importancia de estas guías se ha demostrado experimentalmente por medio de tres técnicas principales: la primera consiste en utilizar flores artificiales en el laboratorio, algunas con guías y otras sin ellas, y medir la cantidad de visitas que los polinizadores realizan en un tiempo dado; la segunda, en pintar a las flores naturales en el campo; la última radica en utilizar especies en las cuales se presentan naturalmente flores con y sin guías. En los tres tipos de experimentos, las flores con guías reciben más visitas en el mismo tiempo porque los visitantes van directamente a la parte de la flor que contiene el néctar, mientras que en las flores sin guías se pierde mucho tiempo vagando sin encontrar esta recompensa.

En muchas especies de plantas, el aspecto de las flores, su coloración, el tipo de néctar y la hora de apertura se conjugan en los llamados "síndromes de polinización". Estos son conjuntos de características florales que las adaptan a la polinización por grupos restringidos de visitantes. Por ejemplo, el "síndrome de murciélago", o quiropterofilia, se manifiesta en flores grandes, de colores pálidos, con gran cantidad de néctar y de apertura principalmente nocturna. Este síndrome favorece las visitas regulares por parte de animales nocturnos, como los murciélagos, con altos requerimientos energéticos y capaces de detectar a las flores en la oscuridad. Otro síndrome fácilmente reconocible es el del colibrí. Corresponde a flores rojas o anaranjadas, de corola larga y estrecha, y de néctares ricos en aminoácidos. Los visitantes típicos serían animales de pico (o trompa) larga, buena vista y muy dependientes del néctar para su alimentación.

Aunque los síndromes tienen muchas excepciones en ambos sentidos (polinizadores atípicos visitan las flores del síndrome, y los visitantes típicos visitan flores que no lo presentan), son una valiosa guía que, "a ojo de buen cubero", puede indicar qué tipo de polinizador se puede esperar.

En este punto conviene subrayar algo que ya se mencionó en el primer capítulo. La selección natural no actúa (hasta donde nos consta) para beneficio de la especie y mucho menos de otras especies. En las interacciones ++ una especie beneficia a otra únicamente porque recibe algo a cambio. Más aún, estrictamente hablando, lo que ocurre es que el material genético responsable de la conducta mutualista produce más copia de sí mismo que aquellos genes que no propicien el efecto mutualista. Por lo tanto, por triste que pudiera resultar para algunos enamorados de la imagen de una naturaleza amable y altruista, el mutualismo en los seres vivos es únicamente un "egoísmo genético" disfrazado, y a la menor oportunidad se pueden seleccionar conductas que aporten a la especie el beneficio del mutualismo sin tener que pagar su costo.

En las relaciones entre polinizadores y plantas, este tipo de "trampa" ha aparecido un gran número de veces. Existen plantas cuyas flores se reparten el costo de producir el néctar, el cual es muy caro en términos de energía. La papaya, por ejemplo, tiene flores femeninas sin néctar, pero que producen aromas parecidos a los de las flores masculinas con néctar. Las flores femeninas son polinizadas por insectos que, debido a experiencias anteriores con flores masculinas, asocian el aroma con la existencia de una recompensa en forma de néctar. La "deshonestidad" de las plantas puede alcanzar extremos casi escandalosos, como en el caso de muchas orquídeas. Por ejemplo, en el género Ophirys, existen especies cuyas flores presentan una notable similitud con las hembras de ciertas avispas. El macho de la avispa se deja engañar por la orquídea y trata de copular con ella, creyéndola una hembra de su especie. Cuando por fin abandona la flor (sin ninguna recompensa, sea en néctar o de otro tipo), ya lleva colocada en el tórax la masa de polen pegajoso que la orquídea le depositó. Una ulterior visita a otra falsa avispa hembra culminará en la transferencia de la masa de polen a la zona receptiva de otra orquídea. La avispa realiza la transferencia del polen de manera notablemente precisa y sin ningún costo energético aparente para la planta.

Pero también existen los "ladrones de néctar", que le hacen trampa a las plantas perforando un pequeño agujerito en la base de la corola y extrayendo el néctar sin impregnarse de polen.

Otra interacción en la que se han producido adaptaciones verdaderamente maravillosas es la de los pequeños pececillos "limpiadores" de los arrecifes tropicales. Más de cuarenta especies de peces y por lo menos seis de camarones se dedican al "oficio" de limpiar diferentes partes del cuerpo de otros organismos, retirando partículas de comida, pequeños parásitos, etc. Cuando un individuo de alguna de las especies de "clientes" requiere limpieza, se dirige al sitio ocupado por un organismo limpiador. El acercamiento puede acompañarse por cambios en la coloración y la conducta del "cliente". Esta coloración sirve de señal para advertir al limpiador de que el cliente se aproxima como tal, y no como depredador. El limpiador corresponde con una pauta de nado muy precisa, que es seguida por la conducta de limpiado. Durante la limpieza, el encargado de ésta puede penetrar a la boca abierta del cliente y remover las partículas de alimento incrustadas en los dientes. Se ha demostrado experimentalmente, removiendo de una zona a todos los limpiadores, que sin ellos los peces clientes se enferman de la piel y sus poblaciones disminuyen. Tenemos, por lo tanto, un ejemplo demostrado de asociación ++

Muchas veces las asociaciones mutualistas se ven invadidas por organismos llamados "aprovechados", es decir, que toman ventaja (se aprovechan) de la existencia del mutualismo pero sin dar nada a cambio, o hasta en perjuicio de uno o ambos participantes en el mutualismo. Un ejemplo de esto ocurre entre los limpiadores y sus clientes. El pez limpiador Labroides dimidiatus tiene un mímico, Aspidontus teniatus, el cual es extremadamente parecido al primero. Cuando un cliente en busca de limpieza se aproxima a un individuo de Aspidontus, éste imita incluso la "danza" de bienvenida del limpiador. El cliente se pone entonces a disposición del falso limpiador, quien en lugar de remover las basuras o los parásitos se aprovecha de la confianza del visitante para arrancar un buen bocado de agalla o de "cachete".

Otro ejemplo de aprovechado es el de la campamocha africana Hymenopus coronatus, que se aprovecha del mutualismo entre los polinizadores y sus plantas. El parecido de este depredador de insectos a un grupo de flores es realmente asombroso, de manera que los polinizadores, engañados, en lugar del néctar o polen encuentran su fin.

Como se ha visto, las interacciones mutualistas deberían de facilitar la existencia de las especies involucradas, tal vez incluso manteniendo las especies dominantes de una comunidad (micorrizas de los árboles, por ejemplo), por lo que su papel en la estructura de las comunidades puede ser central. Las presiones selectivas sobre los participantes en las asociaciones ++ deben de actuar en el sentido de estrechar cada vez más la asociación, a diferencia de lo que ocurre con la depredación, donde uno de los participantes (la presa) está sujeto a presiones selectivas que promueven la separación o disociación con el depredador; o la competencia, en donde ambos participantes deben de evolucionar en el sentido de separarse ecológicamente de los competidores.

Estructura de un ecosistema

Si se analiza el ecosistema desde el punto de vista de su estructura, podemos agrupar los organismos en tres niveles tróficos: productores o autótrofos, consumidores y descomponedores o transformadores.

edu.red

edu.red

Consumidores de 1er. orden

edu.red(herbívoros)

Consumidores de 2º orden

(depredadores)

edu.red

Consumidores de 3er. orden

(superdepredadores)

Los productores transforman la energía recibida y la acumulan como energía química

Los productores o autótrofos son micro y macroorganismos, que realizan una labor de sintetizado y almacenamiento de las sales minerales extraídas del biotopo y la energía solar en su espectro visible. La energía que reciben una vez transformada es acumulada como energía química.

Los consumidores viven de la materia orgánica que elaboran los productores. Se distinguen dos niveles, los consumidores propiamente dichos o consumidores de materia fresca, y los detritívoros o saprobios. En paralelo con estos consumidores se puede situar a los omnívoros o diversívoros, los cales incluyen en su alimentación no sólo productores, sino también a otros consumidores, ejemplo de el oso, jabalí, e incluso los propios seres humanos:

Consumidores de materia fresca: Según las características de su alimento se subdividen a su vez en varias categorías: 1er., 2º y 3er. orden.

  • ? Consumidores de 1er. orden: Son animales herbívoros y parásitos de las plantas. Se alimentan de forma directa de los productores

  • ? Consumidores de 2º. orden: Son animales carnívoros que se alimentan de los animales herbívoros, es decir de los consumidores de 1er orden.

  • ? Consumidores de 3er. orden: Son animales carnívoros que se alimentan a su vez de otros carnívoros. Comprende a los superdepredadores.

Detritívoros o saprobios: Son consumidores de materia muerta, tales como cadáveres, residuos o excrementos. Parte de esa materia la descomponen y mineralizan para ser convertida en humus. Según el origen y estado de la materia se distinguen en carroñeros o necrófagos, saprófagos y coprófagos:

Carroñeros o necrófagos: Son animales que se alimentan de cadáveres frescos, ejemplo de lo buitres, chacales, hienas o larvas de insectos.

  • ? Saprófagos: Son consumidores que se alimentan de cadáveres o restos descompuestos, ejemplo de las lombrices de tierra o los escarabajos.

  • ? Coprófagos: Son consumidores que se alimentan de los excrementos de otros animales, ejemplo de los escarabajos.

Necrófagos (carroñeros)

Descomponedores o transformadores: Son los saprófitos encargados de descomponer y mineralizar en su totalidad la materia orgánica muerta, que ya ha sido más o menos alterada por los organismos del nivel anterior. En el proceso se libera CO2, NH3, SH2. Los diferentes iones reaccionan con los componentes del suelo convirtiéndolos en sales minerales, los cuales serán posteriormente absorbidas por los autótrofos al disolverse en el agua.

Mediante este proceso de niveles tróficos, la utilización de los elementos químicos de la materia es cíclica, salvo en aquellos casos en que los elementos son retirados o acumulados, impidiéndose la descomposición e inclusión en dicho ciclo.

Factores Abióticos

Todos los factores químico-físicos del ambiente son llamados factores abióticos (de a, "sin", y bio, "vida). Los factores abióticos más conspicuos son la precipitación (lluvia más nevadas) y temperatura; todos sabemos que estos factores varían grandemente de un lugar a otro, pero las variaciones pueden ser aún mucho más importantes de lo que normalmente reconocemos.

No es solamente un asunto de la precipitación total o la temperatura promedio. Por ejemplo, en algunas regiones la precipitación total promedio es de más o menos 100 cm por año que se distribuyen uniformemente por el año. Esto crea un efecto ambiental muy diferente al que se encuentra en otra región donde cae la misma cantidad de precipitación pero solamente durante 6 meses por año, la estación de lluvias, dejando a la otra mitad del año como la estación seca.

Igualmente, un lugar donde la temperatura promedio es de 20º C y nunca alcanza el punto de congelamiento es muy diferente de otro lugar con la misma temperatura promedio pero que tiene veranos ardientes e inviernos muy fríos. De hecho, la temperatura fría extrema -no temperatura de congelamiento, congelamiento ligero o varias semanas de fuerte congelamiento- es más significativa biológicamente que la temperatura promedio. Aún más, cantidades y distribuciones diferentes de precipitación pueden combinarse con diferentes patrones de temperatura, lo que determina numerosas combinaciones para apenas estos dos factores.

Pero también otros factores abióticos pueden estar involucrados, incluyendo tipo y profundidad de suelo, disponibilidad de nutrientes esenciales, viento, fuego, salinidad, luz, longitud del día, terreno y pH (la medida de acidez o alcalinidad de suelos y aguas). Como ilustración, tomemos terreno: en el Hemisferio Norte, las laderas que dan hacia el norte generalmente presentan temperaturas más frías que las que dan hacia el sur. O considere el tipo de suelo: un suelo arenoso, debido a que no retiene bien el agua, produce el mismo efecto que una precipitación menor. O considere el viento: ya que aumenta la evaporación, también puede tener el efecto de condiciones relativamente más secas. Sin embargo, estos y otros factores pueden ejercer por ellos mismos un efecto crítico.

Resumiendo, podemos ver que los factores abióticos, que se encuentran siempre presentes en diferentes intensidades, interactúan unos con otros para crear una matriz de un número infinito de condiciones ambientales diferentes.

Factores Bióticos

Un ecosistema siempre involucra a más de una especie vegetal que interactúan con factores abióticos. Invariablemente la comunidad vegetal está compuesta por un número de especies que pueden competir unas con otras, pero que también pueden ser de ayuda mutua.

Pero también existen otros organismos en la comunidad vegetal: animales, hongos, bacterias y otros microorganismos. Así que cada especie no solamente interactúa con los factores abióticos sino que está constantemente interactuando igualmente con otras especies para conseguir alimento, cobijo u otros beneficios mientras que compite con otras (e incluso pueden ser comidas). Todas las interacciones con otras especies se clasifican como factores bióticos; algunos factores bióticos son positivos, otros son negativos y algunos son neutros.

ECOSISTEMAS

Los biomas (zonas bioclimáticas) son unas divisiones apropiadas para organizar el mundo natural debido a que los organismos que viven en ellos poseen constelaciones comunes de adaptaciones, particularmente al clima de cada una de las zonas y a los tipos característicos de vegetación que se desarrollan en ellos. A continuación, explicaremos algunos de los elementos primarios que determinan los diferentes biomas.

Debe entenderse que el clima es quizás el elemento más importante en determinar las clases de individuos que pueden vivir en un área y las maneras en que ellos deben modificarse para vivir bajo condiciones diferentes de temperatura y precipitación y la distribución estacional de estos factores. Cada lugar en la Tierra tiene su propio clima, influenciado tanto por el macroclima de la región como por el microclima del lugar en particular. Pero, a gran escala, existen algunos factores comunes que determinan que, por ejemplo, animales no relacionados en los Desiertos del Sahara y de Sonora tengan, sorprendentemente, muchas cosas en común.

Los suelos son muy importantes ya que ellos son básicos para determinar los tipos de plantas (y por lo tanto, las comunidades vegetales) que crecerán en un zona bioclimática en particular; además, sirven igualmente como substratos para los animales. Y, a su vez, los suelos están muy influenciados por los climas regionales, lo mismo que por la geología de la roca madre.

La vegetación de un área depende tanto del clima como de los suelos y, a su vez, influye grandemente en la determinación de qué especies vegetales y animales pueden existir en la localidad. La vegetación varía en tamaño y estructura (fisionomía), en su manifestación estacional, y en cómo cambia en el tiempo. Su importancia es mayor que la suma de sus partes vegetales individuales ya que muchas especies de animales, por ejemplo, están influenciados en gran medida por la estructura física de la comunidad vegetal mientras que otros lo están por las especies vegetales en si.

Un componente importante de las plantas y animales en una región es su diversidad global, que indica cuantas especies pueden coexistir ahí. Esto varía sustancialmente tanto dentro como entre las zonas bioclimáticas, dependiendo tanto del clima como de la vegetación. En las comunidades más diversificadas, el grado y los tipos de interacciones entre plantas y animales aumentan a medida que aumenta el número de especies y sus niveles tróficos.

Las adaptaciones de las plantas y animales son las manifestaciones físicas de la evolución orgánica. Todo individuo es una colección de adaptaciones que le permiten funcionar efectivamente en su ambiente, y estas adaptaciones caracterizan la especie. Las especies son afectadas en todos los aspectos del ambiente, tanto físico (clima, agua, substrato) como biológico (otras especies como presas, depredadores, parásitos, competidores o simbiontes). Cada especie es única, y aún así comparte tipos particulares de adaptaciones con muchas otras especies.

Finalmente, parece necesario un elemento interpretativo que trate con los efectos humanos ya que los humanos somos significativos en el mundo, aún cuando apenas somos una especie entre millones. Ninguna parte del mundo se libra de la influencia de nuestra presencia, y tenemos la capacidad de modificar los ambientes en una escala masiva. Nuestros efectos, que empezaron hace millones de años, pueden considerarse positivos o negativos, dependiendo de la perspectiva.

La mayoría de los principios básicos de biología pueden ser ilustrado en el contexto de estos elementos, pero aquellos que se basan en las relaciones entre dos o más especies no siempren encajan claramente dentro de las características del ambiente, como clima y suelos, o de las adaptaciones de las especies individuales. Estos principios incluyen la amplia categoría de las relaciones tróficas (redes alimenticias, productividad, descomposición, ciclos de nutrientes) y las interacciones como las relaciones depredador-presa, competición y simbiosis.

edu.red

Ecosistemas Terrestres

Tundra

La tundra tiene una distribución circumpolar en el Hemisferio Norte pero en el Hemisferio Sur solamente se encuentra en la Península Antártica e islas adyacentes. Esta tan fría que los árboles no pueden sobrevivir. La vida vegetal tiende a ser de crecimiento bajo y, durante el breve verano, las aves llegan en grandes cantidades para alimentarse de los insectos que nacen en este período. Algunas especies animales son: herbívoros, caribú, reno, lemmings; carnívoros, oso polar, lobo, zorra y aves de presa.

Se observan regiones ecológicamente similares, aunque más pequeñas, por encima del límite superior de los bosques en las montañas elevadas, incluso en los trópicos; dichas regiones reciben el nombre tundra alpina.

Clima. Veranos frescos e inviernos muy fríos caracterizan la zona de la tundra, en el límite más al norte del crecimiento vegetal. Áreas de baja precipitación, que deberían ser como desiertos, permanecen húmedas debido a que la evapotranspiración es baja (debido a las bajas temperaturas) y el suelo congelado (permafrost) retiene agua. Con frecuencia, los vientos son severos. La longitud del día varía al máximo con la estación: iluminados todo el tiempo en el verano mientras que en invierno solamente hay oscuridad; esto afecta de manera importante a la biota.

edu.red

Partes: 1, 2, 3, 4, 5, 6, 7, 8
 Página anterior Volver al principio del trabajoPágina siguiente