SUBJECT NUMBER | SUBJECT NAME | UNITS | TERM OFFERED | PRE-REQUISITES | |||||
5.UR | Undergraduate Research | TBD, [P/D/F] | F, S | None | |||||
5.URG | Undergraduate Research | TBD | F, S | None | |||||
5.ThU | Undergraduate Thesis | TBD | F, S | Permission of instructor | |||||
5.00 | Application of Technology | 3-0-9 | F | Permission of instructor | |||||
5.03 | Principles of Inorganic Chemistry I | 4-0-8 | S | 5.12 | |||||
5.04 | Principles of Inorganic Chemistry II | 4-0-8 | F | 5.03 | |||||
5.05 | Principles of Inorganic Chemistry III | 2-0-4 | S | 5.03, 5.04 | |||||
5.061 | Principles of Organometallic Chemistry | 3-0-9 | F | 5.03, 5.04 | |||||
5.062 | Principles of Bioinorganic Chemistry | 2-0-4 | F | 5.03 | |||||
5.068 | Physical Methods in Inorganic Chemistry | 3-3-6 | S | 5.03, 5.04 | |||||
5.069 | Special Topics in Inorganic Chemistry | 2-0-4 | S | 5.061 | |||||
5.07 | Biological Chemistry I | 4-0-8 | F | 5.12 | |||||
5.08J(Same subject as 7.08J) | Biological Chemistry II | 4-0-8 | S | 5.12, 5.07 or 7.05 | |||||
5.111 | Principles of Chemical Science | 5-0-7 | F, S | None | |||||
5.112 | Principles of Chemical Science | 5-0-7 | F | None | |||||
5.12 | Organic Chemistry I | 5-0-7 | F, S | 5.111 or 5.112 or 3.091 | |||||
5.13 | Organic Chemistry II | 5-0-7 | F | 5.12 | |||||
5.21 | Design and SynthesisNot Offered Academic Year 2004-2005 | 3-0-6 | S | 5.04 or 5.08 or 5.43 or 5.50 or 5.62 | |||||
5.22J(Same subject as 10.02J, BE.105J) | Biotechnology and Engineering | 4-0-5 | S | None | |||||
5.23(Meets with 12.807) | Atmospheric ChemistryNot Offered Academic Year 2004-2005 | 3-0-9 | F | 5.60 | |||||
5.24J(Same subject as 3.985J) | Archaeological Science | 3-1-5 | S | 3.091 or 5.111 or 5.112 or 8.01 or equivalent | |||||
5.301 | Chemistry Laboratory Techniques | 1-4-1, [P/D/F] | IAP | 5.111 or 5.112 or equivalent and Permission of instructor | |||||
5.302 | Introduction to Experimental Techniques | 0-3-0 [P/D/F] | IAP | 5.111 or 5.112 or 3.091 or equivalent and Permission of instructor | |||||
5.303 | Principles of Chemical Science Laboratory | 0-3-0 | S | 5.111 | |||||
5.310 | Laboratory Chemistry | 2-8-2 | F, S | 5.12 | |||||
5.311 | Introductory Chemical Experimentation | 2-8-2 | F | 5.12 | |||||
5.32 | Intermediate Chemical Experimentation | 1-12-2 | S | 5.311 or 5.310, 5.13, 5.60 | |||||
5.33 | Advanced Chemical Experimentation and Instrumentation | 2-13-6 | F | 5.32, 5.61 | |||||
5.43 | Advanced Organic Chemistry | 4-0-8 | S | 5.13 | |||||
5.44 | Organometallic Chemistry | 2-0-4 | F | 5.43 | |||||
5.451 | Chemistry of Biomolecules I | 2-0-4 | F | 5.43 | |||||
5.46 | NMR Spectroscopy and Organic Structure Determination | 2-0-4 | S | 5.43 | |||||
5.47 | Tutorial in Organic Chemistry | 2-0-4 [P/D/F] | F | 5.43, Permission of instructor | |||||
5.48J(Meets with 7.24, Same sumject as 7.88J, 10.543J) | The Protein holding Problem | 4-0-8 | F | 5.07 or 7.05 or equivalent | |||||
5.49 | Membrane and Receptor Biochemistry | 2-0-4 | S | 5.07 or equivalent | |||||
5.50 | Enzymes: Structure and Function | 3-0-9 | F | 5.07, 5.12, 5.13 | |||||
5.511 | Synthetic Organic Chemistry I | 3-0-9 | F | 5.43 | |||||
5.512 | Synthetic Organic Chemistry II | 3-0-9 | S | 5.511 | |||||
5.52 | Advanced Biological Chemistry | 2-2-8 | F | Permission of instructor | |||||
5.53 | Molecular Structure and Reactivity I | 2-0-4 | F | 5.13, 5.60 | |||||
5.55 (Same subject as BE.485J) | Chemical Tools for Assessing Biological Function | 2-0-4 | S | 5.43, 5.07 or 7.05, 5.47 or 5.52 | |||||
5.56 | Molecular Structure and Reactivity II Not Offered Academic Year 2004-2005 | 2-0-4 | S | 5.43 | |||||
5.561 | Chemistry in Industry | 2-0-4 [P/D/F] | S | 5.03, 5.07, 5.13 | |||||
5.60 | Thermodynamics and Kinetics | 5-0-7 | F, S | 18.02, 5.111 or 5.112 or 3.091 | |||||
5.61 | Physical Chemistry I | 4-0-8 | F | 8.02, 18.02, 5.111 or 5.112 or 3.091 | |||||
5.62 | Physical Chemistry II | 4-0-8 | S | 5.60, 5.61 | |||||
5.63 | Molecular Spectroscopy: Laser and Magnetic Resonance TechniquesNot Offered Academic Year 2004-2005 | 3-0-9 | S | 5.61, 5.62 | |||||
5.64 | Biophysical Chemistry | 2-0-4 | S | 5.13, 5.60, 5.07 or 7.05 | |||||
5.65 | Biophysical Chemistry and Molecular Design | 2-0-4 | F | 5.13, 5.60, 5.07 or 7.05 | |||||
5.67J(Same subject as BEH.344J) | Computer Modeling of Protein Structure and Function | 1-1-0 | IAP | 5.111 or 5.112 or equivalent | |||||
5.68J(Same subject as 10.652J) | Kinetics of Chemical Reactions | 3-0-9 | S | 5.62 or 10.37 or 10.65 | |||||
5.70 | Introduction to Statistical Thermodynamics | 3-0-9 | F | 5.62 | |||||
5.72 | Statistical Mechanics | 3-0-9 | S | 5.70, 5.73, 18.075 | |||||
5.73 | Introductory Quantum Mechanics I | 3-0-9 | F | 5.61, 8.03, 18.03 | |||||
5.74 | Introductory Quantum Mechanics II | 3-0-9 | S | 5.73 | |||||
5.76 | Modern Topics in Physical ChemistryNot Offered Academic Year 2004-2005 | 3-0-9 | S | 5.61 or 5.73 or 8.05 | |||||
5.77J(Meets with 7.35, Same subject as 7.75J) | Topics in Metabolic Biochemistry | 4-0-8 | F | 5.07 or 7.05 | |||||
5.78 | Practical Macromolecular Crystallography | 2-0-4 | S | 5.52, 5.64 | |||||
5.79J(Same subject as BEH.480J) | GlycomicsNot Offered Academic Year 2004-2005 | 2-0-4 | S | 5.12, 5.07 or 7.05 | |||||
5.80 | Special Topics in Chemical Physics | 3-0-9 | S | 5.73 | |||||
5.81 | Special Topics I | 3-0-9 | F, S | None | |||||
5.82 | Special Topics II | 3-0-9 | F, S | None | |||||
5.83 | Special Topics III | 3-0-9 | F, S, Su | None | |||||
5.841-5.842 | Special Topics in Biological Chemistry | 2-0-4 | S | Permission of instructor | |||||
5.891 | Special Topics in Chemistry for Undergraduates | TBD, [P/D/F] | F, IAP, S | None | |||||
5.95J | Teaching College-Level Science | 2-0-2 | S | None | |||||
5.96 | The Chemistry of Cancer | 1-0-2 | F, S | Permission of instructor | |||||
The Chemistry Curriculum leading to a Bachelor of Science degree in Chemistry includes the General Institute Requirements as well as the specific chemistry subjects listed on this page.
The small number of required subjects enables the student to participate in original research under the Undergraduate Research Opportunities Program (UROP), and also provides ample time to take graduate-level chemistry classes and subjects in other departments.
For an S.B. Degree in Chemistry:
Required Lecture Subjects
5.03 Principles of Inorganic Chemistry I5.07 Biological Chemistry5.111 or 5.112 Principles of Chemical Science or equivalent5.12 Organic Chemistry I5.13 Organic Chemistry II5.60 Thermodynamics & Kinetics5.61 Physical Chemistry I
Required Laboratory Subjects
5.311 Introduction to Chemical Experimentation5.32 Intermediate Chemical Experimentation5.33 Advanced Chemical Experimentation
Restricted Lecture Electives
(two of four are required)5.04 Principles of Inorganic Chemistry II5.08 Biological Chemistry II5.43 Advanced Organic Chemistry5.62 Physical Chemistry II
Traducción
INSTITUTO TECNOLÓGICO DE MASACHUSETTS
REQUISITOS PARA ESPECIALIZACIONES
Programa Académico
Química
El plan de estudios de química que conduce al título de licenciado en la ciencia de la química, incluye los requisitos generales del instituto al igual que las asignaturas específicas de química relacionadas a continuación
.El número de asignaturas requeridas permite que el estudiante participe en investigaciones bajo el programa de oportunidades de pregrado para la investigación (UROP), y también proporciona el tiempo suficiente de tomar clases de química en niveles superiores de diplomado y asignaturas en otros departamentos.
Para el título de licenciado en Ciencias Químicas:
Asignaturas teóricas requeridas:
5.03 Principios de química inorgánica
5.07 química biológica
5.111 o 5.112 Principios de Ciencia química o equivalente
5.12 Química orgánica I
5.13 química orgánica II
5.60 termodinámica & cinética
5.61 Fisicoquímica I
Asignaturas de laboratorio requeridas
5.311 Introducción a la experimentación química
5.32 Experimentación química intermedia
5.33 Experimentación química avanzada
Asignaturas Electivas
(Se deben tomar mínimo dos asignaturas)
5.04 Principios de química inorgánica II
5.08 química biológica II
5.43 química orgánica avanzada
5.62 Fisicoquímica II
Academic Programs
A Minor in Chemistry can be earned by completing six chemistry subjects.
Required Subjects
5.03 Principles of Inorganic Chemistry I5.12 Organic Chemistry I5.310 Laboratory Chemistry5.60 Thermodynamics & Kinetics
Elective Subjects (choose two)
5.04 Principles of Inorganic Chemistry II5.07 Biological Chemistry5.08 Biological Chemistry II 5.13 Organic Chemistry II5.32 Intermediate Chemistry Experimentation5.43 Advanced Organic Chemistry5.61 Physical Chemistry I5.62 Physical Chemistry II
Traducción
Un grado secundario en química puede ser adquirido completando seis asignaturas
Asignaturas requeridas
5.03 Principios de química inorgánica I5.12 Química orgánica I5.310 Laboratorio de química5.60 Termodinámica & Cinética
Asignaturas electivas (Escoger dos)
5.04 Principios de Química Inorgánica II5.07 Bioquímica5.08 Bioquímica II 5.13 Química Orgánica II5.32 Experimentación Química Intermedia5.43 Química Orgánica Avanzada5.61 Físico – química I5.62 Físico – química II
Academic Programs
Regular registered MIT students can apply to receive credit for chemistry courses taken at another college or university by following the procedures outlined below. Transfer credit will be awarded only when the course taken elsewhere substantially resembles an MIT chemistry subject and when the student receives a grade of at least B (or the equivalent). When an application is approved, the student receives credit for the equivalent MIT subject with a grade of "S".
Summary of Application Procedure
Print a copy of the form "Request for Additional Credit Based on Subject Completed at Outside Institution" or pick up a copy from 2-204.
Complete the form and bring it to the Chemistry Education Office (2-204) with the supporting documents (see below).
Your application will be reviewed by the Chemistry Transfer Credit Examiner, Professor Sylvia Ceyer, with the assistance of other faculty. You will be notified of the status of your application by the Chemistry Education Office within one week of the submission of your complete application and any additional material requested by the Transfer Credit Examiner.
If your application is approved, the "Request for Additional Credit" form (signed by Professor Ceyer) will be returned to you. Note that MIT requires that you submit this form to the Registrar's Office (5-119) no later than the eleventh week (Drop Date) of your first term after the subject was taken or you will be charged a $40 late fee.
Inquiries Concerning Transfer CreditMIT Chemistry does not "pre-approve" courses for transfer credit (eg, for classes taken over the summer). If, however, you would like to have the Transfer Credit Examiner give you a non-binding opinion as to whether the course you want to take has a chance to transfer, then follow these three steps:
Obtain a detailed syllabus and catalogue course description for the course you wish to take – be sure to include lecture hours, textbook information, and lecture topics
Fill out the "Request for Additional Credit…" form
Bring these materials to the Chemistry Education Office (2-204) with your name, email address, and the course you want this class to count for (ie, if you hope to take a general chemistry course somewhere else and have it count for 5.111, please write that down)
The Transfer Credit Examiner will look over the materials you provide and conjecture as to the possibility of the credit transferring. Please note that responses to such inquiries are non-binding advisory opinions only. Transfer credit will not be approved until after you have taken the course and an application form, transcript, and all of the supporting material described below is submitted for evaluation.
Application Procedure: What to Submit
A copy of the official transcript from the outside institution showing the final grade (B or higher) for the subject you completed. You must arrange to have the transcript sent directly to the MIT Registrar's Office, and you should then obtain a copy from the Registrar to submit to the Chemistry Department with your application for transfer credit.
A completed copy of the form "Request for Additional Credit Based on Subject Completed at Outside Institution." This form requires you to provide information on the course taken at the outside institution including the subject name and number, the principal textbook(s) used, the chapters covered, and the number of hours per week of lectures, recitations, etc.
A copy of the catalog description for the course taken at the outside institution as well as a detailed syllabus for the subject.
Applications for 5.111 transfer credit must be accompanied by copies of all of your problem sets and exams from the course taken at another college or university. For other subjects, the Transfer Credit Examiner may require you to provide copies of your exams and problem sets after you submit your application. However, for other courses it is not necessary to submit this material unless it is specifically requested by the Transfer Credit Examiner.
Guidelines for Specific Chemistry Subjects
Principles of Chemical Science (Chemistry 5.111/5.112) Upperclass students (and second-semester freshmen) who have taken a college-level chemistry course at another college or university can apply for transfer credit (awarded as a grade of S in 5.111) by following the application procedure described above. Completion of two semesters of general chemistry covering the topics outlined below usually is necessary to receive credit; however, one semester of an accelerated general chemistry course that covers this material may also be acceptable. The Transfer Credit Examiner will review the syllabus, problem sets, and exams that you must provide with your application to determine whether the course you took is acceptable with regard to the scope of topics studied and depth of coverage. A grade of B (not B-) or better must be received in each course to qualify for credit. All of the following topics must be covered in the courses being considered for credit:
Atomic theory, wave-particle duality, photoelectric effect, diffraction
Introduction to quantum mechanical concepts: wave equation, wavefunction
Hydrogen atom orbitals, shell structure, trends in periodic table
Photoelectron spectroscopy
Covalent and ionic bonds, Lewis structures, VSPER
Molecular kinetic theory, Maxwell-Boltzmann distribution function
Intermolecular forces and liquids
Internal molecular motions and spectroscopy
Heat, work, energy, heat capacity
Enthalpy, entropy, free energy
Chemical equilibrium
Acid-base calculations, buffers and titrations
Electrochemistry, oxidation-reduction
Hybridization, valence bond theory, molecular orbital theory
Transition metals and coordination chemistry, ligand field theory, magnetism
Kinetics, rate laws, catalysis
Structure and bonding in solids, electronic and polymeric materials
Introduction to biochemical concepts
Introduction to organic chemistry, nomenclature, stereoisomerism
Incoming freshmen who have taken a college-level chemistry course at another college or university (rather than in their high school) have the option of either (a) taking the MIT Chemistry Advanced Placement Exam (see below), or (b) applying for transfer credit. If you are interested in pursuing this option please contact the Academic Resource Center by visting their website or by sending an email to mailto:[email protected]. Complete applications for transfer credit must include a transcript, a copy of the syllabus (with full information on textbook used, chapters covered, etc.), and copies of your problem sets and exams (for 5.111, in particular).
Advanced Placement and Advanced Standing Exams for 5.111/5.112 Incoming freshmen who wish to receive credit for 5.111 based on chemistry courses they have taken in high school are not eligible for transfer credit and must take the MIT Chemistry Advanced Placement Exam (see Advanced Placement Exam website for instructions). Students who pass this exam receive credit for 5.111 with a grade of P; no record is kept of non-passing grades.
Upperclass students who have not taken Chemistry 5.11, 5.111, or 5.112 at MIT may take the Advanced Standing Exam (see Advanced Standing Exam website for instructions). If you pass this exam you will receive credit for 5.111 and a letter grade (A through F, which is not counted in your grade point average).
Organic Chemistry (Chemistry 5.12 and 5.13)The 5.12/5.13 organic chemistry sequence at MIT covers more material and involves a more sophisticated treatment of many topics as compared to typical one-year organic chemistry courses offered at other institutions. In general, students who have taken a standard one-year course at another university and received a grade of B or higher can apply for transfer credit for 5.12 by following the application procedure detailed above. Credit for 5.13 will not be awarded based on a "standard" one-year organic chemistry course taken elsewhere. However, students who have taken one year of an "honors" or "accelerated" version of organic chemisty at another institution may be eligible for 5.13 transfer credit. If you wish to apply for 5.13 transfer credit, follow the application procedure described above and provide supporting material indicating that the course you took was an "honors-level" course which covered all of the following topics:
Structure and bonding in organic compounds
Substitution and elimination reactions: mechanism and synthetic applications
Carbonyl chemistry including reactions of carbohydrates
Chemistry of benzene derivatives
Structure determination, including application of IR, MS, and proton and carbon NMR
Stereochemical principles including conformational analysis
Mechanism and synthetic applications of stereoselective reactions
Chemistry of alkenes and alkynes
Molecular orbital theory, pericyclic reactions
Chemistry of heterocyclic compounds
Chemistry of carbocations, including rearrangements
Chemistry of carbenes and free radicals
Retrosynthetic analysis, applications of C-C bond-forming reactions in synthesis
Physical Chemistry 5.60 ("Thermodynamics and Kinetics") Chemistry 5.60 discusses the principles of both thermodynamics and chemical kinetics at a level much more sophisticated than that presented in 5.111/5.112. This subject covers topics typically taught in upper-level physical chemistry courses at other institutions. Multivariable calculus is employed to describe the principles of thermodynamics and 5.60 also includes a comprehensive discussion of reaction kinetics based on the application of differential equations. Students can apply for transfer credit for 5.60 by following the application procedure described above.
ANEXO VII
MALLA CURRICULAR DEL PREGRADO EN QUÍMICA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA
Bibliografia general
1. ACHISTEIN,P. Concepts of science. A philosophical analysis. The Johns Hopkings Press. 1968.
2. ADÚRIZ-BRAVO, A. Aportes de la Epistemología e historia de la ciencia a la didáctica especial de las ciencias naturales. FOMEC-CEFIEC. Buenos Aires. 1997
3. ADÚRIZ-BRAVO, A. e IZQUIERDO, M. La didáctica de las ciencias experimentales como disciplina tecnocientífica autónoma. Grupo Editorial Universitario. Granada. 2001.
4. ADÚRIZ-BRAVO, A. El método de problemas en la didáctica de las ciencias naturales. Universidad de Buenos Aires. 1993.
5. ADÚRIZ-BRAVO, A. Materiales para la enseñanza de la epistemología a profesores de ciencias. Universidad Autónoma de Barcelona. 1999.
6. ALBERTY R, SILBEY R J, Physical Chemistry, 2 ed. John Wiley and son inc. N.Y. 1977
7. ANDER, P.; SONNESSA, A. Principios de química; Limusa: México, 1996.
8. ARTIGAS, M. Filosofía de la ciencia experimental. EUNSA. Pamplona. 1989.
9. ATKINS P.W., "Physical Chemistry", 6th Edition, Oxford University Press, Oxford, 1998.
10. AYER, A. El positivismo lógico. FCE. México. 1965.
11. BAZDRESCH PARAD, M. Las competencias en la formación de docentes. Educar. México. 1998.
12. BLOOM, B. Taxonomía de objetivos. Dominio Cognitivo. Buenos Aires. Ateneo. 1970.
13. BOLIVAR, A. Conocimiento de la Enseñanza. Epistemología de la investigación Currícular. FORCE. Universidad de Granada. Granada. 1995.
14. BRICEÑO, C. O.; RODRÍGUEZ, L. Química, 2ª ed.; Educativa: Bogotá, 2000.
15. BRICEÑO, CARLOS OMAR Y LILIA RODRIGUEZ, Química, Editorial Educativa, Santa fe de Bogotá, 1994.
16. BROW LEMAY, BURSTEN, La Ciencia Central, 7a edición. Prentice Hall México, 1998.
17. BUNGE, M. Epistemología. Ariel. Barcelona. 1980.
18. CHANG R., Química McGraw Hill, México, 1994
19. CHANG, R; COLLEGE W., Química, 7a edición; McGraw -Hill, Mexico, 2002.
20. CHANG, R. Química, 7ª ed.; Mc.Graw Hill: México, 2002.
21. CRC Handbook of Chemistry and Physics, 67 ed. CRC Press, 1986
22. DÍAZ BARRIGA, A. Didáctica y Currículo. Paidós Ecuador. México. 1997.
23. DIMITRIADIS, P., PAPATSIMPA, L. y KALKANIS, G. Educating of primary teachers in history, philosophy and methodology of sciencie with a constructivist approach, Science education research in the knowledge based society, 356-358. Aristotle University of Thessaloniki. Salónica. 2001.
24. EBBING D:D:, General Chemistry, 6 ed. ,Mc Graw Hill. 1999
25. FALS BORDA, O. El problema de como investigar la realidad para transformarla por la praxis. Tercer Mundo Editores. Colombia. 1990.
26. FEYERABEN, P. Against method. Verso. Londres. 1975.
27. FOUCAULT, M. La arqueología del saber. Ed. Siglo XXI. México. 1990.
28. GARDNER, H. La educación de la mente y el conocimiento de las disciplinas. Paidós. Barcelona. 2000
29. GILLIES,D. Philosophy of science in the twentieth century. Four central themes. Blackwell. Oxford. 1993
30. GÓMEZ, G.R. Ciencias físico – químicas y su didáctica. Humanitas. Buenos Aires. 1980
31. HANNAWAY, O. The chemists and the World: The didactic origins of chemistry. Johns Hopkins University Press. Baltimore. 1975
32. http://antoine.frostburg.edu/chem/senese/101
33. http://highered.mcgraw-hill.com/sites/0073656011
34. http://www.tannerm.com/
35. IZQUIERDO, M. Bases epistemológicas de la didáctica de las ciencias. Universidad Autónoma de Barcelona. Bellaterra. 1998.
36. KATZ, L. A matrix for research on teacher education. World yearbook of education. 1980.
37. KAUZMANN W., "Thermodynamics and Statistics: with applications to gases", W.A. Benjamin, New York, 1967
38. KONDEPUDI D. AND PRIGOGINE I., "Modern Thermodynamics: from heat engines to dissipative structures", Wiley, Chichester, 1.998.
39. KOTZ, J. C.; TREICHEL, P. M. Química y reactividad química, 5ª ed.; Thomson: México, 2003.
40. KUHN,T.Historical structure of scientific discoveries, Science, 136(6), 760 – 764.
41. KUNH, T. Revolución de la estructura científica. FCE. México. 1975.
42. LAIDLER K.J., AND MEISER J.H., "Fisicoquímica", 1ª Edición en español, CECSA, México, 1997. (Capítulos 1-5).
43. LAKATOS, I. La metodología de los programas de investigación científica. Alianza. Madrid. 1983.
44. LAKATOS, L. Historia de la ciencia. Tecno. Madrid. 1982.
45. LOGAN S.R., "Fundamentos de Cinética Química", Addison Wesley, Madrid, 2.000. Firth D.C., "Elementary Chemical Thermodynamics", Oxford University Press, London, 1969.
46. MASTERTON, WILLIAM L; SLOWINSKI, EMIL J.; STANISKI., CONRAD L.; Quìmica General Superior, sexta ediciòn, Bogotà, Mac-Graw Hill 198.
47. MESSINA, G. Cómo se forman los maestros en América – Latina. Boletín del P.P.E. UNESCO. Nº 43. Santiago de Chile. 1999.
48. MORIN, E. Introducción al pensamiento complejo. Gedisa. Barcelona 1997
49. MORTIMER CH., "Química", Grupo Editorial Iberoamericano", México, 1983.
50. PERAFÁN, G. A. Diversidad epistemológica del profesor y enseñanza de las ciencias. Enseñanza de las ciencias. Número VI (extra). 2001
51. PETRUCCI R. H.; HARDWOOD, W. S.; HERRING, F. G. Química general, 8ª ed.; Pearson: España, 2002.
52. Petrucci R.A. and Harwood W.S., "General Chemistry: Principles and Modern applications", 7th edition, Prentice Hall, Upper Saddle River, 1.997.
53. PETRUCCI, RALPH H.; "Química General"; 7ª edición, Prentice Hall, España 1999.
54. PIAGET, J. Naturaleza y métodos de la epistemología. Proteo. Buenos Aires. 1970.
55. PINZÓN J.A., "DIRECCIONALIDAD Y EQUILIBRIO", Departamento de Química, Universidad Nacional de Colombia, Bogotá, 1991.
56. POPPER, K. The logia of scientific discovery. Basic Books. Nueva York. 1959
57. PRICE G., "Thermodynamics of Chemical Processes", Oxford University Press, Oxford, 1.998.
58. ROJAS SORIANO, R. Investigación – acción en el aula. Plaza Valdéz. México 1995.
59. RUSSEL, J.B.; LARENA, A., Química , McGraw -Hill, Madrid, 1987
60. SANMAMED, M. Aprender a enseñar. Mitos y Realidades. Servicio de publicaións. Universidad de Coruña. 1995.
61. SEGAL B.G., "Chemistry; Experiment and Theory", 2nd edition, Wiley, New York, 1989.
62. SILBERBERG, M.S., "CHEMISTRY: The molecular Nature of Matter and Change", Mc Graw Hill. 2 ed. 2000
63. SORIA, O. Docencia de la investigación en la Universidad Latinoamericana. Docencia Nº3. pp. 30-42. 1985.
64. STOIBER, K.C. The effect of technical and reflective Pre-service instruction on pedagogical reasoning and problem solving. Journal Of Teacher Education. Nº 42 (2). Pp. 131 – 139. 1991.
65. STUFFLENBEAM, D. Y SHINKFIELD, A. "Evaluación Sistemática". Barcelona. Paidós. MEC. 1997
66. UMLAND, J.B.; BELLAMA, J.M., "Química General", tercera edición; Thomson Learning, 1999.
67. VON WRIGHT, G. Explicación y comprensión. Alianza. Madrid. 1979.
68. VYGOTSKY, L. Estudio de los conceptos científicos en la edad infantil. Obras Escogidas. Aprendizaje Visor. Madrid. 1993
69. WHITTEN K, GAYLEY K., DAVIS R E, .General Chemistry. 6 ed. Saunders College Chemistry, 2000
70. WHITTEN K.W., GAILEY K.G. AND DAVIS R.E., "General Chemistry with qualitative analysis", 4th Edition, Saunders HBJl, 1.992.
71. ZEMANSKY M.W. Y DITTMAN R.H., "Calor y Termodinámica", 6ª Edición, McGraw-Hill, Madrid, 1984.
72. ZUMDAHL, S. S.; ZUMDAHL, Chemistry, 5th ed.; Houghton Mifflin: Estados Unidos, 2000.
Bogotá – Colombia septiembre de 2006
A nuestros hijos,
a nuestros estudiantes
y a los investigadores científicos
y docentes investigadores
que nos han precedido en la esperanza
de una Gran Colombia
Autor:
Jairo Guerra
Universidad La Gran Colombia
Facultad de Postgrados y Formación Continuada
Programa de Especialización en Pedagogía y Docencia Universitaria
LA ESCUELA INVESTIGATIVA
FORMACIÓN DE DOCENTES INVESTIGADORES
Bogotá – Colombia
Septiembre de 2006
[1] Alfonso X “El sabio”. Siete partidas. Edición de A. G. Solalinde
[2] Ortega y Gasset. J. Reflexiones de Centenario. FCE. 1972.
[3] Ospina, W. Colombia: El proyecto nacional y la franja amarilla – Lo que está en juego en Colombia.Revista Número. Nº 9 – 1996 Ospina, W. Visión Futurista del país y el continente- Latinoamérica on-line. Cronopios. 2004
[4] Adúriz-Bravo, A. Hacia la enseñanza de un “método Científico” en las ciencias naturales. Universidad de Buienos Aires. 1995.
[5] Baumé, Chymie experimentale et raisonnde, t. I. p. VII (Relacionado por Gasto de Bachelard en Epistemología)
[6] Agustín Adúriz-Bravo, Integración de la epistemología a la formación del profesorado de ciencias, Universidad Autónoma de Barcelona, 2001.
[7] Jairo Guerra, La Escuela Investigativa, Diseño Pedagógico y didáctico para el abordaje de la ciencia y la tecnología en la educación básica, Uniminuto, 2005
[8] Ministerio de Educación Nacional – MEN, Estándares Básicos de Competencias, Espantapájaros Taller, Colombia 2004.
[9] Sánchez Carrascal, J. Programa de universitología, Universidad la Gran Colombia, 206
[10] Silvio, J. Un nuevo rol para la universidad latinoamericana como gestora del conocimiento, CRESALC-UNESCO.
[11] Gutiérrez Saenz, R. Introducción a la filosofía; Editorial Esfinge.
[12] Hessen, Teoría del conocimiento; Editorial Esfinge.
[13] Aguilera García, L.O. Tesis para una iniciación epistemológica. En: www.monografías.com 2000.
[14] Álvarez de Zayas, C. Pedagogía como ciencia. La Habana, 1998.
[15] Gonzáles Rey, F. Epistemología cualitativa. La Habana, 1998.
[16] Foucault, M. La Arqueología del saber. Edit. Siglo XXI, México, 1972.
[17] Sánchez V., I. Contextos epistemológicos en el cambio del milenio. Implicaciones en epistemología pedagógica. En: Revista Complutense de Educación. Vol. 9, Nro. 1, 1998.
[18] MacLuhan, H., P.B. Powers. La aldea global. Barcelona, 1990.
[19] Mercier, P.A., F. Passard, V. Escardigli. La sociedad digital. Barcelona. Ariel, 1985.
[20] Tedesco, J.C. Educación y sociedad del conocimiento y de la información. Revista Colombiana de Educación. Nro. 36-37, 1998.
[21] Husserl, E., La crisis de las ciencias europeas y la fenomenología trascendental, 1936. ……. "La filosofía en la crisis de la humanidad europea", Conferencia pronunciada en la Asociación de Cultura de Viena.
[22] Popper, K. R., Conjeturas y refutaciones. El desarrollo del conocimiento científico, Buenos Aires, Editorial Paidós,1969 Popper, K. R. La lógica de la investigación científica, Madrid, Editorial Tecnos, 1973 Popper, K. R. Búsqueda sin término, Madrid, Editorial Tecnos, 1977.
[23] Gardner. H. Teoría de las Inteligencias Múltiples. ITM. 2001
[24] Vasco M. E., Los valores implícitos en los libros de texto, Colegio Cafam, Bogotá, 1994.
[25] Palacios, Marco- Hacia la Innovación Institucional en la Universidad Nacional. UN. 2003
[26] Guerra, J, La Escuela Investigativa, Diseño Pedagogico Y Didactico Para El Abordaje De La Ciencia Y Tecnología En La Educación Básica. Corporación Universitaria Minuto de Dios FACULTAD DE EDUCACIÓN, 2005
[27] Noell, S. I, Didáctica de las Ciencias naturales, (Monografía) U. Barcelona (2003)
[28] Bunge, M. La Investigación Científica, Editorial Ariel, Barcelona 1972
[29] Bringuier, J. C. Conversaciones con Piaget. Barcelona: Gedisa. (1985)
[30] Kant, I. Crítica de la razón pura(1781),
[31] Driver, R., Asoko, H., Leach, J., Mortimer, E., Scot, P. (1994): Constructing Scientific Knowledge in the Classroom en Educational Researcher, vol. 23 (7) 5-12.
[32] Giral, F. Enseñanza de la química experimental, OEA-Deparatamento de Asuntos Científicos, Unión Panamerican 1969
[33] Osorio Osma, R. Historia de la Química en Colombia, Instituto Colombiano de Cultura Hispánica, 1985
[34] FEDERECI CASA, CARLO. Elementos de lógica y metodología”. Rev. Esquemas Pedagógicos – Universidad de Cundinamarca Nº6-2005 pp. 6-18
[35] Kuhn, Th. S. (1922- ): "Historiador y filósofo de la ciencia estadounidense, conocido por su contribución al cambio de orientación de la filosofía y la sociología científica en la década de 1960. En MICROSOFT CORPORATION. Enciclopedia Microsoft Encarta 2000, 1993-1999, s/p.
[36] ECHEVERRÍA J., Introducción a la metodología de la ciencia, Cátedra, Madrid 1999, p. 114. (El destacado en cursiva es del autor).
[37] KUHN T., La estructura de las revoluciones científicas, Fondo de Cultura Económica, Santa Fe de Bogotá 19923, p. 33 – 55.
[38] KUHN T., o.c., p. 33.
[39] ECHEVERRÍA J., o.c., p. 119.
[40] KUHN T., o.c., pp. 20 – 32.
[41] ECHEVERRÍA J., o.c., p. 118.
[42] Cf. KUHN T., o.c., p. 34.
[43] Ibídem.
[44] KUHN T, o.c., p. 34.
[45] Ibídem, p. 51.
[46] QUINTANILLA M., Diccionario de Filosofía Contemporánea, Ediciones Sígueme, Salamanca 19792, p. 237.
[47] Kuhn tiende a usar con frecuencia el término esotérico, se debe entender esta acepción en el sentido de que es algo extraño, oculto, distinto a lo normal y no en términos peyorativos. "En un sentido general, el término 'esotérico' ha venido a tener casi enteramente la significación de 'secreto', 'oculto', 'apto solamente para iniciados'. Se ha formado a base de ello el vocablo 'esoterismo', que significa no solamente una cierta clase o forma de saber, sino una cierta actitud frente al propio saber, pues supone la distinción entre un saber vulgar, popular, superficial y poco adentrado en la naturaleza de lo real, y un saber auténtico, único, que se reserva para el elegido el sabio, el adivino, el profeta". En: FERRATER J., Diccionario de Filosofía, e-j, Editorial Ariel, Barcelona 1994, p. 1079.
[48] KUHN T., o.c., p. 35.
[49] KUHN T., o.c., p. 41.
[50] Cayo Plinio Segundo (c. 23 d.C.-79): "Escritor y enciclopedista romano, máxima autoridad científica de la Europa antigua. La gran enciclopedia de Plinio, Historia Natural, consta de 37 volúmenes y es la única de sus obras que se conserva en la actualidad. MICROSOFT CORPORATION. Enciclopedia Microsoft Encarta 2000., 1993-1999. S/p.
[51] Bacon, Roger (c. 1214-1294): "Filósofo y científico inglés, uno de los maestros más influyentes del siglo XIII. Realizó numerosos estudios teóricos y experimentales, sobre todo en los campos de la alquimia, la óptica y la astronomía. Fue una figura fundamental para el saber de su época y, a finales de la década de 1260, por petición del papa Clemente IV, escribió Opus Maius. En esta obra trataba la necesidad de reformar las ciencias por medio del estudio de las lenguas y de la naturaleza, con la ayuda de diferentes métodos. capaz de causar explosiones (en la actualidad se sabe que la pólvora había sido antes utilizada por los árabes). Bacon consideró que las matemáticas y la experimentación eran los únicos medios de llegar al conocimiento de la naturaleza". En: MICROSOFT CORPORATION. Enciclopedia Microsoft Encarta 2000., 1993-1999. S/p
[52] KUHN T., o.c., p. 43.
[53] KUHN T. o.c., p. 44.
[54] Cf. REALE G. y ANTISERI D., Historia del pensamiento filosófico y científico, Tomo III, Editorial Herder, Barcelona 1995, p. 911.
[55] KUHN T., o.c., p. 46.
[56] KUHN T. o.c., p. 49.
[57] Ibídem, p. 50.
[58] GUERRA, J.E. El Maravilloso mundo de la química, Curso elemental, inédito 2002
[59] GUERRA,J. Análisis critico estructural. U. Gran Colombia, módulo de acreditación, 2006
[60] QUAGLIANO AND VALLARINO. Chemistry. Prentice-Hall, Inc. Universidad de Florida, 1969
[61] GUERRA. J. La Escuela Investigativa. Propuesta de modelo Educativo, 2006
[62] PALACIOS, MARCO. Hacia la Innovación Institucional de la Universidad Nacional. Universidad Nacional de Colombia, 2003
[63] ENRIQUEZ, PEDRO. Evaluación de programas y elementos para la mejora del diseño y desarrollo de la formación inicial de los docentes en metodología de la investigación. Tesis Doctoral, Universidad Autónoma de Barcelona, Facultad de Ciencias de la Educación. 2002
[64] BOLÍVAR, A. Conocimiento de la Enseñanza. Epistemología de la Investigación Currícular. FORCE. Universidad de Granada. (1990)
[65] DE LANDSHEERE, G. La Formación de los enseñantes del mañana. NARCEA. Madrid. 1977
[66] HOPKINGS, D. La investigación en el aula. Guía del profesor. PPU. Barcelona, 1989
[67] ROJAS SORIANO, R. Investigación – acción en el aula. Plaza Valdéz, México, 1997
[68] McCOMAS,W.(ed)(1998). The nature of science in science education. Rationales and strategies. Dordrecht: Kuwer.
[69] DUSCHL, R, DEÁK, G, ELLENBOGEN, K Y HOLTON, D. (199). Developmnetal and educational perspectivas on theory change: To have and hold, or to have and hone?.Science & Education, 8, 525-541
70. WHITTEN K.W., GAILEY K.G. AND DAVIS R.E., "General Chemistry with qualitative analysis", 4th Edition, Saunders HBJl, 1.992. 71. ZEMANSKY M.W. Y DITTMAN R.H., "Calor y Termodinámica", 6ª Edición, McGraw-Hill, Madrid, 1984. 72. ZUMDAHL, S. S.; ZUMDAHL, Chemistry, 5th ed.; Houghton Mifflin: Estados Unidos, 2000.
Bogotá – Colombia septiembre de 2006
A nuestros hijos, a nuestros estudiantes y a los investigadores científicos y docentes investigadores que nos han precedido en la esperanza de una Gran Colombia
Autor: Jairo Guerra
Universidad La Gran Colombia Facultad de Postgrados y Formación Continuada Programa de Especialización en Pedagogía y Docencia Universitaria
LA ESCUELA INVESTIGATIVA FORMACIÓN DE DOCENTES INVESTIGADORES Bogotá – Colombia Septiembre de 2006
Página anterior | Volver al principio del trabajo | Página siguiente |