Descargar

Teoría de juegos

Enviado por martinez_ferreira


    1. Introducción a la Teoría de Juegos
    2. Origen
    3. Johan Von Neumann
    4. Oskar Morgenstern
    5. Aplicaciones
    6. Propiedades para el conocimiento común del juego
    7. Objetivos de la Teoría de Juegos
    8. Estrategias reactivas
    9. El Duopolio en la Teoría de Juegos
    10. Clases de Juegos
    11. Conclusiones
    12. Bibliografía

    INTRODUCCIÓN

    La Teoría de Juegos se desarrollo con el simple hecho de que un individuo se relacionara con otro u otros. Hoy en día, es fácil enfrentarse cotidianamente a esta teoría, en cualquier momento, tenemos por ejemplo cuando nos inscribimos en un nuevo semestre en la universidad, cuando la directiva toma la decisión sobre el monto que se va a cobrar, la directiva está realizando un juego con sus clientes, en este caso los alumnos. Para el hombre la importancia que representa la Teoría de Juegos es evidente, pues a diario se enfrenta a múltiples situaciones que son juegos.

    Actualmente la Teoría de Juegos se ocupa sobre todo de que ocurre cuando los hombres se relacionan de forma racional, es decir, cuando los individuos se interrelacionan utilizando el raciocinio.

    INTRODUCCIÓN A LA TEORÍA DE JUEGOS

    Los psicólogos destacan la importancia del juego en la infancia como medio de formar la personalidad y de aprender de forma experimental a relacionarse en sociedad, a resolver problemas y situaciones conflictivas. Todos los juegos, de niños y de adultos, juegos de mesa o juegos deportivos, son modelos de situaciones conflictivas y cooperativas en las que podemos reconocer situaciones y pautas que se repiten con frecuencia en el mundo real. 

    El estudio de los juegos ha inspirado a científicos de todos los tiempos para el desarrollo de teorías y modelos matemáticos. La estadística es una rama de las matemáticas que surgió precisamente de los cálculos para diseñar estrategias vencedoras en juegos de azar. Conceptos tales como probabilidad, media ponderada y distribución o desviación estándar, son términos acuñados por la estadística matemática y que tienen aplicación en el análisis de juegos de azar o en las frecuentes situaciones sociales y económicas en las que hay que adoptar decisiones y asumir riesgos ante componentes aleatorios.

    Pero la Teoría de Juegos tiene una relación muy lejana con la estadística. Su objetivo no es el análisis del azar o de los elementos aleatorios sino de los comportamientos estratégicos de los jugadores. En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al igual que en los juegos, su resultado depende de la conjunción de decisiones de diferentes agentes o jugadores. Se dice de un comportamiento que es estratégico cuando se adopta teniendo en cuenta la influencia conjunta sobre el resultado propio y ajeno de las decisiones propias y ajenas.

    La técnica para el análisis de estas situaciones fue puesta a  punto por un matemático, John von Neumann. A comienzos de la década de  1940, este trabajó con el economista Oskar Morgenstern en las aplicaciones económicas de esa teoría. El  libro  que publicaron en 1944, "Theory of Games and Economic Behavior", abrió un insospechadamente amplio campo de estudio en el que actualmente trabajan miles de especialistas de todo el mundo.

    La Teoría de Juegos ha alcanzado un alto grado de sofisticación matemática y ha mostrado una gran versatilidad en la resolución de problemas. Muchos campos de la Economía (Equilibrio General, Distribución de Costos, etc.), se han visto beneficiados por las aportaciones  de este método de análisis. En el medio siglo transcurrido desde su primera formulación el número de científicos dedicados a su desarrollo no ha cesado de crecer. Y no son sólo economistas y matemáticos sino sociólogos, politólogos, biólogos o psicólogos.  Existen también aplicaciones jurídicas: asignación de responsabilidades, adopción de decisiones de pleitear o conciliación, etc.

    Hay dos clases de juegos que plantean una problemática muy diferente y requieren una forma de análisis distinta:

    1. Si los jugadores pueden comunicarse entre  ellos y negociar los resultados se tratará de juegos con transferencia de utilidad (también llamados juegos cooperativos), en los que la problemática se concentra en el análisis de las posibles coaliciones y su estabilidad.
    2. En los juegos sin transferencia de utilidad, (también llamados juegos no cooperativos) los jugadores no pueden llegar a acuerdos previos; es el caso de los juegos conocidos como "la guerra de los sexos", el "dilema del prisionero" o el modelo "halcón-paloma".

    Los modelos de juegos sin transferencia de utilidad suelen ser bipersonales, es decir, con sólo dos jugadores. Pueden ser simétricos o asimétricos según que los resultados sean idénticos desde el punto de vista de cada jugador. Pueden ser de suma cero, cuando el aumento en las ganancias de un jugador implica una disminución por igual cuantía en las del otro, o de suma no nula en caso contrario, es decir, cuando la suma de las ganancias de los jugadores puede aumentar o disminuir en función de sus decisiones. Cada jugador puede tener opción sólo a dos estrategias, en los juegos biestratégicos, o a muchas. Las estrategias pueden ser puras o mixtas; éstas consisten en asignar a cada estrategia pura una probabilidad dada. En el caso de los juegos con repetición, los que se juegan varias veces seguidas por los mismos jugadores, las estrategias pueden ser también simples o reactivas, si la decisión depende del comportamiento que haya manifestado el contrincante en jugadas anteriores.

    ORIGEN

    La Teoría de Juegos fue creada por Von Neumann y Morgenstern en su libro clásico "The Theory of Games Behavior", publicado en 1944. Otros habían anticipado algunas ideas. Los economistas Cournot y Edgeworth fueron particularmente innovadores en el siglo XIX. Otras contribuciones posteriores mencionadas fueron hechas por los matemáticos Borel y Zermelo. El mismo Von Neumann ya había puesto los fundamentos en el artículo publicado en 1928. Sin embargo, no fue hasta que apareció el libro de Von Neumann y Morgenstern que el mundo comprendió cuán potente era el instrumento descubierto para estudiar las relaciones humanas.

    Durante las dos décadas que siguieron a la Segunda Guerra Mundial, uno de los progresos más interesantes de la Teoría Económica fue la Teoría de los Juegos y el comportamiento económico, publicada en un libro de este titulo bajo la autoridad conjunta de Jhon Von Neumann y Oskar Morgenstern. Actualmente, el consenso parece ser que la Teoría de los Juegos es más relevante al estudio de problemas comerciales específicos que a la teoría económica general, por que representa un enfoque único al análisis de las decisiones comerciales en condiciones de intereses competitivos y conflictivos.

    En los últimos años, sus repercusiones en la teoría económica sólo se pueden calificar de explosivas. Todavía es necesario, sin embargo, saber algo de la corta historia de juegos, aunque sólo sea para entender por qué se usan algunos términos.

    Von Neumann y Morgenstern investigaron dos planteamientos distintos de la Teoría de Juegos. El primero de ellos el planteamiento estratégico o no cooperativo. Este planteamiento requiere especificar detalladamente lo que los jugadores pueden y no pueden hacer durante el juego, y después buscar cada jugador una estrategia óptima. Lo que es mejor para un jugador depende de lo que los otros jugadores piensan hacer, y esto a su vez depende de lo que ellos piensan del primer jugador hará. Von Neumann y Morgenstern resolvieron este problema en el caso particular de juegos con dos jugadores cuyos intereses son diametralmente opuestos. A estos juegos se les llama estrictamente competitivos, o de suma cero, porque cualquier ganancia para un jugador siempre se equilibra exactamente por una pérdida correspondiente para el otro jugador. El Ajedrez, el Backgamón y el Póquer son juegos tratados habitualmente como juegos de suma cero.

    La segunda parte del libro de Von Neumann y Morgenstern, se desarrolla el planteamiento coalicional o cooperativo, en el que buscaron describir la conducta óptima en juegos con muchos jugadores. Puesto que éste es un problema mucho más difícil, no es de sorprender que sus resultados fueran mucho menos precisos que los alcanzados para el caso de suma cero y dos jugadores. En particular, Von Neumann y Morgenstern abandonaron todo intento de especificar estrategias óptimas para jugadores individuales. En lugar de ello se propusieron clasificar los modelos de formación de coaliciones que son consistentes con conductas racionales. La negociación, en cuanto a tal, no jugaban papel alguno en esta teoría. De hecho, hicieron suyo el punto de vista, que había predominado entre los economistas al menos desde la época de Edgeworth, según el cual los problemas de negociación entre dos personas son inherentemente indeterminados.

    A principio de los años cincuenta, en una serie de artículos muy famosos el matemático John Nash rompió dos de las barreras que Von Neumann y Morgenstern se había auto-impuesto. En el frente no cooperativo, estos parecen haber pensado que en estrategias la idea de equilibrio, introducida por Cournot en 1832, no era en sí misma una noción adecuada para construir sobre ella una teoría (de aquí que se restringieran a juegos de suma cero). Sin embargo, la formulación general de Nash de la idea de equilibrio hizo ver claramente que una restricción así es innecesaria. Hoy día, la noción de equilibrio de Nash, la cual no es otra cosa que cuando la elección estratégica de cada jugador es la respuesta óptima a las elecciones estratégicas de los otros jugadores. A Horace y Maurice les fueron aconsejados, por su consultor especialista en Teoría de Juegos, que usaran un equilibrio de Nash. Es tal vez, el más importante de los instrumentos que los especialistas en Teoría de Juegos tienen a disposición. Nash también hizo contribuciones al planteamiento cooperativo de Von Neumann y Morgenstern.

    Nash no aceptó la idea de que la Teoría de Juegos debe considerar indeterminados problemas de negociación entre dos personas y procedió a ofrecer argumentos para determinarlos. Sus ideas sobre este tema fueron generalmente incomprendidas y, tal vez como consecuencia de ello, los años que la Teoría de Juegos paso en Babia se gastaron principalmente desarrollando el planteamiento cooperativa de Von Neumann y Morgenstern en direcciones que finalmente resultaron improductivas.

    John Von Neumann, 1903-1957

    John von Neumann es un matemático húngaro considerado por muchos como la mente más genial del siglo XX, comparable solo a la de Albert Einstein. A pesar de ser completamente desconocido para el "hombre de la calle", la trascendencia práctica de su actividad científica puede vislumbrarse al considerar que participó activamente en el Proyecto Manhattan, el grupo de científicos que creó la primera bomba atómica, que participó y dirigió la producción y puesta a punto de los primeros ordenadores o que, como científico asesor del Consejo de Seguridad de los Estados Unidos en los años cincuenta, tuvo un papel muy destacado (aunque secreto y no muy bien conocido) en el diseño de la estrategia de la guerra fría. Nicholas Kaldor dijo de él "Es sin duda alguna lo más parecido a un genio que me haya encontrado jamás".

    Nació en Budapest, Hungría, hijo de un rico banquero judío. Tuvo una educación esmerada. Se doctoró en matemáticas por la Universidad de Budapest y en químicas por la Universidad de Zurich. En 1927 empezó a trabajar en la Universidad de Berlín. En 1932 se traslada a los Estados Unidos donde trabajará en el Instituto de Estudios Avanzados de Princeton.

    Sus aportaciones a la ciencia económica se centran en dos campos:

    • Es el creador del campo de la Teoría de Juegos. En 1928 publica el primer artículo sobre este tema. En 1944, en colaboración con Oskar Morgenstern, publica la Theory of Games and Economic Behavior.  La Teoría de Juegos es un campo en el que trabajan actualmente miles de economistas y se publican a diario cientos de páginas. Pero además, las formulaciones matemáticas descritas en este libro han influido en muchos otros campos de la economía. Por ejemplo, Kenneth Arrow y Gerard Debreu se basaron en su axiomatización de la teoría de la utilidad para resolver problemas del Equilibrio General.
    • En 1937 publica A Model of General Economic Equilibrium", del que E. Roy Weintraub dijo en 1983 ser "el más importante artículo sobre economía matemática que haya sido escrito jamás". En él relaciona el tipo de interés con el crecimiento económico dando base a los desarrollos sobre el "crecimiento óptimo" llevado a cabo por Maurice Allais, Tjalling C. Koopmans y otros. 

    Oskar Morgenstern, 1902-1976

    Nacido en Gorlitz, Silesia, estudia en las universidades de Viena, Harvard y New York. Miembro de la Escuela Austriaca y avezado matemático, participa en los famosos  "Coloquios de Viena" organizados por Karl Menger (hijo de Carl Menger) que pusieron en contacto científicos de diversas disciplinas, de cuya sinergia se sabe que surgieron multitud de nuevas ideas e incluso nuevos campos científicos.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Emigra a Estados Unidos durante la Segunda Guerra Mundial ejerciendo la docencia en Princeton. Publica en 1944, conjuntamente con John von Neuman, la "Theory of Games and Economic Behavior".

    APLICACIONES

    La Teoría de Juegos actualmente tiene muchas aplicaciones, sin embargo, la economía es el principal cliente para las ideas producidas por los especialistas en Teoría de Juego. Entre las disciplinas donde hay aplicación de la Teoría de Juegos tenemos:

    En la Economía:

    No debería sorprender que la Teoría de Juegos haya encontrado aplicaciones directas en economía. Esta triste ciencia se supone que se ocupa de la distribución de recursos escasos. Si los recursos son escasos es porque hay más gente que los quiere de la que puede llegar a tenerlos. Este panorama proporciona todos los ingredientes necesarios para un juego. Además, los economistas neoclásicos adoptaron el supuesto de que la gente actuará racionalmente en este juego. En un sentido, por tanto, la economía neoclásica no es sino una rama de la Teoría de Juegos.

    Sin embargo, aunque los economistas pueden haber sido desde siempre especialistas camuflados en Teoría de Juegos, no podían progresar por el hecho de no tener acceso a los instrumentos proporcionados por Von Neumann y Morgenstern.

    En consecuencia sólo se podían analizar juegos particularmente simples. Esto explica por qué el monopolio y la competencia perfecta se entienden bien, mientras a todas las demás variedades de competencia imperfecta que se dan entre estos dos extremos sólo ahora se les está empezando a dar el tratamiento detallado que merecen.

    La razón por la que el monopolio es simple desde el punto de vista de la Teoría de Juegos, es que puede ser tratado como un juego con un único jugador. La razón por que la competencia perfecta es simple es que el número de jugadores es de hecho infinito, de manera que cada agente individual no puede tener un efecto sobre agregados de mercado si el o ella actúa individualmente.

    En la Ciencia Política:

    La Teoría de Juegos no ha tenido el mismo impacto en la ciencia política que en economía. Tal vez esto se deba a que la gente se conduce menos racionalmente cuando lo que está en juego son ideas que cuando lo que está en juego es su dinero. Sin embargo, se ha convertido en un instrumento importante para clarificar la lógica subyacente de un cierto número de problemas más paradigmáticos.

    En la Biología:

    En Biología se ha utilizado ampliamente la teoría de juegos para comprender y predecir ciertos resultados de la evolución, como lo es el concepto de estrategia evolutiva estable introducido por John Maynard Smith en su ensayo "Teoría de Juegos y la Evolución de la Lucha", así como en su libro "Evolución y Teoría de Juegos".

    En la Filosofía:

    Los especialistas en Teoría de Juegos creen que pueden demostrar formalmente por qué incluso el individuo más egoísta puede descubrir que con frecuencia, cooperar con sus vecinos en una relación a largo plazo redundará en su propio interés ilustrado.

    Con este fin estudian los equilibrios de juegos con repetición (juegos que los mismos jugadores juegan una y otra vez). Pocas cosas han descubierto en esta área hasta el presente que hubieran sorprendido a David Hume, quien hace ya unos doscientos años articuló los mecanismos esenciales. Estas ideas, sin embargo, están ahora firmemente basadas en modelos formales. Para avanzar más, habrá que esperar progresos en el problema de la selección de equilibrios en juegos con múltiples equilibrios. Cuando estos progresos se den, sospecho que la filosofía social sin Teoría de Juegos será algo inconcebible – y que David Hume será universalmente considerado como su verdadero fundador.

    PROPIEDADES PARA EL CONOCIMIENTO COMÚN DEL JUEGO

    El Filósofo Hobbes dijo que un hombre se caracteriza por su fortaleza física, sus pasiones, su experiencia y su razón.

    Fortaleza Física: esta determina lo que alguien puede o no puede hacer. Un atleta puede planear correr una milla en cuatro minutos, pero sería imposible para la mayoría ejecutar este plan. La Teoría de Juegos incorpora estas consideraciones en las reglas del juego. Esta determinan lo que es factible para un jugador. Más exactamente, un jugador queda limitado a escoger en el conjunto de sus estrategias en el juego.

    Pasión y Experiencia: estas corresponden a las preferencias y creencias de un jugador. En la mayoría de los casos, ambas deben ser conocimiento común para que sea posible realizar un análisis en términos de la Teoría de Juegos.

    Razón: en problemas de decisión unipersonales, los economistas simplemente suponen que los jugadores maximizan sus pagos esperados dadas sus creencias. En un juego las cosas son más complicadas, porque la idea de equilibrio da por supuesto que los jugadores saben algo acerca de cómo razona todo el mundo.

    Conocimiento común de las reglas:

    Como en muchos resultados de la Teoría de Juegos, no es inmediatamente evidente que esta conclusión dependa de que el valor de "n" debe ser conocimiento común. Sin embargo, si el valor "n" no es de conocimiento común existe equilibrio de Nash.

    La noción de equilibrio es fundamental para la Teoría de Juegos. Pero por qué anticipamos que los jugadores usarán estrategias de equilibrio.

    Dos tipos de respuestas hay, en primer lugar del tipo educativo, estos suponen que los jugadores tengan al equilibrio como el resultado de razonar cuidadosamente.

    Sin embargo, la respuesta educativa no es la única posible. También hay respuestas evolutivas. Según éstas, el equilibrio se consigue, no porque los jugadores piensan todo de antemano, sino como consecuencia de que los jugadores miopes ajustan su conducta por tanteo cuando juegan y se repiten durante largos períodos de tiempo.

    En un juego finito de dos jugadores, ningún jugador sabe con seguridad que estrategia pura, incluso si el oponente mezcla, el resultado final será que se juega alguna estrategia pura, la cual terminará por utilizar el oponente. Un jugador racional, por tanto, asigna una probabilidad subjetiva a cada una de las alternativas posibles. Entonces el jugador escoge una estrategia que maximiza su pago esperado con respecto a estas probabilidades subjetivas. Por tanto, el o ella se comportan como si estuviera escogiendo una respuesta óptima a una de las estrategias mixtas del oponente, si la estrategia mixta para la que se elige una respuesta óptima.

    La Teoría de Juegos sostiene, que las creencias de un jugador sobre lo que un oponente hará depende de lo que el jugador sabe acerca del oponente. Sin embargo, no está ni mucho menos claro lo que debemos suponer acerca de lo que los jugadores saben de su oponente. La idea de racionabilidad se construye sobre la hipótesis de que por lo menos debería ser de conocimiento común que ambos jugadores son racionales.

    OBJETIVOS DE LA TEORÍA DE JUEGOS

    El principal objetivo de la teoría de los juegos es determinar los papeles de conducta racional en situaciones de "juego" en las que los resultados son condicionales a las acciones de jugadores interdependientes.

    Un juego es cualquier situación en la cual compiten dos o más jugadores. El Ajedrez y el Póker son buenos ejemplos, pero también lo son el duopolio y el oligopolio en los negocios. La extensión con que un jugador alcanza sus objetivos en un juego depende del azar, de sus recursos físicos y mentales y de los de sus rivales, de las reglas del juego y de los cursos de acciones que siguen los jugadores individuales, es decir, sus estrategias. Una estrategia es una especificación de la acción que ha de emprender un jugador en cada contingencia posible del juego.

    Se supone que, en un juego, todos los jugadores son racionales, inteligentes y están bien informados. En particular, se supone que cada jugador conoce todo el conjunto de estrategias existentes, no solo para él, sino también para sus rivales, y que cada jugador conoce los resultados de todas las combinaciones posibles de las estrategias.

    Igualmente, en una gran variedad de juegos, el resultado es una variable aleatoria cuya distribución de probabilidades debe ser establecida para que pueda ser posible una solución para el juego. A este respecto, debe observarse que las decisiones de los jugadores interdependientes no se toman en un vacío y que los pagos resultantes de estas decisiones dependen de las acciones emprendidas por todos los jugadores. Esta interdependencia implica que puede ser inapropiado suponer que los pagos están siendo generados por un proceso probabilista invariante que no es afectado por el curso de acción que uno escoja. En otras palabras, la acción que emprende un jugador puede dictar los actos de otros jugadores o influir en la probabilidad de que se comporten en una forma particular. Esta potencialidad de posibles efectos en los resultados es la que distingue la toma de decisiones en conflictos y la toma de decisiones en un medio incierto. La clase más sencilla de modelo de juego rigurosamente adversario, en el que los resultados posibles son calificados en orden opuesto por los jugadores.

    Entre esta clase, él más común es el juego de suma constante, en el que la suma de las ganancias de los jugadores es igual, cualesquiera que sea su distribución entre ellos. Un caso especial, y el único que consideraremos, de juegos de suma constante se llama juego de suma cero de dos personas.

    ESTRATEGIAS REACTIVAS

    Cuando un juego se repite varias veces, cada jugador puede adoptar su estrategia en función de las decisiones que haya adoptado antes su oponente. http://www.eumed.net/cursecon/0/recomiendo.phtml/t_blank

    Las estrategias reactivas son las que se adoptan en los juegos con repetición y se definen en función de las decisiones previas de otros jugadores.

    El ejemplo más conocido es la estrategia OJO POR OJO (en inglés TIT FOR TAT). Supongamos que dos jugadores repiten de forma indefinida una situación con pagos de forma del Dilema del Prisionero:

    Dilema del PrisioneroMatriz de Pagos

     

    Jugador columna

    Cooperar

    Traicionar

    Jugador fila

    Cooperar

    2º,2º

    4º,1º

    Traicionar

    1º,4º

    3º,3º*

    En esta situación la estrategia OJO POR OJO puede quedar definida de la forma siguiente: "En la primera jugada elegiré la estrategia COOPERAR. En las jugadas siguientes elegiré la misma estrategia que haya elegido mi oponente en la jugada anterior". En otras palabras, si el otro coopera, yo cooperaré con él. Si el otro es un traidor, yo seré un traidor".

    Otra posible estrategia reactiva es la TORITO (también llamada en inglés "BULLY"). Esta estrategia consiste en hacer lo contrario que haga el oponente: "Si el otro jugador es leal en una jugada, yo le traicionaré en la siguiente; si el otro jugador me ha traicionado, yo le seré leal a la siguiente oportunidad".

    En el ambiente del Dilema del Prisionero, la estrategia OJO POR OJO ofrece muy buenos resultados mientras que la estrategia TORITO proporciona pagos medios muy bajos.

    En cambio, en el ambiente del juego Halcón-Paloma sucede precisamente lo contrario: TORITO obtiene buenos resultados mientras que OJO POR OJO proporciona pagos medios inferiores.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    En la vida real es fácil descubrir situaciones y personas (incluyéndonos a nosotros mismos) en las que se muestran comportamientos fácilmente identificables con las estrategias OJO POR OJO o TORITO. 

    En el primer caso son los comportamientos descritos por la Ley del Talión.  En el despacho de un abogado, negociador profesional, había un letrero que decía "Por las buenas soy muy bueno, por las malas soy aún mejor". Al fin y al cabo, todos los humanos en alguna ocasión nos hemos comprometido con nosotros mismos a mantener esta estrategia en una situación difícil en la que un oponente podía elegir entre hacernos daño o respetarnos, y preveíamos oportunidades para "devolverle la jugada".

    El segundo caso también es muy frecuente. Se trata de ese tipo de personas o comportamientos que en Latinoamérica llaman "ser un torito" y en España "ser un gallito"; es decir, alguien que se muestra muy agresivo pero al que "se le bajan los humos" si se le responde también con agresividad.

    EL DUOPOLIO EN LA TEORÍA DE JUEGOS

    En el oligopolio, los resultados que obtiene cada empresa dependen no sólo de su decisión sino de las decisiones de las competidoras. El problema para el empresario, por tanto, implica una elección estratégica que puede ser analizada con las técnicas de la Teoría de Juegos.

    Supongamos que dos empresas, Hipermercados Xauen y Almacenes Yuste, constituyen un duopolio local en el sector de los grandes almacenes. Cuando llega la época de las tradicionales rebajas de enero, ambas empresas acostumbran a realizar inversiones en publicidad tan altas que suelen implicar la pérdida de todo el beneficio. Este año se han puesto de acuerdo y han decidido no hacer publicidad por lo que cada una, si cumple el acuerdo, puede obtener unos beneficios en la temporada de 50 millones. Sin embargo una de ellas puede preparar en secreto su campaña publicitaria y lanzarla en el último momento con lo que conseguiría atraer a todos los consumidores. Sus beneficios en ese caso serían de 75 millones mientras que la empresa competidora perdería 25 millones.

    Los posibles resultados se pueden ordenar en una Matriz de Pagos. Cada almacén tiene que elegir entre dos estrategias: respetar el acuerdo —Cooperar— o hacer publicidad —Traicionar—. Los beneficios o pérdidas mostrados a la izquierda de cada casilla son los que obtiene Xauen cuando elige la estrategia mostrada a la izquierda y Yuste la mostrada arriba. Los resultados a la derecha en las casillas son los correspondientes para Yuste.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    El que lo máximo que se puede obtener sea 75 M. o 85 M. no tiene mucha influencia sobre la decisión a adoptar, lo único que importa en realidad es la forma en que están ordenados los resultados. Si substituimos el valor concreto de los beneficios por el orden que ocupan en las preferencias de los jugadores, la matriz queda como la mostrada en el cuadro. Las situaciones como las descritas en esta matriz son muy frecuentes en la vida real y reciben el nombre de Dilema de los Presos.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Veamos cuál debe ser la decisión a adoptar por esos almacenes. El director de la división de estrategia de Xauen pensará: "Si Yuste no hace publicidad, a nosotros lo que más nos conviene es traicionar el acuerdo, pero si ellos son los primeros en traicionar, a nosotros también nos convendrá hacerlo. Sea cual sea la estrategia adoptada por nuestros competidores, lo que más nos conviene es traicionarles". El director de la división de estrategia de Yuste hará un razonamiento similar.

    Como consecuencia de ello ambos se traicionarán entre sí y obtendrán resultados peores que si hubieran mantenido el acuerdo. La casilla de la matriz de pagos marcada con un asterisco es la única solución estable: es un Punto de Equilibrio de Nash. Contrariamente a las argumentaciones de Adam Smith, en las situaciones caracterizadas por el Dilema de los Presos si los agentes actúan buscando de forma racional su propio interés, una "mano invisible" les conducirá a un resultado socialmente indeseable.

    Supongamos ahora otra situación ligeramente diferente. Si ambas empresas se enredan en una guerra de precios, haciendo cada vez mayores rebajas, ambas sufrirán importantes pérdidas, 25 millones cada una. Han llegado al acuerdo de no hacer rebajas con lo que cada una podrá ganar 50 millones. Si una de ellas, incumpliendo el acuerdo, hace en solitario una pequeña rebaja, podrá obtener un beneficio de 75 millones mientras que la otra perdería muchos clientes quedándose sin beneficios ni pérdidas.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Si, como en el caso anterior, substituimos los valores concretos por su orden en la escala de preferencias obtenemos una matriz que es conocida en Teoría de Juegos como Gallina o Halcón-Paloma.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    El razonamiento de los estrategas será ahora diferente: "Si nuestros competidores cooperan, lo que más nos interesa es traicionarles, pero si ellos nos traicionan será preferible que nos mostremos cooperativos en vez de enredarnos en una guerra de precios. Hagan lo que hagan ellos, nos interesará hacer lo contrario".

    En el juego "Gallina" el orden en que actúen los jugadores es muy importante. El primero en intervenir decidirá Traicionar, forzando al otro a Cooperar y obteniendo así el mejor resultado. La solución de equilibrio puede ser cualquiera de las dos marcadas con un asterisco en la matriz de pagos, dependiendo de cuál haya sido el primer jugador en decidirse. Ambas soluciones son puntos de equilibrio de Nash.

    En casi todos los modelos, sea cual sea la forma de la matriz, el protocolo o reglas del juego influirá mucho en la solución. Además del orden de intervención de los jugadores, habrá que tener en cuenta si el juego se realiza una sola vez o si se repite cierto número de veces, la información de que disponen en cada momento, el número de jugadores que intervienen y la posibilidad de formar coaliciones, etc.  

    CLASES DE JUEGOS

    El Dilema del Prisionero

    Dos delincuentes son detenidos y encerrados en celdas de aislamiento de forma que no pueden comunicarse entre ellos.  El alguacil sospecha que han participado en el robo del banco, delito cuya pena es diez años de cárcel, pero no tiene pruebas. Sólo tiene pruebas y puede culparles de un delito menor, tenencia ilícita de armas, cuyo castigo es de dos años de cárcel.  Promete a cada uno de ellos que reducirá su condena a la mitad si proporciona las pruebas para culpar al otro del robo del banco.

    Las alternativas para cada prisionero pueden representarse en forma de matriz de pagos. La estrategia "lealtad" consiste en permanecer en silencio y no proporcionar pruebas para acusar al compañero. Llamaremos "traición" a la estrategia alternativa.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Los pagos a la izquierda o a la derecha de la barra indican los años de cárcel a los que es condenado el preso X o Y respectivamente según las estrategias que hayan elegido cada uno de ellos.

    En vez de expresar los pagos en años de cárcel, podríamos indicar simplemente el orden de preferencia de cada preso de los correspondientes resultados, con lo que el modelo pasa a tener aplicación más general.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    La aplicación de la estrategia maximín conduce en este juego a un resultado subóptimo. Al no conocer la decisión del otro preso, la estrategia más segura es traicionar. Si ambos traicionan, el resultado para ambos es peor que si ambos hubieran elegido la lealtad. Este resultado es un punto de equilibrio de Nash y está señalado en la matriz mediante un asterisco.

    El dilema del prisionero, tal como lo hemos descrito, es un juego de suma no nula, bipersonal, biestratégico y simétrico. Fue formalizado y analizado por primera vez por A. W. Tucker en 1950. Es posiblemente el juego más conocido y estudiado en la Teoría de Juegos. En base a él se han elaborado multitud de variaciones, muchas de ellas basadas en la repetición del juego y en el diseño de estrategias reactivas.

    El modelo Halcón – Paloma

    http://www.eumed.net/cursecon/0/recomiendo.phtml/t_blank

    En el lenguaje ordinario entendemos por "halcón" a los políticos partidarios de estrategias más agresivas mientras que identificamos como "paloma" a los más pacifistas. El modelo Halcón-Paloma sirve para analizar situaciones de conflicto entre estrategias agresivas y conciliadoras. Este modelo es conocido en la literatura anglosajona como el "hawk-dove" o el "chicken" y en español es conocido también como "gallina".

    En la filmografía holywoodiense se han representado en varias ocasiones desafíos de vehículos enfrentados que siguen este modelo. Los dos vehículos se dirigen uno contra otro en la misma línea recta y a gran velocidad. El que frene o se desvíe ha perdido. Pero si ninguno de los dos frena o se desvía…

    También se ha utilizado este modelo abundantemente para representar una guerra fría entre dos superpotencias. La estrategia Halcón consiste en este caso en proceder a una escalada armamentística y bélica. Si un jugador mantiene la estrategia Halcón y el otro elige la estrategia Paloma, el Halcón gana y la Paloma pierde. Pero la situación peor para ambos es cuando los dos jugadores se aferran a la estrategia Halcón. El resultado puede modelizarse con la siguiente matriz de pagos.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Obsérvense las sutiles pero importantes diferencias de este modelo con el Dilema del Prisionero. En principio la matriz es muy parecida, simplemente se han trocado las posiciones de los pagos 3º y 4º, pero la solución y el análisis son ahora muy diferentes.

    Hay aquí dos resultados que son equilibrios de Nash: cuando las estrategias elegidas por cada jugador son diferentes; en la matriz aquí representada esas soluciones están marcadas con un asterisco. Compruébese, por el contrario, que en el Dilema del Prisionero el equilibrio de Nash está en el punto en que ambos jugadores traicionan.

     Otra notable diferencia de este juego con otros es la importancia que aquí adquiere el orden en que los jugadores eligen sus estrategias. Como tantas veces en la vida real, el primero que juega, gana. El primero elegirá y manifestará la estrategia Halcón con lo que el segundo en elegir se verá obligado a elegir la estrategia Paloma, la menos mala.  

    La guerra de los sexos

     El modelo de "La guerra de los sexos" es un ejemplo muy sencillo de utilización de la teoría de juegos para analizar un problema frecuente en la vida cotidiana. Hay dos jugadores: "ÉL" y "ELLA". Cada uno de ellos puede elegir entre dos posibles estrategias a las que llamaremos "Fútbol" y "Discoteca".

    Supongamos que el orden de preferencias de ÉL es el siguiente:

    1. (Lo más preferido) EL y ELLA eligen Fútbol.
    2. EL y ELLA eligen Discoteca.
    3. EL elige Fútbol y ELLA elige Discoteca.
    4. (Lo menos preferido) El elige Discoteca y ELLA elige Fútbol.

    Supongamos que el orden de preferencias de ELLA es el siguiente:

    1. (Lo más preferido) ÉL y ELLA eligen Discoteca.
    2. EL y ELLA eligen Fútbol.
    3. EL elige Fútbol y ELLA elige Discoteca.
    4. (Lo menos preferido) Él elige Discoteca y ELLA elige Fútbol.

    La matriz de pagos es como sigue:

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Este juego, tal como lo hemos descrito, es un juego sin repetición y sin transferencia de utilidad. Sin repetición significa que sólo se juega una vez por lo que no es posible tomar decisiones en función de la elección que haya hecho el otro jugador en juegos anteriores. Sin transferencia de utilidad significa que no hay comunicación previa por lo que no es posible ponerse de acuerdo, negociar ni acordar pagos secundarios ("Si vienes al fútbol te pago la entrada").

    El problema que se plantea es simplemente un problema de coordinación. Se trata de coincidir en la elección. Al no haber comunicación previa, es posible que el resultado no sea óptimo.  Si cada uno de  los jugadores elige su estrategia maximín el pago que recibirán (33) es subóptimo. Esa solución, marcada en la  matriz con un asterisco, no es un punto de equilibrio de Nash ya que los jugadores están tentados de cambiar su elección: cuando ELLA llegue a la discoteca y observe que ÉL se ha ido al fútbol, sentirá el deseo de cambiar de estrategia para obtener un pago mayor.

    El modelo que hemos visto es un juego simétrico ya que jugadores o estrategias son intercambiables sin que los resultados varíen. Podemos introducir una interesante modificación en el juego convirtiéndolo en asimétrico a la vez que nos aproximamos más al mundo real. Supongamos que las posiciones 2ª y 3ª en el orden de preferencias de ÉL se invierten. EL prefiere ir solo al Fútbol más que ir con ELLA a la Discoteca. La matriz de pagos queda como sigue:

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Si ELLA conoce la matriz de pagos, es decir, las preferencias de ÉL, el problema de coordinación desaparece. Está muy claro que ÉL elegirá siembre la estrategia Fútbol, sea cual sea la elección de ELLA. Sabiendo esto ELLA elegirá siempre la estrategia Fútbol también, ya que prefiere estar con ÉL aunque sea en el Fútbol que estar sola aunque sea en la Discoteca. La estrategia maximín de ambos jugadores coincide. El resultado, marcado con un asterisco, es un óptimo, un punto de silla, una solución estable, un punto de equilibrio de Nash. Obsérvese que esta solución conduce a una situación estable de dominación social del jugador que podríamos calificar como el más egoísta.

    La Estrategia MAXIMIN

    Consideremos un "juego de suma cero" en el que lo que yo gano lo pierde el otro jugador. Cada jugador dispone de tres estrategias posibles a las que designaremos como A, B, y C (supongamos que son tres tarjetas con dichas letras impresas).

    Los premios o pagos consisten en la distribución de diez monedas que se repartirán según las estrategias elegidas por ambos jugadores y se muestran en la siguiente tabla llamada matriz de pagos. Mis ganancias, los pagos que puedo recibir, se muestran sobre fondo verde. Los pagos al otro jugador se muestran sobre fondo rosa. Para cualquier combinación de estrategias, los pagos de ambos jugadores suman diez. 

    Por ejemplo. Si yo juego la tarjeta C y el otro jugador elige su tarjeta B entonces yo recibiré ocho monedas y el otro jugador recibirá dos.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Éste es por tanto un juego de suma cero. Se llama juego de suma cero aquél en el que lo que gana un jugador es exactamente igual a lo que pierde o deja de ganar el otro. 

    Para descubrir qué estrategia me conviene más vamos a analizar la matriz que indica mis pagos, la de fondo verde. Ignoro cuál es la estrategia (la tarjeta) que va a ser elegida por el otro jugador. Una forma de analizar el juego para tomar mi decisión consiste en mirar cuál es el mínimo resultado que puedo obtener con cada una de mis cartas. En la siguiente tabla se ha añadido una columna indicando mis resultados mínimos.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    En efecto, 

    • Si yo elijo la tarjeta A, puedo obtener 9, 1 o 2, luego como mínimo obtendré un resultado de 1.
    • Si elijo la tarjeta B, puedo obtener 6, 5 o 4, luego como mínimo obtendré 4.
    • Si elijo la tarjeta C, puedo obtener 7, 8 o 3, luego como mínimo obtendré 3.

    De todos esos posibles resultados mínimos, el que prefiero es 4 ya que es el máximo de los mínimos.

    La estrategia MAXIMIN consiste en elegir la tarjeta B ya que esa estrategia me garantiza que, como mínimo, obtendré 4.

    ¿Podemos prever la estrategia del otro jugador? Supongamos que el otro jugador quiere elegir también su estrategia MAXIMIN. Mostramos ahora sólo los pagos asignados al otro jugador en los que destacamos el pago mínimo que puede obtener para cada una de sus estrategias. Subrayamos el máximo de los mínimos y su estrategia maximin.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    En efecto,

    • Si él elige A, su peor resultado sería si yo elijo A con lo que yo obtendría 9 y él 1.
    • Si él elige B, su peor resultado sería si yo elijo C con lo que yo obtendría 8 y él 2.
    • Si él elige C, su peor resultado sería si yo elijo B con lo que yo obtendría 4 y él 6.

    Su estrategia MAXIMIN consiste por tanto en jugar la carta C con lo que se garantiza que, al menos, obtendrá 6.

    Éste es un juego con solución estable. Ninguno de los jugadores siente la tentación de cambiar de estrategia. Supongamos que se empieza a repetir el juego una y otra vez. Yo jugaré siempre mi estrategia maximin (B) y el otro jugará siempre su estrategia maximin (C). Cada uno sabe lo que jugará el otro la siguiente vez. Ninguno estará tentado de cambiar su estrategia ya que el que decida cambiar su estrategia perderá.

    Se llama "punto de silla" al resultado en el que coinciden las estrategias maximin de ambos jugadores.

    No todos los juegos tienen un punto de silla, una solución estable. La estabilidad del juego anterior desaparece simplemente trastocando el orden de las casillas BB y BC:

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    En esta nueva tabla mi estrategia maximin sigue siendo la B y la estrategia maximin del otro jugador sigue siendo la C. Pero la solución ahora ya no es estable. Si jugamos repetidas veces y yo repito mi estrategia maximín, B, el otro estará tentado de cambiar su estrategia, pasando de la C a la B con lo que obtendrá un pago mayor, 6 en vez de 5.

    Claro que si el otro empieza a elegir sistemáticamente la estrategia B yo preferiré cambiar mi estrategia a la C para así obtener 8. Entonces el querrá volver a su estrategia C y así sucesivamente.

    El Teorema del Maximin afirma que en todo juego bipersonal de suma cero en el que sea posible jugar estrategias mixtas además de las puras, las estrategias maximin de cada jugador coincidirán siempre en una solución estable, un punto de silla. Este teorema fue demostrado matemáticamente por John von Neumann en un artículo publicado en 1928

    Juegos con Transferencia de Utilidad (Juegos Cooperativos)

    http://www.eumed.net/cursecon/0/recomiendo.phtml/t_blank

    Si los jugadores pueden comunicarse entre sí y negociar un acuerdo ANTES de los pagos, la problemática que surge es completamente diferente. Se trata ahora de analizar la posibilidad de formar una coalición de parte de los jugadores, de que esa coalición sea estable y de cómo se deben repartir las ganancias entre los miembros de la coalición para que ninguno de ellos esté interesado en romper la coalición.

    Juego 1.- Empecemos con el ejemplo más sencillo. Supongamos que tres jugadores, Ana, Benito y Carmen, tienen que repartirse entre sí cien euros. El sistema de reparto tiene que ser adoptado democráticamente, por mayoría simple, una persona un voto. Hay cuatro posibles coaliciones vencedoras: ABC, AB, BC y AC, pero hay infinitas formas de repartir los pagos entre los tres jugadores.

    Supongamos que Ana propone un reparto de la forma A=34, B=33 y C=33. Benito puede proponer un reparto alternativo de la forma A=0, B=50 y C=50 Carmen estará más interesada en la propuesta de Benito que en la de Ana. Pero puede proponer una alternativa aún mejor para ella: A=34, B=0 y C=66. A Benito es posible que se le ocurra alguna propuesta mejor para atraer a Ana.

    El juego puede continuar indefinidamente. No tiene solución. No hay ninguna coalición estable. Sea cual sea la propuesta que se haga siempre habrá una propuesta alternativa que mejore los pagos recibidos por cada jugador de una nueva mayoría.

    Definición: En los juegos con transferencia de utilidad se llama solución a una propuesta de coalición y de reparto de los pagos que garantice estabilidad, es decir, en la que ninguno de los participantes de una coalición vencedora pueda estar interesado en romper el acuerdo.

    Juego 2.- Modifiquemos ahora el ejemplo. En vez de "un hombre un voto" consideremos que hay voto ponderado. Ana tiene derecho a seis votos, Benito a tres y Carmen a uno. Las posibles mayorías son las siguientes: ABC, AB, AC, A. En esta situación Ana propondrá un reparto de la siguiente forma: A=100, B=0 y C=0. Ese reparto se corresponde con una coalición estable en la que los seis votos de Ana estarán a favor. Es una solución única. Ana no aceptará ningún reparto en el que ella obtenga menos de 100 euros y sin la participación de Ana no hay ninguna coalición vencedora.

    Definición: Se llama "valor del juego" al pago que un jugador tiene garantizado que puede recibir de un juego si toma una decisión racional, independientemente de las decisiones de los demás jugadores. Ningún jugador aceptará formar parte de una coalición si no recibe como pago al menos el valor del juego.

    En el juego 1, el valor del juego es cero para los tres jugadores. En el juego 2 el valor del juego para Ana es cien y para Benito y Carmen es cero.

    Juego 3.- Pongamos un ejemplo algo más realista y, por tanto, un poco más complejo. Supongamos un municipio en el que cinco partidos políticos se han presentado a las elecciones: el Partido Austero (PA), el Partido Benefactor (PB), el Partido Comunal (PC), el Partido Democrático (PD) y el Partido de la Esperanza (PE). En las elecciones, han obtenido el siguiente número de concejales:

    PA=11 PB=8 PC=5 PD=2 PE=1

    Como ningún partido ha conseguido la mayoría absoluta, es necesario que se forme una coalición para gobernar el municipio. El presupuesto anual del municipio es de 520 millones de euros. La coalición gobernante debe asignar los cargos y las responsabilidades del ayuntamiento a los diferentes partidos. En las negociaciones se debe acordar el reparto del presupuesto, cargos y responsabilidades entre los partidos. Suponemos que no hay simpatías ni antipatías ideológicas y que los cargos y responsabilidades son valorados exclusivamente según el presupuesto económico que controlan. Supondremos, para simplificar, que hay disciplina de voto y que no son posibles las traiciones internas 

    Análisis del juego 3. Como el número total de concejales es 27, la coalición vencedora debe disponer al menos de 14 votos. A diferencia del juego 2, no hay ningún jugador imprescindible para ganar. Si utilizamos la definición que dimos arriba, el valor del juego para todos los jugadores es cero ya que ninguno tiene garantizada su pertenencia a la coalición vencedora.

    Definición: Se llama "valor de Shapley" a la asignación que recibe cada jugador en una propuesta de reparto según un criterio de arbitraje diseñado por Lloyd S. Shapley. El criterio consiste en asignar un pago a cada jugador en proporción al número de coaliciones potencialmente vencedoras en las que el jugador participa de forma no redundante.

    Un jugador es redundante en una coalición si no es imprescindible para que esa coalición resulte vencedora.

    Las especies en extinción y  los recursos naturales.

    Actualmente existe una inquietud generalizada ante la desaparición de extensas zonas de selva tropical y la posibilidad de extinción de especies animales por sobreexplotación. Este problema presenta características similares a los efectos externos y a los bienes públicos y tampoco es resuelto de forma satisfactoria por el mercado.  A diferencia de los bienes públicos, los recursos naturales de propiedad común sí provocan o pueden llegar a provocar rivalidad en el consumo.  A diferencia del problema de los efectos externos, que son efectos tecnológicos provocados por bienes privados sobre bienes privados, la sobreexplotación de recursos naturales comunes incluye efectos tecnológicos y pecuniarios provocados por el acto de privatización de una propiedad común.

    En muchos países sudamericanos como Brasil o Costa Rica, la selva tropical está siendo quemada para roturar nuevas tierras que permitan la instalación de colonos. En las selvas tropicales de extremo oriente, especialmente en Indonesia y Filipinas, el ritmo de explotación de su riqueza maderera dobla a la tasa de reproducción agravándose la situación en las especies de maderas nobles, más demandadas, algunas de las cuales están ya en peligro de desaparición. Varias especies de mamíferos marinos tienen su supervivencia gravemente amenazada por exceso de capturas. Muchos bancos de peces, aunque no estén en peligro de extinción, han visto reducida su población hasta el punto de arruinar a muchas poblaciones pesqueras en Perú, Islas Británicas y Noruega.

    Las razones son similares en todos esos casos. Las selvas, bosques, pastos comunales, cazaderos o pesquerías no están sometidos al régimen de propiedad privada. Cualquier individuo o empresa puede acceder a ellos por lo que cada uno intentará obtener el máximo rendimiento sin preocuparse por su preservación para el futuro. La ciencia económica estudió el problema por primera vez para el caso de las pesquerías que se han convertido así en el ejemplo tradicional.

    Algunos ecologistas radicales, mal informados, proponen que consideremos las especies animales como un "capital heredado" del que podemos aprovechar sus rentas pero que debemos transmitir "íntegro" a las futuras generaciones. Eso no es posible en la realidad. Cualquier volumen de capturas de peces de un banco supone inevitablemente la disminución de su población. Con la expresión "capital heredado" esos ecologistas se están refiriendo al punto de equilibrio natural de la población, el tamaño que tendría la población de peces si no existiéramos los humanos. La única forma de mantener "íntegro" ese número de peces sería no pescar.

    Supongamos en cambio que partimos de una situación intermedia, cualquier tamaño de la población de peces entre Pa y Pc, en la que la tasa de crecimiento es positiva, por ejemplo del 3% anual. Si limitásemos nuestras capturas anuales precisamente a esa tasa, al 3% de la población total, el tamaño del banco se mantendría estable indefinidamente. El problema puede plantearse por tanto en términos estrictamente biológicos: cuál es el volumen máximo de capturas que puede conseguirse de forma indefinida o, en otras palabras, cuál es el tamaño de la población en el que su tasa de crecimiento es máxima, el punto Pb en el gráfico.

    Para ver el gráfico seleccione la opción "Descargar" del menú superior

    Los biólogos son capaces de resolver perfectamente ese problema y lo consiguen con un alto grado de sofisticación, determinando la edad óptima de los peces capturados y la época del año en que debe realizarse la campaña. Se llama management o gestión de pesquerías al conjunto de estudios y técnicas que permiten una explotación óptima a largo plazo.

    Pero, una vez que se tiene una solución óptima, se trata de ver si somos capaces de aplicarla. Cada individuo, cada barco pesquero, tiene que elegir entre dos alternativas en un ambiente que puede ser modelado según el Dilema de los Presos. Vamos a llamar "cooperar" a la estrategia consistente en respetar las cuotas y la reglamentación acordadas por una cooperativa o por un organismo supranacional y establecidas según criterios racionales de gestión de pesquerías. Vamos a llamar "traicionar" a la estrategia consistente en tratar de obtener el máximo beneficio individual a corto plazo aunque ello implique sobrepasar cuotas o usar artes de pesca prohibidas. 

    Especies y extinción

     

    Los otros Barcos

    Cooperar

    Traicionar

    Mi Barco

    Cooperar

    2,2

    4,1

    Traicionar

    1,4

    3,3

    El equilibrio de Nash se encuentra en la casilla en que todos traicionan. La tendencia, por tanto, es a que los recursos sean sobre explotados.

    Si existiese una empresa que pudiera ejercer sobre la pesquería un control monopolista no habría ninguna dificultad para hacer una gestión eficiente. Es por ello que una primera solución consiste en que el estado monopolice el recurso y utilice su poder coactivo para impedir la sobreexplotación. La ampliación de las aguas jurisdiccionales de los países hasta las doscientas millas de su plataforma continental fue un primer paso para controlar la producción pesquera en la década de los setenta, generalizándose desde entonces el sistema de cuotas mediante el que se fija un volumen máximo de capturas a repartir entre todas las empresas autorizadas a pescar. 

    Para las especies como las ballenas y otros mamíferos marinos, que viven a más de doscientas millas de las costas o en costas no sometidas a jurisdicción alguna, la solución está aun lejana. No existe -aún- un estado global, unas instituciones con capacidad para gestionar todos los recursos del planeta Tierra y con legitimidad para castigar a los infractores.

    CONCLUSIONES

    Algunas teorías buscan encontrar las estrategias racionales, que se utilizan en situaciones donde el resultado depende no solamente de las estrategias propias y las condiciones del entorno, sino también en las estrategias utilizadas por otros jugadores que posiblemente tienen objetivos distintos.

    La Teoría de Juegos consiste en razonamientos circulares, los cuales no pueden ser evitados al considerar cuestiones estratégicas. La intuición no educada no es muy fiable en situaciones estratégicas, razón por la que se debe entrenar. La Teoría de Juegos actualmente tiene muchas aplicaciones, entre las disciplinas tenemos: la Economía, la Ciencias Políticas, la Biología y la Filosofía.

    Hay dos tipos de respuesta, la del tipo educativo, en la cual los jugadores suponen que tienen al equilibrio como el resultado de razonar cuidadosamente, y un segundo tipo de respuestas, las evolutivas, según éstas, el equilibrio se consigue, no porque los jugadores piensan todo de antemano, sino como consecuencia de que los jugadores miopes ajustan su conducta por tanteo cuando juegan y se repiten durante largos períodos de tiempo.

    Las estrategias maximin y minimax conducen a los dos jugadores del juego a situaciones en las que ningún jugador tiene razón o incentivo alguno para cambiar su posición. Así mismo, se dice que un jugador posee una estrategia dominante si una estrategia particular es preferida a cualquier otra estrategia a disposición de él.

    BIBLIOGRAFÍA

    Martínez Coll, Juan Carlos (2001): "La Teoría de Juegos" en La Economía de Mercado, virtudes e inconvenientes.

    http://www.eumed.net/

    www.gestiopolis.com

    www.monografias.com

    http://es.wikipedia.org/

     

     

    Autor:

    Matías Martínez

    UNIVERSIDAD ALEJANDRO DE HUMBOLDT

    INVESTIGACIÓN DE OPERACIONES

    Caracas, 10 de Noviembre de 2004