Descargar

Introducción al DX. La comunicación a larga distancia

Enviado por Miguel Garciabrito


Partes: 1, 2

    edu.red

    I parte

    Introducción al DX

    "Hay siempre en el alma humana una pasión por ir a la caza de algo". Charles Dickens.

    1. ¿QUÉ ES DX?

    ¿Qué es DX? La respuesta más simple a esta interrogante es que DX es la comunicación a larga distancia, pero esta respuesta hoy en día tiene muchos matices.

    Desde el origen de las investigaciones y desarrollo de las ondas electromagnéticas siempre hubo un afán por llegar lo más lejos con ellas y detectarlas desde la mayor distancia posible. En los inicios estas experiencias involucraban pocos centímetros y después algunos metros de distancia. El afán de aumentar esas distancias es lo que hoy llamamos el afán del DX, tratar siempre de llegar y comunicar lo más lejos posible, al extremo de lo que se pueda lograr con la habilidad, ingenio, recursos y la tecnología que hoy se dispone.

    Muchos años más tarde, ya en plena era de las comunicaciones radiales y cuando los comunicados con todas partes del mundo eran un hecho cotidiano, el concepto de DX, eso "de ir lo más lejos posible", tuvo otro ingrediente que le pusieron algunos entusiastas para aumentar el desafío y fue tratar de llegar lo más lejos posible, pero con una potencia determinada.

    No es lo mismo comunicarse con 100 países distintos con una potencia de 5 watt que hacerlo con un transmisor conectado a un amplificador lineal de 1200 watts. Y hay fanáticos que limitan la potencia a 1 watt y otros, ya en el extremo del extremo, a tratar de lograr máximas distancias con una potencia no mayor de 100 mWatt.

    Lo que importa, ya no es la cantidad de países contactados, la gracia está entonces en contactar países con la mínima potencia posible, lo que obliga a tener una muy buena antena, poquísimas pérdidas de potencia en el cable de alimentación, trabajar con una modulación muy aguda o trabajar en telegrafía (CW); es todo un desafío lograr esos contactos que para una estación con mucha potencia se hace rutinariamente ….

    pero la satisfacción de hacerlo así, de la forma difícil y extrema, ¡es muy distinta! Para graficar esta dificultad, el desafío y la satisfacción que implica hacer lo mismo que otros, pero de la forma difícil, recordemos que la primera ascensión al Everest de un equipo de andinistas chilenos se hizo por la ruta británica es decir por la cara Kangshung de la montaña, lo que se ha hecho muy pocas veces y que tiene una alta mortalidad con un rango de fatalidad (Ascensiones/Muertos) de 27% (es decir de 100 escaladores que la intentan mueren 27), y no por la llamada "ruta normal" que es más común y que tiene un rango de fatalidad de 7 % . El trabajo de DX de una estación de baja potencia es claramente un intento de conseguir logros "a lo Kangshung".

    Actualmente Internet ha introducido una duda en la validez del desafío en que como se realizan hoy los DX. Están los llamados "cluster" de DX. Estos son portales de Internet que van avisando y alertando todas las novedades de DX que están ocurriendo en ese instante, las condiciones de propagación entre la estación rara de DX y Ud., la mejor frecuencia para contactarlos si es una operación multifrecuencia, a dónde debe dirigir la antena, etc. A Ud. le bastará estar atento al cluster, encender el transmisor, cargar el lineal de 2 kWatt, girar la antena tribanda de 7 elementos para la dirección que corresponde y empezar a llamar hasta lograr el contacto. Esto es lo que está ocurriendo hoy día, y hay en esos record de DX algo perverso, que es ajeno al espíritu de los DXistas, pero no hay forma de diferenciar a un DXista de uno y otro tipo.

    Ya Internet pone a disposición del DXista información muy actual e importante con las noticias de los próximos eventos que están programados para activas localidades apetecidas por el DX, pero parece demasiado que también informe casi minuto a minuto lo que está pasando en ese instante en las distintas frecuencias. Eso es algo que a juicio de los veteranos conspira con la esencia misma del DX, los que asocian la caza mayor de estaciones extrañas a la escucha y búsqueda de esas preciadas presas. Lo otro no es caza, es como el tiro al platillo.

    2. ¿Qué se requiere para hacer DX?

    El hecho fundamental y constante desde los inicios de la radioafición fue la exploración de esta nueva frontera de la ciencia y del conocimiento, mediante la experimentación y el esfuerzo permanente de los aficionados por lograr contactos a mayor distancia y con los puntos más recónditos del planeta. Esto, que es la esencia misma del DX, fue lo que inició y desarrolló la radioafición hasta el punto en que ahora la tenemos.

    Hoy día ya no es necesario aprender haciendo experiencias. El conocimiento se ha decantado y tenemos excelentes textos que nos permiten en corto tiempo aprender y estar al tanto de las herramientas básicas que necesita un radioaficionado. Este manual pretende complementar los conocimientos teóricos y traspasar a Uds. todo un cúmulo de experiencias operativas ganadas a través de muchos años de dedicación al DX por una gran cantidad de personas en el mundo entero.

    2.1 EQUIPOS. Es fundamental contar con un buen receptor multibanda, pero en esta época se trata de transceivers o transceptores, es decir transmisor y receptor en un mismo equipo.

    Antiguamente se elegía un receptor de muy buena calidad, digamos un Collins, National, Hallicrafters o Drake y el transmisor no tenía mucha importancia, pero ahora ya es difícil encontrar estos equipos por separado y en cambio con la entrada de equipos de comunicaciones japoneses en la década del 60 como Yaesu, Kenwood, ICOM para nombrar los primeros que entraron al mercado, se popularizó el uso de los transceptores, es decir receptor y transmisor que vienen juntos en un mismo equipo y comparten fuentes de poder, Osciladores, detector de producto, etc. Aparecieron así una gran variedad de transceptores que traían incluido un muy buen receptor.

    Estamos hablando de equipos que trabajan en SSB y en CW, opcionalmente en FM si quiere divertirse con esta notable modalidad en la banda de 10 metros.

    Los transceptores actuales, pongamos por ejemplo el Yaesu FT-897, son muy pequeños, trabajan TODAS las bandas de aficionados desde 160 metros a 6 metros, 2 metros y UHF, en todas las modalidades incluyendo los modos digitales. No requieren sintonizarse, sólo se cambia de banda, se ajusta la antena si es que eso se requiere, se elige el modo a usar (USB, LSB, CW, CW-R, AM, DIG, PKT, FM, etc.) y .. ¡listo! ya está transmitiendo con 70 a 90 watts de salida de potencia efectiva. Tienen múltiples ajustes de recepción y transmisión, filtros de audio, de IF, Noise blanker, gracias a un microprocesador que hay que aprender a usar con el manual de operación en la mano… y eso no es tan fácil! Los equipos modernos actuales tienen 2 OFV por separado y permiten operar en Split, es decir escuchar en una frecuencia fija y transmitir en un rango de frecuencias distinto, lo que es indispensable para trabajar expediciones de DX que por lo general operan en una frecuencia fija para transmitir y escuchan en un rango de unos 10 kcs. hacia arriba.

    Los antiguos transceptores de 30 o 40 años atrás tienen muchas de estas funciones, algunos sin FM y sin las llamadas "bandas nuevas de HF", obviamente sin microprocesador, con un par de tubos finales tales como válvulas 6146B, tubos de TV como los 6KD6, y un driver o excitador de los finales, tipo 12BY7 o similar. Generalmente ellos tienen todo el resto transistorizado. Eso implica que cada vez que se cambia de banda uno debe sintonizar la etapa excitadora y después la etapa final, nada complicado, súper sencillo.

    Si se pretende en estos equipos tener un filtro estrecho para CW, hay que comprarlo como pieza adicional y en esta época eso ya es casi imposible porque los equipos están discontinuados hace décadas y no hay disponible esa clase de accesorios. Eso no impide que uno pueda hacer DX y participar en Concursos mundiales de radio como el CQWW Contest, el CQWPX, 10 meter ARRL, etc. como lo hace el autor de este artículo con su fiel Kenwood TS 530S de la época de 1980. Creo que un TS 520, 530 S, FT 101 son equipos que se pueden usar sin problemas, pero hay que hacerles una limpieza interior, limpieza de contactos, etc. Para trabajar en Split requieren de un OFV (Oscilador de Frecuencia Variable) por separado.

    En general los equipos antiguos que son completamente a tubos, como por ejemplo el Yaesu FT dx 400 ó 401 y otros Hallicrafters Hurricane, National NC-3 y NC-5, etc., tienen hoy día muchos problemas: tubos agotados o que no están al 100% y que no es fácil encontrar nuevos y no es barato, dificultad para encontrar alguien que tenga un buen probador de tubos y, lo peor, que cada vez que se hace un cambio de tubos se debiera resintonizar el equipo (generalmente los tubos tienen capacidades inter electródicas distintas a pesar de tener la misma numeración y eso produce ligeros desajustes que se deben corregir) y eso requiere tener el Manual de ajuste, a lo menos un generador calibrado de RF, otro de audio y un mili voltímetro, instrumentos difíciles de conseguir prestados y que a uno lo obliga a enviar los equipos a algún radiotécnico responsable que los tenga … y (lo más difícil!!) que sea capaz de trabajar en ellos en un tiempo prudente y que los equipos no pasen meses en su taller como es lo habitual. Además son ruidosos, tiene ANL Automatic Noise Limiter muy malos y se deben comprar filtros de ruido adicionales para proteger los oídos ……. ¡y no es broma! 2.2 ANTENAS. Este es un tema inagotable de conversación entre radioaficionados porque hay antenas y ANTENAS, unas de mayor costo y mejor performance que otras, otras que son aptas para espacios reducidos, otras que son indicadas para usar en edificios de departamentos, otras buenas para DX pero que captan mucho ruido, etc.

    80 y 40 metros. La recomendación es empezar con antenas básicas, como puede ser la antena dipolo extendido de ½ longitud de onda para 40 metros, alimentada al centro con cable coaxial tipo RG 59 o similar. El dipolo es una antena simple de fabricar y muy eficiente. Hay variaciones de este dipolo como el dipolo en V invertida, donde la antena resultante es omnidireccional, pero es más ruidosa que el dipolo extendido horizontal.

    DIPOLO COMÚN

    edu.red Fórmula para calcular un dipolo de media onda, para bandas de HF: Longitud =142,5/F (MHz), el resultado en metros.

    Si se cuelga la antena en forma extendida la impedancia aproximada es de 75 ohm por lo que se deberá bajar con un coaxial de 75 ohm.

    Si se baja con un coaxial de 50 ohm la mínima ROE será siempre de 1.5 El problema del ruido eléctrico existente hoy día en las ciudades es un gran problema para las bandas de 80 y 40 metros, no es posible filtrarlo sin tener que emplear equipos de filtros activos que son accesorios caros y que no producen un resultado muy notable. Pensando en esto es recomendable probar con antenas dipolo plegado de ½ onda, pero estas tienen una impedancia de 300 ohms, por lo que para alimentarlas con cable coaxial hay que construir un balun de relación 4:1 el que puede comprarse o construirse usando la ferrita de un flyback de TV. Ver más adelante en la parte constructiva. También es posible hacer un sintonizador de antena que tenga salida para línea balanceada y entonces alimentar el dipolo plegado usando cable plano de TV de 300 ohms (que tiene pérdidas) o construyendo una línea paralela abierta usando tubo de 12 mm de PVC como separadores (casi no tiene pérdidas).

    DIPOLO PLEGADO Es un dipolo mono banda, excepto el que está cortado para la banda de 40m que también resuena en 15m. La mayor ventaja de esta antena es que posee un gran ancho de banda, son más silenciosas y captan menos ruido que los dipolos de ½ onda, y su rendimiento también es magnífico.

    Se calcula su longitud como cualquier dipolo de media onda. En su construcción no es necesario cortar los cables, puede hacerse con un único cable que se dobla en los aisladores. Las medidas de los separadores varían según a la frecuencia que esté cortada la antena. Para 80m es de 20 cm, para 40m es de 15 cm, para 20m es de 10 cm y para 10m es de 5 cm. Esta antena se puede construir también íntegramente con amphenol cable paralelo Twin lead de 300 ohm, como son las bajadas de antenas de TV.

    edu.red Hay antenas hechas de alambre, multibandas, como la Windom, Carolina Windom (una variación de la anterior) o la G5RV, que tienen la ventaja de ser multibandas, pueden salir en 160 metros como "long wire", son fáciles de construir o baratas de comprar, pero son antenas ruidosas en 160, 80 y 40 metros y en bandas altas tienen poca ganancia y una performance pobre para usarlas en DX, pero la ventaja sería que permiten comunicar en estas bandas usando una sola antena. Exigen el uso de un Sintonizador de antenas.

    ANTENA DOBLE BAZOOKA. Esta es una antena fácil de construir, monobanda, bastante silenciosa y de un muy buen ancho de banda. Uno puede cambiar de frecuencia y no requiere resintonizar el equipo. Más adelante, en la parte constructiva se dan los detalles de fabricación de esta notable antena, de acuerdo a un artículo de CE4WJK que se ha copiado con su permiso.

    LA ANTENA BÁSICA G5RV, que es bastante popular en Chile hoy día, y fácil de encontrar en el comercio y barata, mide solamente 102 pies de punta a punta para la operación desde el extremo de la banda de 80 m hasta 10 m y es alimentada en el centro con un stub de 34 pies de baja pérdida. Muchos aficionados sueñan con ellas y otros la maldicen por las dificultades que algunos tienen para lograr ajustes y poder usarlas.

    Como toda antena multibanda, ella irradia armónicas, lo que es malo para el vecindario que todavía ve TV abierta.

    edu.red En la práctica, el sistema completo mostrará una baja ROE para usarlo en el transmisor con la ayuda de un sintonizador de antena, la antena está cortada a 102 pies (31,1 m) 20, 15 y 10 metros. En bandas altas la situación de ruido eléctrico producido por la actividad humana en las ciudades no es tan grave. Pero para DX se requiere tener antenas direccionales para aumentar la señal emitida y mejorar la recepción de señales débiles.

    Una muy buena opción para comenzar a hacer DX en bandas altas es usar una antena YAGI direccional de 3 elementos para 3 bandas (llamadas 3×3) como la Mosley TA 33, la Hy Gain TH3 Jr y muchas otras similares. Son antenas livianas, tienen una ganancia de unos 7 dB, una buena relación de rechazo de señales que emiten por detrás o por lo lados de la antena, y se mueven con rotores de antena livianos, incluso con rotores de antenas para TV, pero es aconsejable usar algún rotor que tenga freno. Tienen una limitación de potencia, si no se respeta esa limitación es posible que las bobinas se chispeen y se forme un corto circuito de radiofrecuencia, tal como sucede a veces en las bobinas del encendido de los automóviles, lo que obliga a revisar y reparar cada bobina.

    En antenas direccionales Yagi 3×3 rige un consejo muy simple: mientras más grandes es mejor, es decir mientras más aluminio en la punta alta de la torre, Mucho MEJOR.

    Una excelente opción son las antenas Quad 2×3, o llamadas también cuadro cúbicas de dos elementos para 3 bandas (20, 15 y 10 metros) que tienen más ganancia que las Yagi de 3 elementos para 3 bandas (3×3), no usan bobinas, son dipolos cerrados (loop) de 1 longitud de onda (por lo tanto captan menos ruido eléctrico que las Yagi y tienen un gran ancho de banda), se alimentan con cable coaxial, son muy livianas, tienen poco arrastre debido al viento y no requieren un mástil demasiado alto, basta con uno de 10 metros. Además son baratas.

    Las Quad son más complejas para armarlas y levantarlas y requieren la ayuda de al menos otra persona, pero vienen con un buen manual de armado y de ajuste. Se les puede agregar sin dificultad (venden el kit) las otras bandas altas (10 MHz, 18 MHz y 24,5 MHz). Para dirigirlas se puede usar un rotor chico de antenas de TV, sin freno.

    Una dificultad de estas antenas es que usan alambres de cobre y cerca de la costa esos alambres requieren cambiarse cada cierto tiempo por la corrosión que les acarrea el ambiente salino, hay que bajarlas y revisar cada 10 a 12 años por dar un lapso de tiempo prudencial, porque el cobre se oxida y se va adelgazando. No son fáciles de construir por uno mismo, es más bien complicado hacerlo.

    Entre las antenas loop (dipolos cerrados) está la Delta loop, además de la Quad. Esta antena es de muy fácil construcción, relativamente liviana (usa tubos de aluminio y alambre de cobre para unir las 2 puntas de la V), tiene una excelente performance. Su principal desventaja es que la Delta loop es monobanda, y su construcción normal en V con tubos de aluminio tiene su centro de gravedad más alto que el boom lo que genera momentos de fuerza (torque) que hay que compensar con una buena construcción. Se pueden hacer tipo "plumbers delight" es decir usando cañerías muy livianas de acero soldadas al boom, pero lo mejor es usar tubos de aluminio montados sobre cortas V de tubos de acero y estas V de acero van soldadas al boom que también está hecho de tubo de acero. La parte horizontal que cierra el triángulo en lo superior de la V se hace de alambre de cobre para hacerla más liviana y no subir aún más su centro de gravedad.

    La banda alta de HF que elijamos para hacer DX implica la elección de la antena. Como estamos en la parte Sur de América y las estaciones DX están generalmente en latitudes sobre nosotros, se puede obviar el uso de un rotor si uno le coloca a la antena 2 "riendas" hechas con cuerdas de nylon, para poder cambiarle su dirección de, digamos, Europa y Asia menor a América del Norte y el Caribe, o a Oceanía y Japón. Para dirigirla se requiere salir fuera de la casa, soltar "las riendas" y tensar la que corresponda para moverla en la dirección deseada; lograda la posición se tensan las 2 riendas para que el viento no la mueva. Hasta se puede llevar las riendas adentro del shak y recoger una de ellas y soltar otra hasta marcas hechas en ellas y que aseguran que la antena está, por ejemplo, a 200º respecto al Norte apuntando a Japón o a 60º respecto al Norte y apuntando a Europa central.

    Bueno, mi mejor consejo es empezar a hacer DX en 15 metros, incluso con la antena para 40 metros y un sintonizador casero, ya que esta banda está abierta durante más horas del día para el DX durante que la de 10 metros y que hay un segmento alrededor de 21.150 Kcs hasta 21.100 kcs donde hay una buena actividad de estaciones novicias norteamericanas que transmiten en CW, por si también quiere probar en esta modalidad donde las estaciones chilenas son escasas y, por lo tanto, muy solicitadas.

    La banda de 20 metros es una excelente banda para DX, pero hay demasiadas estaciones de gran potencia (los "big Gun") y es difícil trabajar en una banda con 100 kcs para fonía cuando uno no tiene potencia suficiente para "hacerse respetar" en la frecuencia que quiere usar. Es la favorita de las expediciones de DX porque permanece abierta casi las 24 horas.

    La banda de 10 metros es muy buena para DX, pero su apertura de propagación depende mucho del ciclo solar. En la parte alta del ciclo solar, como ahora en el 2013, la banda es fantástica para hacer DX con baja potencia. La propagación se abre cerca del mediodía para Europa, generalmente siempre hay propagación con USA, y en el atardecer aparece Asia con estaciones japonesas, de Corea, China, la parte Este de Rusia, Hawaii, y varios países de Oceanía.

    Cuando hay propagación con Argentina y Brasil, generalmente eso significa que no hay propagación a larga distancia.

    La banda de 10 metros tiene mucha actividad de CW al principio de la banda y es muy fácil encontrar estaciones novicias para comenzar a comunicar por este medio.

    Por lo general es una banda de un gran espacio donde nadie se molesta por la cercanía de otras estaciones, se presta para comunicados amistosos, tiene la ventaja que las antenas son pequeñas comparadas con 20 metros, por ejemplo, y es relativamente fácil hacerse una Yagi direccional de 3 ó 4 elementos., incluso tipo plumbers delight (tubos soldados al BOOM).

    Es muy interesante trabajar en el segmento de 29 MHz en la modalidad de FM (ver artículo más adelante), donde al escuchar a la estación corresponsal hay una notable presencia de la voz, con un audio que parece estéreo. Con calma y paciencia es posible detectar repetidoras de FM en USA, Miami, Atlanta, y al activarlas los colegas se vuelven locos porque hay poca actividad de DX en FM y todos quieren aprovechar de comunicar contigo.

    2.3 LINEAS DE TRANSMISIÓN O BAJADAS. Lo habitual en antenas dipolos de ½ onda es tener bajadas coaxiales de 50 ohms o de 70 ohms, como las RG- 58 ó la RG-59 principalmente porque los equipos vienen con terminales de salida a antena para conectores coaxial del tipo PL-259 o tipo N.

    Actualmente hay una gran variedad de proveedores de cables coaxiales y la recomendación es muy simple: si le es posible use siempre cable coaxial americano de marca BELDEN, que es garantía de calidad, buena construcción, % de cobertura de la malla adecuada, características eléctricas ajustadas a los parámetros que el fabricante indica, aislante de la mejor calidad, etc. La recomendación para los conectores es similar: que sean de marca Amphenol, no acepte otros más baratos!!! Los dipolos cerrados requieren bajadas de mayor impedancia que 70 ohms y se deben usar líneas de cables paralelos, abiertas, semi abiertas o tipo twin lead que son líneas típicas de bajadas de TV, formadas por conductores de cobre en paralelo separados por plástico. Aquí en Chile no hay mucho donde escoger, pero si puede importarlo trate que sea cable americano de marca Amphenol.

    Las líneas semi abiertas son cables Twin lead que traen espacios abiertos sin plástico en forma regular e intermitente en la bajada, típicamente usados en las versiones comerciales de la antena G5RV.

    Antiguamente no habían cables coaxiales ni terminales PL-259 o bases para chassis SO-239 en el comercio, entonces se usaba cable paralelo plástico de instalaciones eléctricas que tienen más o menos 70 ohms y resultan apropiados para dipolos de ½ onda, pero eso exigía tener un tanque de salida en que a la bobina final se le enrollaban un par de vueltas y ese era el link de acoplamiento que proporcionaba una salida en paralelo. Tampoco habían medidores de ROE así que nadie se preocupaba de ese tema.

    Los equipos comerciales traían salida en PI, que es de más fácil ajuste, que implica salida coaxial y eso popularizó este tipo de cable.

    Los sintonizadores de antena comerciales vienen con 3 tipos de salida: para cable coaxial, para línea de transmisión abierta y una salida única para cargar una antena tipo end feed o long wire.

    ¿Por qué traen esta salida tipo end feed que los radioaficionados no usan mucho? Porque son antenas de fácil construcción e instalación, no requiere de ningún tipo de bajada comercial, basta un alambre forrado, y que de acuerdo a su largo presentan lóbulos de radiación que tienen ganancia respecto al dipolo. Si los radioaficionados no usan este tipo de antena es por que ignoran sus propiedades, pero muchos DXistas de bandas bajas las usan por su ganancia y directividad (que obviamente es fija).

    Las líneas paralelas abiertas se pueden construir. Se usan como separadores aislantes trocitos de tubos de 12 mm de conexiones eléctricas domiciliarias de PVC (color naranja). De acuerdo al diámetro del alambre y la impedancia que se necesita (ver el ARRL Antenna Handbook o casi cualquier manual de antenas) se dimensiona el largo de los tubitos de PVC y la separación entre los alambres de bajada, pero esto no tiene mucha importancia. Una distancia de 5 cm parece razonable para tener una impedancia entre 450 y 600 ohms.

    Las bajadas abiertas pueden tener alta ROE y eso no implica pérdida de potencia en la transmisión y hace posible que con el sintonizador uno cargue un dipolo de ½ onda para 40 metros en bandas de 20, 25 y 10 metro., es decir ese tipo de antena con bajada abierta resulta "multibanda" con las ventajas y problemas que eso trae (a veces para las ITV – interferencia en TV abierta).

    Conexión de equipos y antenas a tierra. No hay que dejar pasar que por seguridad personal la estación debe trabajar con los equipos aterrizados, es decir conectados a una buena toma de tierra. Lo habitual es unir el chassis de equipos transceiver, con las tierras del amplificador lineal, la del sintonizador de antena, la del rotor de antena, etc. a una tierra común la que suele ser una cañería del sistema de agua potable de la casa, particularmente las cañerías de agua caliente ya que eso garantiza que las cañerías de distribución de agua son metálicas y no de PVC y que deben tener una tierra decente. Lo otro es construirla, enterrando una barra de copperweld de unos 2 metros de largo la que se compra en una ferretería. Estas barras se entierran golpeándolas con un martillo o combo. Se les instala unos conectores en la punta de la barra que queda asomando sobre la tierra, conectores que son parte de los accesorios que venden junto con las barras, a los cuales se llega con el alambre que aterriza todos los equipos.

    Esta unión de equipos por una línea de tierra común o alambre de cobre, puede realizarse sacando la malla de cables coaxiales viejos. Igualmente si el terreno donde se entierra la barra no es bueno, es seco, duro, arenoso, etc., se puede hacer previo a enterrar la barra de copperweld un tratamiento para mejorar su conductividad, removiendo parte de la tierra y mezclándola con salitre, carbón vegetal molido y aplicando un riego abundante. Se pueden usar más de una barra copperweld separadas por una distancia de 1,5 metros y unidas entre sí por el cable hecho de malla coaxial (por ejemplo) descrito anteriormente. Estas barras deben regarse cada cierto tiempo para mantener la tierra húmeda y con buena conducción o baja resistencia.

    2.4 EQUIPOS Y TECNICAS DE CONSTRUCCION CASERA. Hay pocas cosas más satisfactorias que construir algo por tus propias manos y que con eso obtengas buenos resultados.

    Hoy día todo o casi todo disponible en grandes almacenes de radio donde puedes comprar casi todo lo que necesites y quieras para practicar la radioafición, pero es muy distinta la satisfacción que da al usar algo que hayas hecho por tu cuenta y que se compare o supere a lo que se puede comprar comercialmente.

    Lo más fácil de hacer por uno mismo, son antenas. A continuación se dan algunas ideas que puede servir para inspirar a algunos que aman la auto construcción.

    a) CARGA FANTASMA. (EA3RY) Una ampolleta de filamento incandescente puede funcionar como carga fantasma resistiva. Distan mucho de ser ideales, sin embargo, tienen sus ventajas: son divertidas de usar y un estupenda forma de enseñar y demostrar. Sin embargo, por debajo de 100 watt sus impedancias son mucho más altas de 50 ohms y se va elevando conforme aumenta su temperatura. Por otra parte, si necesitas una carga resistiva que simula una antena de alta impedancia, una ampolleta incandescente es útil. Además, si estás comprobando un vatímetro, una ampolleta proporciona una indicación evidente de cuándo la potencia de salida es máxima.

    b) CONSTRUYENDO UN ACOPLADOR DE ANTENA EN T, PARA BAJA POTENCIA (EA3RY) Los transmisores modernos están normalmente diseñados para antenas de 50 ohm. Los filtros de salida de Chebyshev que hay en los transmisores modernos sólo funcionan a esta impedancia. Si los cargas con una impedancia distinta, no podrás creer la forma de onda tan distorsionada que saldrá de ahí. En otras palabras, sólo filtran adecuadamente a 50 ohm. Desgraciadamente, las antenas reales tienen normalmente una impedancia mayor o menor y necesitan algún tipo de transformador de impedancias para hacerlas aparecer como una carga de 50 ohm al transmisor. Uno simple de configuración en T es el mejor y no está disponible comercialmente. Consiste simplemente en 2 condensadores variables y 1 bobina variable.

    ¿Porqué este diseño es para baja potencia? Por que a potencias altas los condensadores variables pueden chispearse por lasd altas tensiones de rf que ellos soportan. Se pueden modificar condensadores variables de recepción para soportar altas tensiones: ver Modificación de Capacitores Variables LU9DPD (Para uso en alta tensión y transmatchs) http://www.qsl.net/lu9dpd/

    edu.red

    edu.red

    Cómo funciona

    La idea del acoplador en T es hacer resonar el condensador variable de la izquierda con la bobina a masa. Cuando está sintonizado a la frecuencia de resonancia, la oscilación produce tensiones senoidales a en la L (bobina) y la C (condensador) que pueden ser mucho mayores que la tensión senoidal que llega a la entrada. Dado que la tensión en la bobina puede ser enorme, el acoplador puede "adaptarse" a la impedancia de una antena de alta impedancia. Por ejemplo, los transmisores transistorizados están casi siempre diseñados para conectarse a una carga de 50 ohm. De hecho, los filtros de salida de Chebyshev funcionarán mal si no se conectan a una carga de 50 ohm. Por otra parte, una antena de 300 ohm necesitará 6 veces más voltaje para entregar la corriente necesaria para una potencia dada. La L y la C en oscilación funcionan como un transformador, elevando la tensión.

    El condensador variable de la derecha no es crítico. Para la mayoría de las situaciones, la mejor señal se obtiene con el condensador a su máxima capacidad, 365 pF. Para las bandas bajas, 80 y 160 metros, puedes querer poner algo más de capacidad en paralelo con ambos condensadores usando conmutadores. Mis condensadores variables son del tipo de 2 secciones de los viejos receptores de radiodifusión. Uso conmutadores de palanca pequeños para añadir las capacidades de las segundas secciones. Además, el condensador de la derecha tiene un condensador fijo de mica de 200 pF y 1000V en paralelo con la segunda sección, así que me sobra capacidad de acople para 160 metros.

    Se usan 2 condensadores dobles de 365 pF de una radio antigua. Para la bobina se puede usar un gran trozo de bobina abierta "Air Dux" o se puede construir algo similar (ver 2ª parte). En vez de bobina con corredera que se pueden obtener de viejos equipos militares, se puede cortocircuitar la bobina tipo Air Dux y tener una inductancia variable con mediante una pinza cocodrilo. Como conectores de RF se usan conectores de chassis SO-239.

    Se usa como soporte de los componentes (chassis) una tabla de madera. Las conexiones entre componentes usando hojas de metal (aluminio, cobre) de 7,5 cm de ancho en vez de cables ya que el cable tiene una inductancia propia y dificulta a veces el ajuste del acoplador. Hay que tratar de mantener una distancia de 1,5 cm entre esta lámina y la bobina, la cual debe ir montada verticalmente, ya que eso minimiza el acoplamiento capacitivo entre la lámina de conexión y la bobina. Para soportes se usa plexiglás (acrílico) transparente y epoxy para pegar.

    Así que si sólo quiere un acoplador que funcione, pruébelo cargando primero algunas ampolletas como carga fantasma hasta que se acostumbre al ajuste, y después conéctelo a la antena. Aquí termina la historia. Si quiere, puede dejar de leer, pero … ¡El acoplador en T ayuda para la recepción en 80 y 160 metros! Una sorpresa de este proyecto es que mi acoplador en T era vital para recibir señales débiles en las bandas de radioaficionados de 80 y 160 metros.

    La sección de entrada de la etapa receptora puede verse fácilmente saturada por emisoras de Onda Larga cercanas. Incluso aunque probablemente no se oirán las transmisiones de AM , se oirá estática en las bandas de radioaficionados y puede creer que no hay otras señales de radioaficionados allí.

    Cuando su receptor usa la misma antena que el transmisor, la intensidad de las señales débiles en las bandas bajas sube enormemente cuando el acoplador en T está sintonizado adecuadamente al transmisor. El acoplador en T sirve como filtro de paso alto que reduce en gran medida la intensidad de las señales de las emisoras de radiodifusión. El resultado de usarlo fue que de repente estaba oyendo docenas de estaciones de CW en 80 metros, sino que se copiaban estaciones QRP lejanas sin problemas, cosa que antes me era imposible.

    Usar el acoplador en T en el receptor tiene otra ventaja. Al aumentar la señal recibida con ajustes del acoplador en T, el transmisor de 50 ohmios está (casi) perfectamente acoplado. Así que en cualquier banda, antes de tratar de cargar la antena con el transmisor, primero ajusto al máximo de señal recibida con el acoplador en T.

    c) UNA LLAVE PARA CW DE DOBLE CONTACTO, FÁCIL DE CONSTRUIR. Por F6BPO Algunas horas de trabajo, un mínimo de herramientas, restos de materiales y cachureos … y he aquí una llave telegráfica de doble contacto súper suave y fácil de regular.

    edu.red

    Construcción.

    La platina B (placa para circuitos impresos de epoxy-cobre de 2 mm de espesor) de 50 x 80 mm. Esta se fija sobre una placa A de epoxi cobre de espesor de 3 mm y de una dimensión de 120 x 80 mm (cara de cobre va para abajo).

    El conjunto no está fijo sobre una apoyo pesada, razón por la que desplacé la platinita a la derecha, de modo de poder poner mi índice izquierdo sobre la placa base para que el conjunto no se "pasée"! Agregando 4 patas de goma pegadas sobre la placa base, estando los contactes regulados a 0.06 de separación, aun sin sujetarla con la mano izquierda casi no se mueve.

    La hoja de sierra F, incluyendo las paletas K, tienen un largo total de 115 mm. Ella está fija sobre un pie por 2 cuadrados de epoxi C, con formato 15×20 (y un tornillo D de 4mm) soldados sobre la platinita B.

    A la altura de los contactos eléctricos, yo he pegado a la cianolita 2 cuadraditos L de epoxi-cobre y puse un cablecito (amarillo) E que va de estos 2 cuadraditos hasta el "pie" de la hoja. lámina Para los contactos: 2 tubos de cobre G, diam. 8 mm alto de 20 mm taladrados c/u con un hoyo de 3 mm, a 13 mm del pie de los tubos – 2 tornillos de 3mm de 20mm de largo con una contratuerca J, costado de la lámina.

    Bonne realisation ! F6BPO d) UN REDUCTOR DE RUIDO PARA EL PARLANTE por menos de 1 luca (US$ 2). Por L.D.

    Blake – VE3VDC Muchos buenos DX naufragan por el alto de nivel de ruido que es común en señales débiles. A veces son más fuertes que la voz del corresponsal y se hace imposible escuchar al corresponsal. Esto es lo que se llama ruido de "fritanga" en la frecuencia.

    Este ruido son pulsos de alta frecuencia y generalmente salen por el parlante y son los más fuertes. Tradicionalmente se maneja la situación agregando un sistema de filtro de proceso de la señal análogo o digital. Sólo los equipos caros tienen este procesador incluido. Muchos equipos baratos o móviles no los traen.

    ¡Pero hay una solución simple usando nada más que 2 condensadores!

    edu.red

    El circuito, que se muestra más abajo, es un simple filtro pasa bajos que se puede agregar a cualquier altoparlante.

    C1 es un simple condensador

    NO POLARIZADO, usado generalmente en crossover en redes de parlantes.

    Tiene que ser no polarizado porque el parlante trabaja con señales alternas.

    La resistencia es una resistencia común. Acarrea una pequeña pérdida de volumen porque la resistencia está en serie con la bobina del parlante, lo que es compensada fácilmente dándole más volumen al receptor.

    La voz humana no requiere alta fidelidad para ser entendida. La mayor parte de la energía de la voz está concentrada en el rango de 400 a 3000 Hz. La mayor parte del ruido que molesta está en el rango de 2500 a 10,000 Hz. Como estos rangos no se superponen mucho, podemos reducir el ruido audible usando un filtro pasa bajos para eliminar o atenuar fuertemente la porción del espectro de audio sobre 3000 Hz. Esto elimina gran parte del ruido y deja sólo a la voz. La combinación de la resistencia en serie y el condensador forman el filtro pasa bajos. A altas frecuencias funciona el condensador como un cortocircuito y la energía de esas ondas se disipa en la resistencia. A bajas frecuencias el condensador aparece como abierto y toda la energía de audio va al parlante.

    La resistencia debe ser de 2 watts o más. El condensador debe ser uno electrolítico NO POLARIZADO para al menos 16 volts. No hay peligro de experimentar con diversos valores de Condensadores para llegar a un audio que le agrade. Si aumenta mucho la capacidad la voz suena demasiado grave. Para evitar pérdidas excesivas Ud. debe siempre tener un valor de resistencia adecuado al del parlante (ver tabla).

    edu.red

    Ok, Ok, estamos claros que un circuito de menos de 1 lucrecia no va a reemplazar a un filtro de US$ 100, ¡pero puede ayudarlo mucho para manejar el ruido molesto y evitar una jaqueca! e) TALADRADO DE CALIDAD DE AGUJEROS GRANDES EN CHAPAS DELGADAS, por F5IJO Todos los que maestrean en Radio, mecánica u otras actividades se han enfrentado al problema de hacer agujeros limpios y bien redondos en chapas metálicas delgadas. Aún con una herramienta bien afilada se obtiene rápidamente un agujero, pero que no es de la calidad de redondez que Ud. busca. Aquí te dejo un viejo truco de mecánico que normalmente utilizo hace varias décadas.

    edu.redSituación inicial Tela o género de jeans al iniciar la perforación

    edu.red

    edu.rededu.redSe termina la perforación Comparación sin y con uso de género de jeans En la figura de la derecha se puede comparar la terminación de un agujero hecho con broca y más abajo la terminación de un agujero hecho con broca y con tela tupida de jeans entre la broca y la chapa al momento de perforar.

    ¿Qué tal?

    f) ¿CUÁL ES LA MEJOR FORMA DE SOLDAR CONECTORES PL 259? De Internet Por ON6HI, traducción ON4LEN La soldadura de un conector PL259 no es tan simple como parece. Por medio de un cautín eso no funciona bien, la soldadura no escurre y los goterones de soldadura se caen. Por lo demás los "profesionales" deben utilizar un cautín de 200 watts. OK, ahí eso va mejor, pero con los actuales conectores metalizados baratos los resultados no inspiran suficiente confianza, y un buen cautín de 200 watts no es algo fácil de conseguir.

    En Internet se encontró un artículo en el que el autor defiende el uso de un pequeño soplete a gas para hacer esto. Se ensayó este dispositivo y se mejoró el procedimiento con la ayuda de ON4WW. El resultado es impresionante. Ahora hasta los conectores reutilizados se dejan soldar fácilmente, y se ilustrará el método con una serie de fotos. El soplete es del tipo «Spotflam» de la marca Campingaz, fácil de encontrar por 18 euros.

    edu.red

    Nosotros queremos un conector que sea solidario al cable y que tenga un buen contacto eléctrico con el conector hembra. Para lograrlo hay que trabajar con precisión, esa es la base del éxito.

    La primera etapa es el corte del Coaxial. Para esto no usaremos un alicate, usaremos una pequeña sierra para metales. El cable se corta bien perpendicular. El alma está bien despejada y entrará fácilmente al conector. La soldadura del alma no necesitará acabado y las mediciones en las etapas siguientes se podrán hacer de una forma precisa. (Foto 1) Foto 1: Corte limpio La segunda etapa es sacar una parte del aislante exterior. Idealmente debiera ser de 26 mm de largo.

    Si lo hace por medio de un cuchillo Ud. arriesga cortar parcialmente la aislación y de enredar la malla exterior del cable. Es preferible usar un pequeño corta tubos que tenga una profundidad de corte regulable. (Foto 2).

    edu.rededu.red Después Ud. debe estañar la malla exterior del cable mediante un soldador normal eléctrico y soldadura. La mitad de la parte desnuda debe quedar como un tubo estañado. Ahora es necesario estañar ligeramente con soldadura el conductor central.

    Enseguida recortamos la malla exterior al largo exacto. El ideal es de 11 a 12 mm, lo que se hará por medio del cortatubos o con la pequeña sierra para metales. Cuidado con cortar muy profundo: el conductor central no debe ser dañado. Girar lentamente en el sentido de enrollamiento del conductor central. No lo fuerce, de modo que la malla exterior no salga de la aislación externa. Después de esto la punta del cable se verá como un tubito estañado.

    edu.rededu.redCorrija el largo del conductor central, la medida ideal es de 15 mm.

    edu.red

    edu.redLa etapa siguiente es colocar en su lugar el conector.

    Partes: 1, 2
    Página siguiente