Descargar

Bases biológicas de la psicología (página 6)

Enviado por Gonzalo González


Partes: 1, 2, 3, 4, 5, 6, 7, 8
funcionan como neurotransmisores, determinando así en un momento dado qué tanto puede funcionar la comunicación en que participa ese transmisor. Además, también es posible para la neurona controlar la liberación del transmisor desde la terminal axónica, con lo cual también se puede regular la comunicación. Pero esto no es todo. Como la comunicación depende también de la combinación y la interacción del neurotransmisor con su receptor, imaginemos qué sucedería si la célula que recibe la información fuera capaz de alterar la estructura o la disposición de esa molécula receptora, de modo que se haga más sensible al transmisor, es decir que con menor cantidad de éste se produzca la apertura del canal correspondiente; o por el contrario, que el receptor pierda sensibilidad a su transmisor. Es claro que mediante cualquiera de los mecanismos señalados en el párrafo anterior, o de la combinación de dos o más de ellos, es posible modificar la comunicación interneuronal. Dicho de otro modo, la existencia de los mecanismos químicos de la transmisión de información permite que dicha transmisión sea modificable, maleable, plástica. ¿Y no es precisamente ésta una de las propiedades más sorprendentes del cerebro, si pensamos en su capacidad de memorizar, de dar marcha atrás, de reconsiderar en función de nuevos datos, de aplicar los conocimientos o las experiencias previas a nuevos actos, de recordar, de asociar eventos, de recapitular, en una palabra de aprender? Desde esta perspectiva, el hecho de que el funcionamiento de la comunicación interneuronal sea química hace pensar que quizá muchos de los mecanismos de aprendizaje tengan su explicación en esta plasticidad de la comunicación, en el nivel interneuronal, ejercida mediante alguno, o varios, de los mecanismos que hemos mencionado. Si consideramos las características y las ventajas que los mecanismos químicos conceden al lenguaje con el que se entienden las neuronas, tendremos que concluir necesariamente que eso se debe a una sorprendente sofisticación de la comunicación intermolecular que revisamos en el Capítulo II. En efecto, es gracias a la afinidad entre las moléculas, en este caso determinada por la increíble capacidad de las proteínas receptoras de reconocer específicamente a las moléculas neurotransmisoras, que fue posible para la naturaleza desarrollar los mecanismos de comunicación entre las neuronas. Es también éste el lenguaje químico que permite contraerse a los músculos —todos, desde los que usamos para expresarnos, hasta los de nuestras vísceras, incluyendo el corazón de cuyos latidos depende el viaje de la sangre hasta el más recóndito sitio en que una célula del organismo hace lo que tiene que hacer en el concierto del organismo completo—. Y es así como el lenguaje de las células de la mente se manifiesta y permite a su vez la manifestación de la comunicación entre los organismos, particularmente entre los seres humanos, a través de los lenguajes hablado y escrito o bien mediante el otro lenguaje, el corporal de las emociones y sentimientos plasmados en actitudes, entregas, amores y desamores. Es muy poco lo que sabemos respecto al funcionamiento de grandes grupos de neuronas trabajando sincrónicamente para dar lugar a nuestros sentimientos, placeres, actos inteligentes, pensamientos, reflexiones, creaciones, conciencias, remordimientos, arrepentimientos, dudas, odios, iras, pasiones, tristezas y alegrías. En donde empezamos a tener una idea un poco más clara es en el papel de algunos núcleos de neuronas en la regulación de nuestra actividad muscular. Por esta razón en el siguiente capítulo ejemplificaremos el funcionamiento de grupos de neuronas, con su excitación, inhibición y regulaciones implícitas en el control muscular. Veremos también cómo es posible alterar los mecanismos químicos de la comunicación mediante el uso de una serie de sustancias y de cómo esto puede ser —en la actualidad ya de hecho lo es— de enorme utilidad para entender mejor cómo funcionan las neuronas y también para poder desarrollar fármacos que resulten útiles en el tratamiento de muchos padecimientos. Ricardo Tapia Tomado de: Las células de la mente (http://omega.ilce.edu.mx:3000/)

edu.red

107 RESUMEN DEL TEMA

La célula básica del tejido nervioso es la neurona, la misma que, al igual que otras células, está formada por membrana, citoplasma y núcleo. Del cuerpo celular de la neurona surgen unas ramificaciones llamadas dendritas, y una prolongación alargada denominada axón o cilindro eje, de cuyo extremo nacen también otras prolongaciones parecidas a las dendritas, formándose en sus puntas los botones sinápticos. Las neuronas del ser humano se clasifican de acuerdo a su estructura y su función. Por su estructura tenemos las multipolares, unipolares y bipolares, así como las mielínicas y amielínicas. Las multipolares tienen varias dendritas, las bipolares tienen una sola dendrita y en las unipolares tienen una sola prolongación que hace las veces de axón. Las neuronas mielínicas son aquellas en las que su axón se encuentra cubierto de mielina, que es una capa grasosa blanquesina producida por una célula llamada neuraglia, y las amielínicas que son las que carecen de mielina. Las neuronas mielínicas forman parte del sistema nervioso periférico, la parte externa de la médula espinal y la parte interna del cerebro. Las amielínicas se encuentran en la corteza y en la parte interna de la médula. Por su función tenemos a las neuronas aferentes, que son aquellas que reciben los estímulos del medio ambiente interno o externo; las eferentes, que ejecutan las acciones musculares, y las neuronas de asociación. Las dos primeras forman parte del sistema nervioso periférico y la última del sistema nervioso central. Los impulsos nerviosos se transmiten a lo largo de la neurona de manera eléctrica, iniciándose el proceso en las dendritas, pasando por el cuerpo celular, el axón, las prolongaciones del axón, hasta llegar a los botones sinápticos. Al llegar a los botones sinápticos, éstos producen unas sustancias químicas llamadas neurotransmisores, que son los encargados de transmitir la información del estímulo a la siguiente neurona. El impulso nervioso es conducido a través de la célula mediante una descarga eléctrica, debido a que el interior de la neurona tiene carga negativa y el exterior carga positiva. Al ser excitada la célula por los estímulos, permite la entrada de carga positiva, iniciándose el proceso. Entre el botón sináptico y las dendritas de la siguiente neurona, encontramos una hendidura llamada intersticio sináptico o hendidura sináptica, a través de la cual los neurotransmisores de la neurona presináptica hacen contacto con la neurona postsináptica. A este proceso en el que se transmite la información mediante un estímulo químico, se denomina sinapsis. Estos neurotransmisores tienen estrecha relación con los estados de ánimo y la afectividad. Su disfunción es la causante de la ansiedad, depresiones, angustias, manías, etc.; así como de enfermedades como la esquizofrenia, Parkinson y Alzheimer. Entre los neurotransmisores más estudiados por su estrecha relación con la conducta están: la dopamina, noradrenalina, adrenalina, acetilcolina y serotonina. Por último, en la transmisión de los impulsos, se da la ley del todo o nada, mediante la cual un estímulo produce o no produce el impulso. No se puede decir que el estímulo inició el impulso pero no pudo concluirlo por falta de fuerza. Aquí cabe también definir la diferencia entre la excitación, que es el impulso provocado por un estímulo, y la inhibición, que es el estado en que la neurona no recibe dicho estímulo, por más fuerte que éste sea.

edu.red

108 ¿Y QUÉ MÁS PODEMOS HACER AHORA? L@S ESTUDIANTES Estudiar detenidamente el tema, ubicando en los gráficos los términos utilizados. Para una mejor comprensión de los conceptos consultar enciclopedias o diccionarios especializados. L@S MAESTR@S EN EL AULA Para evaluar el nivel de comprensión de lo estudiado, elaborar un crucigrama con la terminología utilizada en este tema, y con la que se ha definido a la neurona, su función y su estructura, para que sea resuelto por los alumnos. Para desarrollar la capacidad de análisis, pedir a l@s estudiantes que elaboren un cuadro sinóptico o un mapa conceptual, sobre la estructura celular y la función del tejido nervioso. Solicitar a l@s estudiantes que elaboren sus propias definiciones de algunos términos usados en este tema, tales como: botón sináptico, sinapsis, axón, neurona, etc. Aunque para las respuestas tienen que utilizar sus propias palabras, es indispensable el uso del glosario, el texto o cualquier otro material de apoyo. Se evaluará la claridad de la exposición, la creatividad y la relación con los temas estudiados. Para evaluar la capacidad de aplicación de los conocimientos adquiridos, pedir a l@s estudiantes que con ejemplos expliquen la ley del todo o nada, así como los procesos de excitación e inhibición nerviosa. Mi mensaje a los jóvenes es que ellos no solamente tienen que luchar por un mundo más justo, sino también ahora por la supervivencia de la especie humana. El deterioro del medio ambiente, la negativa de Estados Unidos a firmar los acuerdos internacionales como el de Kyoto, o el acuerdo mundial del agua, dan muy malos presagios. El gobierno de las multinacionales lleva a un deterioro imparable en este sistema. Si siguen ellos en el poder del mundo, van a matarnos y morir ellos mismo también. Queda a la juventud tomar conciencia de esto. Es una bandera más grande que la que nosotros tomamos. Yo espero que la cumplan.

Hugo Blanco

edu.red

109 ESTRUCTURA Y FUNCIÓN DEL SISTEMA NERVIOSO ¿Hasta dónde queremos llegar con este tema? Comprender la complejidad de la estructura y el funcionamiento del sistema nervioso humano. Aplicar los conocimientos adquiridos por el estudio del sistema nervioso, en la comprensión y el análisis de nuestra propia personalidad. Algunas inquietudes iniciales ¿Consideras tú que la frase “Conócete a ti mismo” puede ser un punto clave para el desarrollo de nuestra personalidad? ¿No crees tú que, comprendiendo mejor cómo somos y por qué somos de esa manera, podemos resolver mejor nuestros problemas? Estructura general del sistema nervioso ¿Dónde se producen nuestros pensamientos? ¿Cómo se producen nuestras reacciones más simples como rascarnos o caminar? ¿No has escuchado decir algunas veces que el sentimiento y las emociones nacen en el corazón? ¿Por qué pensamos, sufrimos y nos alegramos? Todas estas preguntas las podemos resolver si entendemos el funcionamiento de nuestro sistema nervioso. Imaginemos un recorrido por toda esa estructura orgánica, como si estuviéramos ante la proyección de un vídeo. El sistema nervioso básicamente está formada por: ? ? El sistema nervioso central (SNC), y El sistema nervioso periférico (SNP). La función del primero consiste, en lo fundamental, en analizar y asociar los estímulos recibidos por el segundo, y enviar una señal de respuesta, como reacción al estímulo, por las vías efectoras del sistema nervioso periférico. Mientras la función del sistema nervioso periférico consiste en recibir los estímulos del exterior por las vías aferentes, enviarlos al sistema nervioso central, y luego, por las vías la acción muscular eferentes, producir correspondiente. Por último tenemos el sistema nervioso autónomo (SNA), llamado también sistema nervioso de la vida vegetativa, encargado de regular el funcionamiento de los órganos internos, regulación que, por lo general, se lo realiza de una manera automática, no consciente, como el caso de los latidos del corazón o el funcionamiento de las glándulas.

edu.red

110 Con el propósito de contraponerlo al funcionamiento del sistema nervioso de la vida vegetativa, se habla del sistema nervioso de la vida de relación, que no es otra cosa que el mismo sistema nervioso central y periférico, cuyas funciones tienen que ver con la adaptación del individuo al medio ambiente natural y, especialmente, al medio social. Veamos, pues, de manera muy simplificada cómo se produce este proceso de adaptación y mutua influencia al que se denomina actividad refleja: ? Por medio de los órganos de los sentidos (tacto, vista, oído, gusto, olfato) recibimos los estímulos del medio ambiente que son receptados por las fibras del sistema nervioso periférico (desde el frío o el ?

? calor, hasta un halago o un insulto). Estos estímulos son enviados al sistema nervioso central, compuesto por la médula espinal y el encéfalo. Aquí son analizados y, de manera más o menos rápida, se procesa una respuesta que es enviada por los nervios efectores, nuevamente por el sistema nervioso periférico hacia un músculo, para producir una acción determinada. En el caso de los ejemplos planteados, si los estímulos son de frío o calor, buscaremos la manera de protegernos de ellos mediante algunas acciones que los contrarresten. Y si los estímulos provienen de un halago o un insulto, nuestra reacción podría ser de complacencia o de rechazo inmediato. En el ser humano, entonces, la base orgánica que le permite comunicarse con el mundo exterior, recibiendo su influencia y adaptándose a sus condiciones, transformándose a sí mismo y transformando también dichas condiciones, en una constante lucha, es el sistema nervioso. Por medio de él puede conocer la realidad que se encuentra a su alrededor para adaptarse a ella en mejores condiciones. Aunque la personalidad humana en su conjunto no es sólo el producto del desarrollo de ese sistema nervioso, sino el de todo su organismo, así como también el producto del desarrollo de su entorno social (historia, cultura, economía) y el de su entorno natural (clima y geografía), del cual la persona vista como individuo, podríamos afirmar que no es más que una insignificancia, como lo apreciábamos en el curso anterior. Esa es la estructura básica del sistema nervioso que nos dedicaremos a estudiar en detalle, a lo largo de esta unidad temática. Estructura y función del sistema nervioso central El sistema nervioso central comprende: ? El encéfalo y ? La médula espinal La función principal de este sistema nervioso central consiste en analizar los estímulos sensoriales que provienen del medio, a la vez que estimula, mediante otros impulsos nerviosos, la actividad muscular, proceso al que se lo denomina como actividad refleja, que estudiaremos con detenimiento al final de este tema. El encéfalo que se encuentra ubicado en la caja craneal, está formado por: ? ? ? ? El tallo encefálico, El diencéfalo, El cerebelo y El cerebro.

edu.red

111 La médula espinal, que nace del tallo encefálico, se extiende por dentro de la columna vertebral en una longitud que varía entre los 32 y los 45 cm. En el encéfalo, pero principalmente en el cerebro y su corteza, se procesa la información que procede del exterior o del interior, constituyéndose en el centro de la actividad reflectora de la conciencia y el pensamiento, mientras la médula espinal es, principalmente, el centro regulador de algunos reflejos innatos o instintivos. Estructura y función del encéfalo Aparte de los huesos del cráneo, al encéfalo lo protegen tres membranas llamadas meninges y el líquido cerebroespinal o cefalorraquídeo, que también protegen a la médula espinal. En lo que respecta a las membranas de las meninges: ? Su capa superior llamada duramadre se encuentra por debajo de los huesos del cráneo, ? Luego, como una capa intermedia, está la aracnoides, y ? La capa interna que es la piamadre. El líquido cerebroespinal lo constituye una sustancia líquida transparente distribuida por todo el sistema nervioso central dentro de la cual flota el encéfalo y la médula espinal, protegiéndolos y dotándolos de las sustancias nutritivas que provienen de la sangre. El tallo encefálico El tallo encefálico es una porción de sustancia blanca que comprende, a su vez: ? El bulbo raquídeo, ? La protuberancia y ? El mesencéfalo. Su función fundamental consiste en pasar los impulsos nerviosos de la médula espinal hacia los mandos superiores del cerebro, el diencéfalo y el cerebelo, y desde éstos otra vez a la médula espinal. También se ha llegado a establecer aquí el centro de ciertos tipos de reflejos innatos o instintivos como los de succión, en el caso de los niños recién nacidos, los reflejos de secreción de la saliva, la masticación y los de tragar los alimentos cuando estamos comiendo.

edu.red

112 Aquí también encontramos el reflejo de la tos y el estornudo, el centro del lagrimeo de los ojos cuando se irritan y el parpadeo cuando nos acercan algo a estos órganos. Se encuentran así mismo los centros que regulan el funcionamiento de los órganos respiratorios y del corazón. Todos estos reflejos se producen por la mediación del llamado sistema nervioso autónomo, como veremos más adelante. Cabe destacar un fenómeno interesante que se produce en el tallo encefálico, para entender por qué los hemisferios cerebrales controlan la parte contraria del cuerpo, ya que en realidad el hemisferio izquierdo controla las acciones del lado derecho, y el hemisferio derecho controla la parte izquierda. Lo que ocurre es que los nervios aferentes y eferentes, que pasan de la médula al cerebro o de éste a la médula, al llegar al tallo encefálico, se cruzan para producir dicho fenómeno, o sea, que los nervios que llegan de la parte izquierda del cuerpo, se cruzan en el tallo para dirigirse a la parte derecha del encéfalo, y viceversa. El diencéfalo El diencéfalo es una estructura nerviosa de sustancia gris que se encuentra por encima del tallo encefálico, en la parte interna del cerebro, y constituye: ? ? El tálamo y El hipotálamo. El tálamo es una estructura muy simple, ya que en lo fundamental sólo sirve como estación de paso de muchos impulsos sensoriales, especialmente, los que se dirigen a la corteza, y sirve también de centro de interpretación de algunos de estos impulsos, tales como el dolor, la temperatura, la presión. El hipotálamo, en cambio, tiene una función bien importante como regulador del sistema nervioso autónomo (que se relaciona con los órganos internos) y el sistema glandular o endocrino, a través de su acción sobre la hipófisis o glándula pituitaria que se encuentra justo debajo del hipotálamo. Cabe destacar que la hipófisis es la más importante del sistema

edu.red

113 endocrino, ya que su actividad regula la función de muchas otras glándulas, como veremos en el estudio del sistema glandular. Sistema Límbico Por el hecho de regular la actividad del sistema nervioso autónomo y la del sistema endocrino, el hipotálamo se relaciona estrechamente con las emociones y la afectividad que producen cambios en la expresión del cuerpo: el pánico, la ira, el miedo, la agresividad, etc. Tiene, así mismo, mucho que ver con los trastornos en la personalidad, como en ciertos estados depresivos menores pero constantes; en la ansiedad, la irritabilidad, que repercuten en la vida cotidiana, en su relación con las demás personas, con el mundo que los rodea y consigo mismos, con expresiones de falta de iniciativa y baja autoestima, a las que se les llama distimias. Pero también con los estados de salud afectiva como en la alegría, el entusiasmo, el amor, la felicidad, etc., a los que se les denomina timias. En el hipotálamo se encuentran también los centros que regulan la sed, el hambre, así como el sueño y el estado de vigilia. El hipotálamo, junto a otras partes del encéfalo como el tálamo, el cuerpo calloso, la hipófisis, el tallo encefálico, etc. forman lo que se ha dado en llamar como el cerebro medio o sistema límbico que se relaciona estrechamente con nuestros sentimientos de auto conservación, sociabilidad y procreación. El cerebro El cerebro constituye la parte más voluminosa de todo el encéfalo (recordemos que el encéfalo comprende el tallo encefálico, el diencéfalo, el cerebelo y el cerebro), y es el centro que regula aquellos reflejos que permiten la formación de la conciencia y el pensamiento en el ser humano. Toda la masa cerebral está separada por una gran hendidura llamada cisura longitudinal o hemisférica que prácticamente divide al cerebro en dos (hemisferio izquierdo y hemisferio derecho), unidos por una estructura de sustancia blanca denominada cuerpo calloso. Su superficie está cubierta por varias capas de millones (entre 12 mil a 14 mil millones) de neuronas amielínicas (que no tienen mielina) a la que se ha denominado corteza cerebral o sustancia gris, mientras en su interior se encuentra la sustancia blanca compuesta por neuronas con mielina, formando los llamados ganglios subcorticales. Esta corteza cerebral es tan grande que cuando el feto se encuentra en formación, presenta un agrandamiento exagerado de la cabeza en relación con el resto del cuerpo, como ya lo vimos en el origen embrionario (ontogénesis) del sistema nervioso, pero que poco a poco, y por presión de los huesos del cráneo, esta corteza empieza a tomar una forma arrugada. Al tomar esta característica, en la corteza se van formando numerosos pliegues o arrugamientos que dan lugar a las circunvoluciones, cisuras y surcos. Las circunvoluciones son las partes elevadas del arrugamiento, y a las hendiduras más profundas se las llama cisuras, mientras las más superficiales se denominan surcos.

edu.red

114 Entre las cisuras más conocidas y profundas (aparte de la cisura hemisférica o longitudinal) están: ? ? ? ? La cisura lateral o de Silvio, La cisura central o de Rolando, La cisura parieto-occipital y La cisura transversal. En cada uno de los hemisferios se pueden observar que las cisuras a su vez subdividen a la corteza en masas cerebrales a las que se ha llamado lóbulos, cada una de los cuales toma el nombre del correspondiente hueso del cráneo que lo cubre: ? Lóbulo frontal, ? Lóbulo parietal, ? Lóbulo temporal y ? Lóbulo occipital. Así tenemos que el lóbulo frontal se encuentra separado del lóbulo parietal por la cisura central o de Rolando. En cambio la cisura lateral o de Silvio separa al lóbulo frontal del temporal. Por su parte la cisura parieto-occipital separa al lóbulo parietal del occipital, y la cisura transversal separa al cerebro del cerebelo. En todo caso, en ambos hemisferios la formación de surcos, cisuras y circunvoluciones tiene características anatómicas idénticas, aunque, como veremos, con funciones bastante diferenciadas. Los hemisferios y sus funciones En párrafos anteriores (cuando estudiábamos la función del tallo encefálico) veíamos que el hemisferio izquierdo regula las funciones de la parte derecha del cuerpo, mientras el hemisferio derecho lo hace con el lado contrario. Pero no son sólo esas las diferencias funcionales de los hemisferios cerebrales, sino que se ha llegado a afirmar también que el hemisferio izquierdo tiene mucha importancia para la formación del lenguaje escrito y hablado, los conocimientos matemáticos y científicos en general, así como el razonamiento lógico. Mientras el hemisferio derecho se relaciona con la sensibilidad artística, la percepción, la introspección y la imaginación.

edu.red

115 Por otra parte, en la corteza cerebral se han detectado también algunas áreas que cumplen funciones específicas en la actividad refleja, tales como las áreas sensoriales, las áreas motrices o motoras y las de asociación, ocupando cada una de ellas complejos espacios en la masa cerebral, algunas de las cuales podemos observarlas en los gráficos adjuntos. Observamos, por ejemplo, que a cada lado de la cisura central tenemos el área o centro de la percepción en el lóbulo parietal, y los movimientos básicos en el lóbulo frontal; en el lóbulo occipital se encuentra el centro de la visión y el del reconocimiento visual; en la parte superior del lóbulo frontal tenemos el centro de los movimientos de destreza, junto al centro de los movimientos básicos; en la parte inferior del mismo lóbulo los centros del habla y la comunicación, en el hemisferio izquierdo; y al frente, en el hemisferio derecho, los centros del comportamiento y las emociones. En el lóbulo temporal encontramos los centros de la audición, y en el cerebelo los del equilibrio y la coordinación. Encontramos también el centro del olfato en la cara interna del hemisferio derecho, debajo del cuerpo calloso. Detrás del centro del olfato, encontramos también los centros del gusto. Así mismo podemos observar cómo, en lo que respecta a las zonas motrices, las partes que corresponden a la mano y al órgano del lenguaje hablado (la boca), ocupan un área mucho más grande que las otras partes de la corteza cerebral.

edu.red

116 Con respecto a las áreas o centros de asociación, que son las que tienen relación con la memoria, las emociones, el razonamiento, la voluntad, el juicio, la personalidad y la inteligencia, no se ha podido determinar con exactitud si existen realmente dichas áreas, aunque a algunas de ellas se las ha distribuido por hemisferios, como se ha visto más arriba. Por esta razón, la hipótesis más aceptada es la que sostiene que el pensamiento y la conciencia, que las engloba, es función del conjunto de la actividad nerviosa de la corteza, con sus 14 mil millones de neuronas que permiten un número casi infinito de conexiones sinápticas. Recordemos que algunos científicos están afirmando ya que el conjunto del cerebro tiene alrededor de 100 mil millones de células nerviosas. El cerebelo Es una porción de masa encefálica ubicada en la parte inferoposterior (atrás y abajo) de la caja del cráneo, tras el bulbo raquídeo, y su parte externa está formada por sustancia gris, mientras su parte interior está compuesta de sustancia blanca. Se sabe que la función del cerebelo se relaciona con la motricidad inconsciente, especialmente en lo que tiene que ver con el mantenimiento del equilibrio, la postura y la coordinación del cuerpo, así como aquellos movimientos automáticos que requieren cierta precisión.

Por la acción del cerebelo podemos caminar y sentarnos sin caernos, podemos mantener el equilibrio cuando andamos en bicicleta o nos arrimamos a una pared, y cuando una secretaria puede manipular las teclas de una máquina de escribir casi sin verlas.

edu.red

117 UN ATLAS ELECTRÓNICO DEL CEREBRO REVOLUCIONA LA NEUROLOGÍA Por Raúl Morales Un atlas electrónico del cerebro, que almacena 1.000 estructuras por cada hemisferio y 400 esquemas corticales, ha sido desarrollado por el Biomedical Imaging Lab (BIL), perteneciente a los Laboratorios de Información Tecnológica (exKRDL) de la Universidad de Singapur. Según explican sus artífices en Innovation Magazine, el atlas se ha integrado ya en los grandes sistemas de ayuda a la cirugía apoyada en ordenador, al mismo tiempo que se ha convertido en una referencia para el tratamiento de la enfermedad del Parkinson. El ciberatlas, conocido como Cerefy, ha generado ya tres patentes, entre ellas un método rápido para obtener imágenes radiológicas con los datos del atlas. Cerefy se emplea ya para neuroradiología, la formación médica y la neurocirugía. El atlas permite una planificación más detallada de las intervenciones quirúrgicas, al mismo tiempo que ayuda a realizar operaciones más económicas, rápidas y precisas. Revolución médica Hace ya cincuenta años que existen mapas impresos del cerebro y treinta años que existen mapas automatizados para uso de la neurocirugía, pero el atlas electrónico promete revolucionar la medicina cerebral. Los investigadores se han apoyado en estos mapas anteriores para elaborar el atlas electrónico, mucho más sofisticado y en tres dimensiones, que facilita la comprensión de la estructura cerebral en su conjunto, así como la exploración. Cerefy es el resultado de un esfuerzo por unificar la neurología con las más avanzadas tecnologías de la información y constituye la base de datos más detallada que se ha construido hasta la fecha sobre el cerebro. Para ello fue preciso digitalizar los mapas anteriores impresos y con este soporte construir el modelo en tres dimensiones. El atlas ha generado nueve productos que ya circulan a nivel internacional, entre ellos varios cd-rom y bibliotecas electrónicas que incluyen modelos geométricos del atlas cerebral. Tomado de Tendencias Científicas (http://www.webzinemaker.com/) Los nervios craneales y los ventrículos Los nervios craneales son aquellos que, naciendo del encéfalo, atraviesan 12 pares de agujeros que se encuentran en la base del cráneo, siendo algunos de ellos sensoriales, otros motores y algunos mixtos (sensoriales y motores), los mismos que en su gran mayoría se relacionan con la actividad sensorial y motriz del olfato, la vista, el oído, el gusto y la cara.

Los ventrículos en cambio son cuatro cavidades en forma de pequeños túneles que se forman en el encéfalo, y que junto con los llamados acueductos, son lugares por donde pasa el líquido cefalorraquídeo nutriendo la masa encefálica. y función de la médula Estructura espinal Al igual que el encéfalo, la médula espinal se encuentra protegida por las meninges y el líquido cefalorraquídeo. Ubicada por dentro y a lo largo de la columna vertebral, y con una longitud que va de los 32 a los 45 cm, la médula está compuesta de sustancia gris en la parte interior y la sustancia blanca que la recubre, en la parte exterior. A través de la médula espinal pasan porciones de fibras nerviosas llamados tractos o haces nerviosos que van al encéfalo o vienen de él, razón por la que se denomina tractos ascendentes a los que reciben los impulsos de los nervios sensitivos con dirección al encéfalo, y tractos descendentes a los que reciben los impulsos del encéfalo con dirección a un

edu.red

118 músculo. A los primeros se los denomina también tractos sensitivos y a los segundos, tractos motores. A lo largo de la médula se van formando 31 segmentos que se corresponden aproximadamente a cada uno de los anillos de la columna vertebral, y de donde salen o entran los nervios que van a formar el sistema nervioso periférico (SNP), el sistema nervioso autónomo (SNA) y los plexos, de una manera semejante a los nervios craneales, llamados nervios espinales o raquídeos. Además de ser el medio por el que tiene que pasar la transmisión de los impulsos sensoriales y motores que van o vienen del encéfalo, la médula es también el centro de integración de algunos reflejos que no necesitan pasar al encéfalo para su procesamiento, a los que se les denomina reflejos medulares o espinales. Uno de estos reflejos es el que ocurre cuando pisamos una tachuela, o cuando tocamos una plancha caliente sin darnos cuenta. Lo que sucede en esta situación es que las neuronas sensitivas reciben el estímulo, lo pasan a la médula espinal, donde las neuronas de asociación transmiten otro impulso a una neurona motora, la misma que estimula uno o varios músculos para retirarse inmediatamente del objeto que causó el dolor. Este proceso se lo realiza en cuestión de milésimas de segundo, y es el que nos permite reaccionar de manera inmediata ante un peligro. Otros reflejos en los que participa de manera directa la médula espinal se dan en el funcionamiento de los órganos internos, pero esto lo veremos cuando estudiemos el funcionamiento del sistema nervioso autónomo (SNA).

edu.red

119 EL LÓBULO FRONTAL ES CLAVE PARA ELEGIR ENTRE UNA ACCIÓN U OTRA Un equipo de investigadores del Centro de Estudios de Neurociencia en la Universidad de la Reina y del Centro para el Cerebro y la Mente de la Universidad del Oeste de Notario (ambas en Canadá) han conseguido demostrar que el lóbulo frontal del cerebro juega un papel fundamental en la toma de decisiones y en la confección de planes. En un estudio publicado en la revista Nature Neuroscience, los científicos indican que han hallado una pequeña región del lóbulo frontal del cerebro humano que se activa cuando un individuo trata de tomar una acción en concreto y no otra. Según los expertos, este descubrimiento ayudará a explicar por qué algunas personas con el lóbulo frontal dañado actúan a veces de forma impulsiva y a menudo tienen problemas para tomar una decisión. Los investigadores estudiaron los cambios en el flujo sanguíneo de los lóbulos frontales de un grupo de voluntarios a los que se había preparado para ejecutar un determinado movimiento cuando observaban una señal concreta. Tras la prueba, no sólo quedó confirmado que el lóbulo frontal se "activaba" cuando el voluntario iba a responder al estímulo, sino que la naturaleza de la actividad dependía de si planeaba hacer una acción u otra. El equipo de investigadores tratará ahora de averiguar cómo los circuitos del lóbulo frontal interactúan con otras áreas del cerebro en el comportamiento cotidiano. Tomado de la revista Muy Interesante Digital (http://www.muyinteresante.es/) del sistema Estructura y función nervioso periférico Como ya lo hemos venido refiriendo a lo largo del estudio de este tema, el sistema nervioso periférico (SNP) consta de: ? Fibras nerviosas aferentes que nacen en los centros receptores de los estímulos ? sensoriales (tacto, visión, oído, olfato, etc.), y de Fibras nerviosas eferentes o motoras que reciben los estímulos del sistema nervioso central (encéfalo y médula), para poner en actividad los músculos de los huesos. Estas fibras nerviosas, generalmente, están compuestas por neuronas cubiertas de mielina y su punto de encuentro está en los plexos que son una especie de redes nerviosas ubicadas a lo largo de la columna vertebral y que toma los nombres de los sitios por donde se encuentran ubicados: Plexo cervical, bronquial, lumbar, sacro.

edu.red

120 Al recibir un estímulo externo o interno a través de los correspondientes receptores, las fibras sensoriales del sistema nervioso periférico se ponen en actividad, y transmiten el estímulo a los centros de asociación ubicados en el encéfalo y la médula espinal. Estos centros de asociación, estimulan a su vez las correspondientes fibras nerviosas motoras o efectoras del sistema nervioso periférico, para poner en movimiento uno o varios músculos a la vez. Las fibras nerviosas a las que nos estamos refiriendo, están compuestas por un haz o un grupo de neuronas que poseen una misma función ya sean aferentes (sensoriales) o eferentes (motoras). Los nervios raquídeos y los plexos A lo largo de la columna vertebral, y en la unión de cada vértebra con otra, se forman los llamados agujeros intervertebrales, por donde entran o salen los nervios sensitivos y motores del sistema nervioso periférico y la médula espinal. Este haz de nervios, que está compuesto de fibras sensitivas y motoras a la vez, son los llamados nervios espinales o raquídeos, que se forman a cada lado de la médula en un número de 31 pares.

De arriba hacia debajo de la columna y la médula tenemos que: ? ? Ocho pares forman los nervios cervicales, Doce pares los torácicos o dorsales, ? Cinco pares los lumbares, ? Cinco pares los sacros y ? Un par de nervios los coccígenos. Estos nervios forman una especie de redes (plexos) fuera del sistema nervioso central, y toman su nombre dependiendo de los nervios raquídeos con los que se componen. Así, entre otros, tenemos: ?

?

?

? El plexo cervical que se forma con los cuatro primeros nervios cervicales; El plexo braquial que se forma con los nervios cervicales 5to al 8vo y el primer nervio torácico; El plexo lumbar que se forma con los nervios lumbares del 1ero al 4to; y El plexo sacro con los nervios lumbares 4to y 5to y los nervios sacros del 1ero al 4to. Existe también el plexo solar, el cardíaco, etc. De los nervios dorsales o torácicos, del 2do al 12avo, no se forman plexos y van a formar directamente los nervios periféricos. Estructura y función del sistema nervioso autónomo Para diferenciarlo del sistema nervioso de la vida de relación, que tiene que ver con la adaptación del individuo con el medio natural y social, sistema del cual forman parte el sistema nervioso central y el periférico, se habla del sistema nervioso autónomo o sistema nervioso de la vida vegetativa que, en cambio, se relaciona con la actividad que realizan los diferentes órganos y las glándulas del cuerpo para la supervivencia de la persona: el corazón, los pulmones, la vejiga, los riñones, las glándulas sudoríparas, las lacrimales, etc. Por esta razón se ha creído algunas veces que el sistema nervioso autónomo no tenía nada que ver con el funcionamiento del sistema nervioso central y, por lo tanto, no tenía nada que ver tampoco con la vida consciente del individuo. Sin embargo, el sistema nervioso vegetativo tiene conexiones nerviosas no solamente con la

edu.red

121 médula espinal, sino incluso con el encéfalo, y particularmente con el hipotálamo, como vimos en su momento. Si bien es cierto la actividad y el funcionamiento del sistema nervioso autónomo es automática e involuntaria, o sea, que no está regulada por la voluntad consciente de la persona, por experiencia médica y por ciertas prácticas de ejercicios mentales, como el yoga, que combina concentración con ejercicios de respiración, se ha podido demostrar que el cerebro y la mente pueden llegar a controlar su funcionamiento. De hecho un niño sano a partir de los cuatro o cinco años, a diferencia de los niños muy pequeños, puede controlar también el esfínter urinario y el esfínter anal. Imagínense qué ocurriría si esto no fuera posible. Los actores de cine y de teatro han aprendido también a controlar algunas expresiones emotivas, propias del funcionamiento del sistema nervioso autónomo. El sistema nervioso autónomo está compuesto, en su estructura celular, por: ? Neuronas efectoras que nacen de los nervios craneales y raquídeos; ? Ganglios que son como las estaciones de conexión, y ? Neuronas efectoras que van a los músculos de un órgano, a los músculos del corazón o directamente a las células de una glándula. Estos tres componentes de la estructura celular del sistema nervioso autónomo, están distribuidos en el sistema nervioso simpático y en el parasimpático. A las neuronas que nacen de los nervios craneales o raquídeos se les denomina nervios preganglionares (que se encuentran antes de los ganglios), los que llegan a los ganglios respectivos, donde se encuentran y hacen sinapsis con las llamadas neuronas postganglionares (que se encuentran después de los ganglios), las mismas que se conectan con un órgano o glándula para activarlo o inhibirlo. Estructura del sistema simpático El sistema simpático está compuesto por dos hileras de 22 ganglios cada una, ubicadas una a cada lado de la columna vertebral, así como por ganglios ubicados delante de la columna que forman otros tantos plexos tales como el explácnico, el solar y el mesentérico, y sus respectivas neuronas pre y postganglionares. Las unas que nacen de los nervios raquídeos, y las otras que van a los órganos y glándulas. ?

?

? Las neuronas efectoras simpáticas (preganglionares) salen de las fibras de los nervios raquídeos, especialmente de las torácicas y las lumbares, Se encuentran en los ganglios y hacen sinapsis con neuronas postganglionares, Las que a su vez hacen contacto con los diferentes órganos y glándulas de todo el cuerpo, activándolas o inhibiéndolas.

edu.red

122 EL HIPOTÁLAMO En experimentos hechos con ratas, se ha podido observar que destruyendo algunos núcleos del hipotálamo —los núcleos son grupos de neuronas— el animal deja de comer y puede incluso morir de hambre literalmente en medio de la más apetitosa comida. Con estos estudios y otros similares se concluyó que a través de este núcleo es que se siente la necesidad de comer. Al ser destruidas las células de este núcleo, el animal tiene la continua sensación de estar lleno, y por tanto es incapaz de comer. A esta región del hipotálamo se le conoce como el centro de la saciedad. (Estos experimentos nos indican que las ratas no conocen el pecado de la gula, tan frecuente en la especie humana, ya que a diferencia de muchos de nosotros, el animal al sentirse saciado deja de comer.) En una región cercana a este núcleo de la saciedad se encuentra su opuesto, es decir un grupo de neuronas que, al ser destruidas, hacen que el animal pierda la capacidad de sentirse saciado y siga comiendo sin cesar, hasta que no puede prácticamente moverse por la cantidad de alimento que ha ingerido. Por supuesto, estos núcleos del hipotálamo responden a señales, como el nivel de glucosa en la sangre que lo induce a alimentarse y que se encuentran bajo otras influencias nerviosas, principalmente de la corteza, incluidas las del origen del pensamiento y la imaginación. Así, sobre todo en el humano, el impulso de comer se puede modificar ante la vista o aun ante la simple evocación de alimentos apetitosos. También en el hipotálamo y en otras áreas del sistema límbico se localizan núcleos celulares que al ser estimulados provocan respuestas de cólera y agresividad en los animales, sin el concurso de los agentes externos que normalmente los causan, por ejemplo, la presencia de un ratón en el caso del gato. Estos núcleos del hipotálamo están modulados por influencias de la corteza y de otros centros que son los que determinan la amplitud y el vigor de la respuesta hipotalámica. En esta misma estructura nerviosa se localizan núcleos cuya función es más compleja que la del simple alimentarse, atacar o reproducirse. Esta posibilidad se derivó de las observaciones llevadas a cabo por James Olds y sus estudiantes en la Universidad McGill, en Canadá, en los años cincuenta. Estos investigadores se hallaban interesados en el estudio del sueño y la vigilia, y el diseño experimental para su investigación incluía la estimulación por medio de un pequeño electrodo en otra región del mismo hipotálamo y que el animal debía autoadministrarse pisando una palanca si quería recibir alimento como recompensa. Por error, en una ocasión el electrodo de estimulación fue implantado un poco más abajo de la zona deseada y, para sorpresa de los investigadores, al cabo del primer autoestímulo en esta región con el recurso de pisar la palanquita, la rata ya no tenía mayor interés en la recompensa o en explorar los espacios, sino que volvía una y otra vez a oprimir la palanca, y con ello a aplicarse el estímulo en el lugar del hipotálamo en el que se encontraba el electrodo. Evidentemente, los fisiólogos se percataron de inmediato de la importancia de su descubrimiento, y olvidando su proyecto anterior acerca del sueño se dedicaron a afinar y desarrollar una investigación acerca de este fenómeno asociado a lo que denominaron el núcleo del placer. No parece ilógico extrapolar al ser humano estas observaciones hechas en el gato o la rata. Los científicos saben que las diferencias entre la especie humana y los otros animales no son tan grandes, en lo que se refiere a su comportamiento biológico, y que la enorme diferencia que evidentemente existe entre el gato y un ciudadano común, por no hablar de las mentes privilegiadas como Kant o Einstein, radica no en una diferencia en los principios generales con los que opera el sistema nervioso, que son exactamente los mismos, sino en la extrema complejidad de las conexiones interneuronales y tal vez en otros elementos que aún desconocemos. No hay que olvidar que el problema mente-cerebro, es decir, el de la localización celular de las funciones mentales superiores, no se ha resuelto, y es uno de los grandes retos de la neurobiología moderna. Sin embargo, es posible imaginar, a la luz de estos sencillos experimentos, que la diferencia entre un individuo colérico y otro apacible puede ser que en el primero estos centros de la agresividad en el hipotálamo estén menos controlados por acciones inhibidoras de otras neuronas, o más activados por una preeminencia de neuronas excitadoras. El mismo razonamiento podría aplicarse a los centros hipotalámicos del hambre y la saciedad e imaginar que esa afición por la comida, que tenemos muchos de nosotros y que por supuesto y desafortunadamente se refleja en las redondeces de la figura, tenga una explicación, en parte, en el tipo de control que la corteza u otras estructuras ejercen sobre los núcleos del hipotálamo. No es tan descabellado suponer que la afirmación popular acerca del buen carácter de los gorditos tenga una base neurofisiológica a nivel del control de los núcleos del hipotálamo, relacionados con la regulación del apetito y con las distintas fases de la conducta agresiva. La extrapolación podría parecer bastante simplista, pero no deja de tener su contraparte experimental cuando sabemos que la administración de ciertas drogas, como las anfetaminas, que precisamente actúan aumentando la eficiencia de algunas conexiones neuronales del tipo de las que se encuentran en el hipotálamo, da como resultado una pérdida casi total del apetito, además de modificar espectacularmente muchos rasgos del carácter del individuo, como veremos en otros capítulos. Herminia Pasantes Tomado de: De neuronas, emociones y motivaciones (http://omega.ilce.edu.mx:3000/)

edu.red

123 Estructura del parasimpático El parasimpático se forma, en cambio, con fibras nerviosas que salen de algunos nervios craneales del tallo encefálico, y de fibras que nacen de nervios raquídeos sacros, al final de la médula espinal. Estas fibras nerviosas preganglionares se unen con ganglios que se encuentran muy cerca de los órganos y glándulas, y hacen sinapsis con neuronas postganglionares que se dirigen a esos órganos y glándulas del cuerpo. Por esta razón las neuronas preganglionares del parasimpático tienen que recorrer un largo trecho hasta llegar a los ganglios, mientras que en las neuronas preganglionares simpáticas, como los ganglios están pegados a la columna vertebral, su recorrido es más corto. En cuanto a la función que cumplen tanto el simpático como el parasimpático, los dos regulan la actividad de los diferentes órganos y glándulas, pero mientras el uno, en unos casos, provoca un aceleramiento de los mismos, el otro busca compensar ese aceleramiento tratando de inhibir esa actividad excesiva, buscando llegar a un equilibrio saludable para el organismo. En otros casos ocurre todo lo contrario. Veamos algunos ejemplos concretos. Cuando tenemos que enfrentarnos a una prueba difícil, una lección, un examen que nos preocupa tanto, que llega a producirnos tensión, el sistema simpático actúa activando las glándulas sudoríparas de la cara y las manos, produciendo sudor en esas partes del cuerpo. Y aunque el parasimpático actúa tratando de inhibir tanto gasto de energía, en esa lucha triunfa el simpático, y solamente cuando ha pasado el estrés y la tensión por la preocupación del examen, el parasimpático llega a dominar la situación, procurando restablecer la normalidad. En el ejemplo propuesto, sin embargo, no solamente se activan las glándulas sudoríparas, sino también se aceleran los latidos del corazón, así como el ritmo de nuestra respiración, y hasta el estómago sufre las consecuencias del tremendo gasto de energía. Algo semejante ocurre cuando, por ejemplo, en casa, papá o mamá nos cogen en la mentira por algo que hicimos y no nos gustaría que lo supieran. Empezamos a sudar, nos ponemos ojones porque las pupilas se nos dilatan, y hasta

edu.red

124 nos puede dar diarrea por la acción del simpático. Una vez que todo ha concluido, el parasimpático busca la manera de restituir la energía gastada, y la alegría vuelve a nuestros corazones. Hay que señalar, sin embargo, que aunque la mayoría de las veces es el simpático el que induce al gasto de energía y el parasimpático trata de restablecer ese gasto, en otras circunstancias y en otros órganos o glándulas, ocurre todo lo contrario. Es decir, que el parasimpático puede provocar la acción y el gasto de energía, y el simpático busca restablecer la normalidad.

Situación de pánico durante los atentados a las torres gemelas en New York. Insistimos una vez más que no es el sistema nervioso autónomo (simpático y parasimpático) los que determinan nuestra conducta, sino nuestra conciencia y nuestra voluntad. Y si bien es cierto esa conciencia y esa voluntad están condicionadas por el entorno social en el que vivimos, también somos capaces de modificar esas condiciones, para ponerlas al servicio del bienestar humano. El reflejo como función del sistema nervioso Cuando estudiamos el origen evolutivo del sistema nervioso a través de la evolución de las especies, observábamos que hasta los seres animados más primitivos reaccionaban ante un estímulo físico o químico, como el calor o la cercanía de alimento. Estudiábamos que la forma característica como reaccionaban estos seres primitivos, era la irritabilidad ante el contacto directo con estos estímulos. Pero conforme avanzaba el desarrollo evolutivo de las especies en la filogénesis, la irritabilidad ante el contacto directo con los estímulos va haciéndose cada vez más complicada, como consecuencia de la complejidad del medio en el que se desarrolla su vida. Los seres vivos de una escala superior, los vertebrados, por ejemplo, ya no solamente reaccionan ante el contacto directo con los estímulos, sino que ahora pueden hacerlo ante una señal de dicho estímulo, señal que por sí misma no tiene ningún significado vital para su organismo. Cuando un ser vivo es capaz de reaccionar ya ante una señal que lo estimula, estamos ante la presencia de un reflejo que es función exclusiva de un complicado sistema nervioso. En el ser humano, por las características estructurales y funcionales de su sistema nervioso, tal como lo hemos estudiado, es este sistema el que refleja la realidad natural y social en que vive, y mediante un proceso de análisis y de síntesis producido en su cerebro, es capaz de adaptarse en mejores condiciones a esa realidad, transformándose y transformándola.

En el ser humano, entonces, el estímulo que proviene de una señal, que puede ser un olor, un color, una forma, un sonido o una palabra, produce un reflejo, el que a su vez provoca una respuesta o reacción ante dicha señal.

edu.red

125 El arco reflejo Cuando hablamos de actividad refleja o de un reflejo, hablamos de un proceso en el que interviene el sistema nervioso como su función principal. A este proceso reflector, como función del sistema nervioso en el que participan las fibras nerviosas sensitivas y motoras del sistema periférico, y las neuronas asociativas del sistema nervioso central, se lo denomina arco reflejo. ?

?

? El arco reflejo se inicia cuando una neurona sensitiva es activada por un estímulo en uno de los órganos de los sentidos (como un golpe o un pinchazo). Este estímulo es transmitido por las vías aferentes al sistema nervioso central (médula o encéfalo), donde varias células nerviosas de asociación procesan la información recibida. Enviando luego un estímulo motor a neuronas efectoras, las que a su vez ponen en actividad un músculo. Formación de los reflejos incondicionados Cuando hablamos de la actividad refleja del sistema nervioso, tenemos que diferenciar entre: ?

? los

los reflejos

reflejos La formación de incondicionados, y La formación de condicionados. Como ya lo hemos venido analizando, un reflejo es el proceso mediante el cual un estímulo que señala una cualidad o característica del medio externo o interno, genera una reacción o una respuesta del organismo a dicha señal. Por ejemplo, el olor de un apetitoso seco de carne que está preparándose en la cocina, para una persona hambrienta constituye una señal de la cercanía del alimento, e inmediatamente su organismo empieza a reaccionar segregando más saliva de la normal (se le hace agua la boca) o el estómago empieza a emitir gruñidos fuertes.

edu.red

126 AGRESIVIDAD Y SEXO: ¿SON LOS MACHOS MÁS AGRESIVOS QUE LAS HEMBRAS? ¿LOS HOMBRES MÁS QUE LAS MUJERES? En los animales es claro que los niveles de agresividad son notablemente mayores en los machos que en las hembras. El comportamiento de los individuos de distinto sexo es en este sentido claramente distinguible. En las colonias de distintas especies de mamíferos con un cierto grado de organización social, siempre se detecta la presencia de lo que se ha llamado el macho alfa o macho dominante; es decir, aquel individuo que ocupa jerárquicamente una posición de dominio. Se trata, indefectiblemente, de un macho y este patrón de conducta se ha atribuido lógicamente a la influencia de las hormonas masculinas. Los resultados de estudios experimentales muestran que los animales castrados no son nunca machos alfa. Asimismo, estos animales abandonan el patrón de agresividad que muestran típicamente en relación con el establecimiento de territorialidad o de dominio de las hembras. Aquí la extrapolación de los resultados en animales a la especie humana no es muy fácil. En primer lugar; ya en las épocas recientes de la evolución de la especie humana, las situaciones de predominio territorial y sexual tienen facetas mucho más sutiles, derivadas de la complejidad en la organización social. Sin embargo, creo que todavía es posible afirmar que, en términos muy generales, las conductas agresivas predominan entre los individuos de sexo masculino. Es posible, sin embargo, que al ser modificados los patrones culturales que tradicionalmente han atribuido a la mujer un papel de sumisión y pasividad casi absolutas, también paulatinamente se modificarán sus respuestas ante los nuevos estímulos a los que se vea expuesta. Evidentemente, será necesario esperar algunas décadas antes de sacar conclusiones claras en este sentido. Herminia Pasantes Tomado de: De neuronas, emociones y motivaciones (http://omega.ilce.edu.mx:3000/) El hecho de segregar saliva ante el olor o la vista de un exquisito seco de carne, es un proceso instintivo, innato, producto de la actividad del sistema nervioso autónomo, ese es el típico reflejo incondicionado, esto es que no necesita de ninguna otra condición para que se produzca, más que la sola presencia de la señal. La necesidad biológica de defecar es también un reflejo incondicionado producido por un estímulo interno, una señal, enviada al sistema nervioso autónomo, que a su vez genera un impulso efector a los músculos del ano para posibilitar la evacuación.

Estos reflejos incondicionados se forman en las partes del sistema nervioso que se encuentran por debajo de la corteza cerebral, tales como la médula, el tallo encefálico, el cerebelo, etc. Formación de los reflejos condicionados Analicemos un experimento realizado por el científico ruso Iván Pavlov (1848-1936), precisamente el gran descubridor de los reflejos condicionados. Si ponemos a un perro hambriento delante de un trozo de carne cruda, el animal, por instinto, empezará a segregar gran cantidad de saliva. Esto sucede porque, ante una señal como el olor y la vista de la carne, se produce en el perro un reflejo instintivo, un reflejo incondicionado. Pero si segundos antes de mostrarle el trozo de carne tocamos un timbre, y si ese procedimiento lo volvemos a repetir cada vez que vamos a alimentarlo, va a llegar un momento en que el

edu.red

127 perro empezará a segregar saliva ante el sonido del timbre, incluso sin que le mostremos la carne. A este reflejo en el que interviene otra señal (el sonido del timbre) distinta a la señal original (el olor o la vista de la carne), Iván Pavlov lo llamó reflejo condicionado, porque está condicionado a un estímulo o señal diferente a la señal incondicionada. Veamos lo que ocurre en nuestros hogares. ¿No se han dado cuenta que cuando mamá empieza a afilar el cuchillo para cortar la carne, el perro que tenemos en casa, esté donde esté, llega corriendo a su lado en espera de que le tire algún pedazo de desperdicio? Miren ustedes que sólo con el sonido del cuchillo que está siendo afilado, se ha formado en nuestra mascota un reflejo condicionado. Los reflejos condicionados son reflejos que se forman en la corteza cerebral de los animales que la poseen. En el ser humano estos reflejos condicionados se forman especialmente por una señal muy propia de su desarrollo evolutivo: la palabra.

Al igual que los otros animales se forman en nosotros reflejos incondicionados, como los del hambre o la necesidad de evacuación, pero, por mediación de la palabra, y sobre la base de esos reflejos incondicionados, hemos elaborado reflejos condicionados como los que, para satisfacer la necesidad del hambre, no hurgamos en la basura sino que nos sentamos en una mesa limpia para servirnos el almuerzo que nos ha preparado mamá, y en muchos casos las familias oran para agradecer por el alimento recibido. Así mismo, si tenemos necesidad de evacuar (reflejo incondicionado), no hacemos lo que hace el perro o el pato, sino que buscamos el lugar apropiado, porque alguien, mediante la palabra, nos enseñó a evacuar (reflejo condicionado) de una manera diferente a como lo hacen estos animales. El primero y el segundo sistema de señales Cuando hablamos de la señal, como el estímulo que provoca una reacción en el proceso de la elaboración de un reflejo, estamos viendo que existen dos tipos de señales. • Por una parte tenemos las señales que encontramos en el medio, tales como la forma de un objeto, su olor, su color, un sonido cualquiera, la luz, el movimiento, etc. Son señales que sirven de estímulos directos para la formación de un reflejo incondicionado o condicionado. A este tipo de señales que se encuentran en el medio de forma concreta y objetiva, I. Pavlov las denominó primer sistema de señales, porque son estímulos que llegan, como hemos dicho, de manera directa a los órganos de los sentidos. • Pero tenemos otro tipo de señal que es específica del ser humano, que no es tan objetiva ni concreta: la palabra. Si a un perro o a un ser humano hambrientos les presentamos un apetitoso seco de carne recién preparado, su reacción inmediata será la formación de un reflejo incondicionado, con todas sus repercusiones en el organismo, y la señal que les presentamos fue una señal directa, objetiva; y aunque formemos un reflejo condicionado sobre la base de ese reflejo incondicionado por medio de un sonido cualquiera (el golpe de una campana que anuncia la comida), este sonido seguirá siendo un elemento concreto y objetivo que provoca el reflejo, formará parte del primer sistema de señales.

edu.red

128 Pero si a la persona con la que estamos haciendo el experimento, no le presentamos ni el plato de comida, ni le anunciamos por medio de una campana que está listo el almuerzo, sino que le empezamos a hablar con lujo de detalles sobre el seco de carne que está preparándose en la cocina, vamos a obtener la formación de un reflejo condicionado en esa persona por la mediación única del lenguaje o la palabra como señal. Por esta razón, a la palabra como señal de un reflejo, Pavlov la denominó como el segundo sistema de señales, o señal de señales, porque es una señal subjetiva, que nombra a las otras señales, no necesita que estén presentes las primeras señales para estar seguro de que existen y formar un reflejo condicionado.

A un perro no le podemos formar un reflejo condicionado hablándole con lujo de detalles sobre el apetitoso seco de carne, porque en él la palabra humana sólo existe como sonido que escucha, sin entender los conceptos a los que se refiere la palabra dicha por nosotros. Mito ejemplar es la ilusión acuñada por generaciones de pedagogos que creyeron, y creen todavía, que cuando la humanidad esté alfabetizada, por el sólo efecto de saber leer y escribir, se acabará la opresión, la miseria quedará desterrada y los pueblos serán dichosos, porque en adoptando un viejo proverbio chino piensan que en lugar de dar pescado al hambriento hay que enseñarles a pescar. Sí, le enseñan a pescar, pero ¿quién es el dueño del anzuelo y del lago, que dirá cuándo y cuánto pescar?

Alberto Merani

edu.red

129 CEREBRO, SEXO Y AMOR En el curso de los capítulos anteriores se ha sostenido el punto de vista de que las emociones tienen un sustrato orgánico en el cerebro, que en muchos casos está bien localizado y estudiado. Hay, sin embargo, un aspecto esencial de la emoción humana para el cual esta contraparte orgánica y molecular no ha podido identificarse. Se trata nada menos que del conjunto de emociones que pudieran asociarse con el sentimiento del amor. Difícil de definir —aunque fácil de experimentar— no sabemos siquiera si el amor es o no, una característica privativa de la especie humana. Y sin embargo, puede intuirse, aunque hay que admitir que sin contar con muchas bases científicas, el hecho que la emoción amorosa, asociada en muchas ocasiones con un profundo interés sexual, debe residir en alguna región del cerebro que hasta ahora ha conseguido escapar a la mirada escudriñadora de los neurobiólogos. Esta vez, la naturaleza no ha querido contribuir a esclarecer este punto y, por suerte o por desgracia, no existe el famoso filtro del amor, tan buscado desde siempre por el hombre, como la piedra filosofal o la fuente de la eterna juventud. No hay fruto, ponzoña o raíz que cumpla el sueño de convertir al indiferente en amante apasionado. Y sin embargo, el sentimiento amoroso tiene características muy similares a las de un fenómeno bioquímico y molecular: es específico, dirigido a una persona en particular, ignorando al resto. Ya lo dice sor Juana: "…Por quien no me apetece ingrato, lloro, y al que me llora tierno, no apetezco…" Presenta el rasgo de desensibilización, es decir; después de un tiempo de obtenerse el "estímulo" deja de tener el mismo efecto, igual que sucede con las neuronas que reciben estimulación continua por un mismo neurotransmisor. (¡Qué tal la pasión de Romeo y Julieta después de 14 años de matrimonio!) Es desplazado por agonistas más potentes, característica resumida por la sabiduría popular con aquello de que: "un clavo saca a otro clavo". En fin que el sentimiento amoroso seguramente tiene un componente bioquímico que actúa en el sistema nervioso, principio y fin de todos los sentimientos humanos, pero que hasta la fecha permanece perdido entre las circunvoluciones cerebrales. En tanto esto se descubre, los científicos han examinado con cierto detalle, y ciertamente con más éxito, los rasgos materiales del comportamiento sexual. Es curioso constatar que, en estos temas, la participación del cerebro se ha invocado sólo muy recientemente. Y sin embargo hay muchísimas cuestiones, a cual más interesante, relacionadas con la vinculación entre sexo y cerebro. No digamos ya con el erotismo, una conducta emocional que, generada entre algunos vericuetos anatómicos o en intrincados circuitos funcionales no identificados aún, es esencialmente privativa de la especie humana. Mientras que el hombre comparte con el animal algunos patrones de conducta parasexuales que están muy alejadas de los esquemas estereotipados de la cópula en los animales. Ya lo dijo en una hermosa frase Octavio Paz: "…el erotismo es invención, variación incesante; el sexo es siempre el mismo…" El universo erótico del hombre se extiende hasta matizar una gran proporción de sus acciones, pensamientos y emociones. Alcanza en la especie humana una esfera de influencia mental y emocional sin paralelo entre sus congéneres animales. Parte de la gran diferencia en las características de la actividad sexual entre el hombre y los animales es su ubicación en el tiempo. Resulta divertido imaginar qué sucedería si, como en el caso de todas las especies animales, la humana tuviera también periodos restringidos para llevar a cabo su actividad sexual y, sobre todo, que el sexo le resultara atractivo e interesante solamente en estos cortos periodos. Resulta casi inconcebible. Habría que replantear, por ejemplo, todo el esquema de productividad laboral, ya que por supuesto, en estos lapsos, el individuo no tendría ojos ni oídos, ni mente ni concentración para otra cosa que no fuera encontrar la pareja, por efímera que ésta resultara. Y luego, "si te vi ni me acuerdo"… Bueno, pensándolo un poco tal vez no estaría tan mal.

Herminia Pasantes Tomado de: De neuronas, emociones y motivaciones ( http://omega.ilce.edu.mx:3000/ )

edu.red

130 RESUMEN DEL TEMA Las estructuras biológicas que permiten regular la adaptación de los seres humanos al medio ambiente natural y social, transformándolo, son el sistema nervioso de la vida de relación y el sistema nervioso de la vida vegetativa. El primero regula la relación del individuo con el medio, y el segundo regula su actividad interna, la de sus órganos y glándulas. En el sistema nervioso de la vida de relación desempeñan un papel predominante el sistema nervioso central y el sistema nervioso periférico, mientras en el sistema nervioso de la vida vegetativa predomina el sistema nervioso autónomo. El sistema nervioso central, que es el centro de los reflejos innatos o adquiridos (instintos y conciencia), está formado a su vez por el encéfalo y la médula espinal, los mismos que están protegidos por las meninges y el líquido cefalorraquídeo. Por su parte, el encéfalo comprende el tallo encefálico, el diencéfalo, el cerebelo y el cerebro. El tallo encefálico que comprende el bulbo raquídeo, la protuberancia y el mesencéfalo es una estructura de sustancia blanca que, en lo fundamental, se constituye en un lugar de paso de las fibras nerviosas que van o llegan de la médula espinal, hacia o desde los centros nerviosos superiores (diencéfalo, cerebelo y cerebro). Es también el centro de algunos reflejos innatos. Un elemento interesante del tallo encefálico es que en él, las fibras nerviosas que van o llegan de la médula y los centros superiores, se cruzan, de tal suerte que los nervios aferentes o eferentes del lado izquierdo del cuerpo, se relacionan con el hemisferio derecho del cerebro, y las del lado derecho del cuerpo con el hemisferio izquierdo, de allí que cada hemisferio controle la actividad del lado opuesto del cuerpo. En el diencéfalo, que es una estructura de sustancia gris, se encuentra el tálamo y el hipotálamo. Mientras el primero (el tálamo) continúa siendo sólo un lugar de paso para las fibras nerviosas, el hipotálamo, en cambio, constituye el centro de regulación del sistema nervioso autónomo y del sistema endocrino o glandular. El cerebelo, por su parte, está compuesto de sustancia blanca cubierta por una corteza de sustancia gris, y su función se relaciona fundamentalmente con la actividad subconsciente, el equilibrio corporal y la coordinación de los movimientos. El cerebro es la porción mayor y más compleja del encéfalo, compuesta por una masa de células blancas y una corteza de sustancia gris que la recubre. Una profunda hendidura divide al cerebro en dos hemisferios, cada uno de los cuales dirige la actividad del lado contrario del cuerpo. La corteza a su vez presenta un arrugamiento que da lugar a la formación de circunvoluciones, cisuras, surcos y lóbulos. Entre las cisuras tenemos las de Silvio, de Rolando, la parietooccipital, y la transversal, y entre los lóbulos están el frontal, el parietal, el temporal y el occipital. A pesar de que las investigaciones han logrado determinar algunas áreas en la corteza cerebral que se relacionan con los aspectos sensoriales y motrices de la actividad nerviosa, se cree que la voluntad, el pensamiento y la conciencia es el resultado de la actividad de todo el cerebro. En el encéfalo también encontramos una especie de pequeños túneles, por donde pasa el líquido cefalorraquídeo, denominados ventrículos y los acueductos, así como doce pares de nervios craneales que forman parte del sistema nervioso periférico de los órganos sensoriales de la cabeza y otros van a formar parte del sistema nervioso autónomo. La médula espinal es una estructura de sustancia blanca en su exterior y sustancia gris en su interior, y es también el centro de asociación de reflejos instintivos que coordina el sistema nervioso autónomo, así como la entrada y la salida de fibras nerviosas o tractos ascendentes o descendentes, muchos de los cuales van a formar parte de los nervios raquídeos (31 pares), formándose también, en algunos casos, los plexos o redes nerviosas. Por último tenemos el sistema nervioso autónomo que lo integran el simpático y el parasimpático. El SNA está compuesto por células eferentes o motoras y ganglios que, en el caso del simpático, se encuentran ubicadas en dos hileras a cada lado de la columna vertebral y algunas en la parte frontal de la misma. En el caso del parasimpático estos ganglios se encuentran ubicados junto a los órganos y glándulas que son activados por sus neuronas. El simpático y el parasimpático regulan la actividad de órganos y glándulas, y su actividad influye mucho cuando existen emociones fuertes en las que interviene, además, el hipotálamo, como centro regulador del sistema nervioso autónomo. En cuanto a los reflejos, que es la función principal del sistema nervioso, tenemos la formación del arco reflejo en el que se dan tres pasos. Primero los estímulos sensoriales son recibidos por las neuronas aferentes y enviadas a la médula y el encéfalo; luego en el sistema nervioso central la información es procesada por neuronas de asociación; y por último las neuronas efectoras envían un mensaje a un músculo para ponerlo en movimiento. Entre los reflejos tenemos los innatos o incondicionados, y los adquiridos o condicionados. Estos últimos que se forman en la corteza cerebral de los animales superiores, y los primeros en aquellas partes del sistema nervioso que se encuentran por debajo de la corteza (médula, tallo encefálico, etc.) Los reflejos se forman mediante señales que forman parte, en unos casos, del primer sistema de señales (señales objetivas y concretas de la realidad), y en otros, del segundo sistema de señales (la palabra).

edu.red

131 ¿Y QUÉ MÁS PODEMOS HACER AHORA? L@S ESTUDIANTES Para pensar: ¿No te parece interesante co

Partes: 1, 2, 3, 4, 5, 6, 7, 8
 Página anterior Volver al principio del trabajoPágina siguiente