La importancia del ingeniero industrial en un sistema de innovación de proyectos
Enviado por José Manuel Castorena Machuca
- Introducción
- Orígenes, fuentes y enfoque de la Teoría General de Sistemas
- Análisis CEEM (composición, entorno, estructura y mecanismo)
- Teoría de sistemas
- Ingeniería de sistemas cognitivos
- El lenguaje de la complejidad
Introducción
En el mundo de hoy, ya no es posible pensar en solucionar los problemas con solo una relación de causa – efecto, ya que los problemas ahora son multicausales y dependen de varios contextos.
Lo que nos lleva a pensar holísticamente para enfrentar la incertidumbre del futuro con bases firmes de innovaciones sistémicas y no solo sistemáticas.
Precisamente en eso consiste la Ingeniería de Sistemas, en buscar maneras de hacer siempre mejor las cosas, pero no solo en un elemento del sistema, sino de manera que no afecte a otros sistemas que están relacionados.
Con esa visión ontológica de resolver problemas, el Ingeniero Industrial, será capaz de implementar exitosamente cualesquier sistema como:
ISO 9 000, ISO 14 001, TS 9 000
Control de Materiales
Control de Producción
Robótica
Kaizén
Kanbán
Reingeniería
Desarrollo Sustentable
Seguridad e Higiene Industrial
Ergonomía
Manufactura controlada por computadora, etc.
Por eso considero, que esta investigación documental sobre Sistemas, será de gran ayuda para maestros y alumnos que se relacionan por primera vez con este importante tópico de la Ingeniería.
Resulta evidente que en el transcurso histórico de la humanidad, los conocimientos técnicos se han acrecentado gradualmente y, al ser utilizados por la ingeniería, han permitido incrementar los satisfactores de la sociedad en conjunto.Cabe destacar en función del avance científico y tecnológico, la creación de los medios necesarios para el mejor aprovechamiento de estos logros; en esquema estructural, la creación de nuevas disciplinas y nuevas especialidades promueve la idea de particularizar ciertas ramas del conocimiento.
Sin embargo la evolución del pensamiento humano concita un orden en el que la interacción de los elementos se hace cada vez más compleja y difícil de resolver. Y es precisamente en este punto donde la ingeniería de sistemas incide en el progreso de los países, al aplicar una visión amplia que abarca el espectro total de la problemática y no solo una parte aislada.
La propuesta de la ingeniería de sistemas consiste en una actitud del pensamiento, una filosofía práctica, una metodología de cambio para, por medio de ellas, establecer el orden en la confusión.
En esta evolución, la ingeniería de sistemas es una disciplina que se preocupa por el diseño, al enfatizar un proceso creativo que cuestiona las suposiciones sobre las cuales se han estructurado los antiguos esquemas; además, propone enfoques totalmente nuevos a fin de conseguir soluciones óptimas.
¿CÓMO MEDIR MAGNITUDES FÍSICAS?: En esencia, el proceso de medición consiste en comparar una magnitud dada, con otra magnitud homogénea tomada como unidad de medida. Semejante comparación no siempre se efectúa directamente. Puede determinarse el valor de la magnitud deseada, a partir de los valores de otras magnitudes medidas directamente, utilizando los cálculos indicados por ciertas relaciones matemáticas que responden a definiciones o a leyes de la naturaleza.
Orígenes, fuentes y enfoque de la Teoría General de Sistemas
La fuente de la Teoría General de Sistemas puede remontarse probablemente, a los orígenes de la ciencia y la filosofía. En 1956 estas son las propuestas de Bertalanffy:
a.- Existe una tendencia general hacia la integración en las diferentes ciencias naturales y sociales. b. Tal integración parece centrarse en una teoría general de sistema.
c.- Tal teoría puede ser un medio importante para llegar a la teoría exacta de los campos no físicos de la ciencia.
d.- Desarrollando principios unificados que van "verticalmente" a través de los universos de las ciencias individuales, esta teoría nos acerca el objetivo de la unidad de la ciencia.
e.- Esto puede conducir a la integración muy necesaria de la educación científica.-
Al filósofo alemán George Wilhelm Friedrich Hegel (1770–1831) se le atribuye las siguientes ideas:
1.- el todo es más que la suma de las partes.
2.- el todo determina la naturaleza de las partes.
3.- las partes no pueden comprenderse si se consideran en forma aislada del todo.
4.- las partes están dinámicamente interrelacionadas o son interdependientes.
El enfoque sistémico trata de comprender el funcionamiento de la sociedad desde una perspectiva holística e integradora, en donde lo importante son las relaciones entre los componentes, no concibe la posibilidad de explicar un elemento si no es precisamente en su relación con el todo
ENFOQUES DE LA TEORIA GENERAL DE SISTEMAS
La proposición de los sistemas, la Ingeniería de los Sistemas y el enfoque de sistemas.
En este tema se trata de buscar teorías que sea aplicables para todo tipo de sistema sea abierto o cerrado aunque con sus variaciones o restricciones donde no se tome en cuenta las modificaciones de un ambiente externo o la mano del hombre, que sea lineal. Debido a la isomorfosis se busca teorías que vayan de la mano del porqué de estas peculiaridades entre sistemas. En general se tratan la semejanzas de forma más que de contenido para crear leyes en los sistemas que apliquen de forma general.
Generalidades sobre Sistemas
1.- Sistemas.
Conjunto de elementos interrelacionados para lograr un fin.
2.- ¿Por qué sistemas?
Planificar, operar y diseñar modelos que solucionen los problemas socio – técnicos utilizando técnicas académicas e industriales.
3.- ¿En dónde se aplican?
Asentamientos humanos, ecología, educación, seguridad, industrias, etc.
4.- Proceso del Sistema
5.- Características importantes de la Ing. de sistemas
Cuantitativas y cualitativas: evaluar alternativas.
Empleada para resolver grandes problemas como el crecimiento de la población o el desempleo.
POR EJEMPLO: Sistemas materiales
Un sistema material, sistema concreto o sistema real es una cosa compuesta (por dos o más cosas relacionadas) que posee propiedades que no poseen sus componentes, llamadas propiedades emergentes; por ejemplo, la tensión superficial es una propiedad emergente que poseen los líquidos pero que no poseen sus moléculas componentes. Al ser cosas, los sistemas materiales poseen las propiedades de las cosas, como tener energía (e intercambiarla), tener historia, yuxtaponerse con otras cosas y ocupar una posición en el espacio tiempo.
El esfuerzo por encontrar leyes generales del comportamiento de los sistemas materiales es el que funda la teoría de sistemas y, más en general, el enfoque de la investigación científica a la que se alude como sistemismo, sistémica o pensamiento sistémico, en cuyo marco se encuentran disciplinas y teorías como la cibernética, la teoría de la información, la teoría del caos, la dinámica de sistemas y otras.
Análisis CEEM (composición, entorno, estructura y mecanismo)
El análisis más sencillo del concepto de sistema material es el que incluye los conceptos de composición, entorno, estructura y mecanismo (CEEM, por sus siglas). La composición de un sistema es el conjunto de sus partes componentes. El entorno o ambiente de un sistema es el conjunto de las cosas que actúan sobre los componentes del sistema, o sobre las que los componentes del sistema actúan. La estructura interna o endoestructura de un sistema es el conjunto de relaciones entre los componentes del sistema. La estructura externa o exoestructura de un sistema es el conjunto de relaciones entre los componentes del sistema y los elementos de su entorno. La estructura total de un sistema es la unión de su exoestructura y su endoestructura. Las relaciones más importantes son los vínculos o enlaces, aquellas que afectan a los componentes relacionados; las relaciones espaciotemporales no son vínculos. El mecanismo de un sistema es el conjunto de procesos internos que lo hacen cambiar algunas propiedades, mientras que conserva otras.
Además, la frontera de un sistema es el conjunto de componentes que están directamente vinculados (sin nada interpuesto) con los elementos de su entorno. La frontera de un sistema físico puede ser rígida o móvil, permeable o impermeable, conductor térmico (adiabática) o no, conductor eléctrico o no, e incluso puede ser aislante de frecuencias de audio. Además, algunos sistemas tienen figura (forma); pero no todo sistema con frontera tiene necesariamente figura. Si hay algún intercambio de materia entre un sistema físico y su entorno a través de su frontera, entonces el sistema es abierto; de lo contrario, el sistema es cerrado. Si un sistema cerrado tampoco intercambia energía, entonces el sistema es aislado. En rigor, el único sistema aislado es el universo. Si un sistema posee la organización necesaria para controlar su propio desarrollo, asegurando la continuidad de su composición y estructura (homeostasis) y la de los flujos y transformaciones con que funciona (homeorresis) –mientras las perturbaciones producidas desde su entorno no superen cierto grado–, entonces el sistema es autopoyético.
Dinámica de sistemas
La dinámica de sistemas es un enfoque para entender el comportamiento de sistemas complejos a través del tiempo. Lidia con ciclos de realimentación interna y retrasos en los tiempos que afecta el comportamiento del sistema total.
Lo que hace diferente al enfoque de dinámica de sistemas de otros enfoques para estudiar sistemas complejos, es el uso de ciclos de realimentación y existencias y flujos. Estos elementos, que se describen como sistemas aparentemente simples, despliegan una desconcertante no linealidad.
La dinámica de sistemas es una metodología y una técnica de simulación por computador para encuadrar, comprender y discutir situaciones y problemas complejos. Originalmente desarrollada en 1950, para ayudar a los administradores corporativos a mejorar su entendimiento de los procesos industriales, la dinámica de sistemas es actualmente usada en el sector público y privado para el análisis y diseño de políticas.
La dinámica de sistemas como método para entender el comportamiento dinámico de sistemas complejos es una área de la teoría de sistemas. La base para el método es el reconocimiento de que la estructura de cualquier sistema es a menudo tan importante para determinar su comportamiento como los componentes individuales.
Algunos ejemplos son la teoría del caos y la dinámica social. También se dice a menudo, que como hay propiedades del todo que no pueden ser encontradas entre las propiedades de los elementos entonces el comportamiento del todo no puede ser explicado en términos del comportamiento de sus partes
Historia
Fue fundada formalmente a principios de la década de 1960 por Jay Forrester, aunque estudios similares ya existían como los modelos de poblaciones, de la MIT Sloan School of Management (Escuela de Administración Sloan, del Instituto Tecnológico de Massachusetts) con el establecimiento del MIT System Dynamics Group. En esa época había empezado a aplicar lo que había aprendido sus conocimientos de gestión de la producción a toda clase de sistemas.
Aplicaciones
Ante un ambiente altamente competitivo y cambiante, actualmente la dinámica de sistemas cuenta con muchas aplicaciones. Su uso en el análisis de sistemas ecológicos, sociales, económicos, entre otros, la han hecho indispensable en la toma de decisiones dentro de la industria y el gobierno. Sistemas actuales tan complejos, como las cadenas de suministro, encuentran en la dinámica de sistemas una herramienta de análisis altamente confiable.1
Teoría de sistemas
La teoría general de sistemas (TGS) o teoría de sistemas o enfoque sistémico es un esfuerzo de estudio interdisciplinario que trata de encontrar las propiedades comunes a entidades llamadas sistemas. Éstos se presentan en todos los niveles de la realidad, pero que tradicionalmente son objetivos de disciplinas académicas diferentes. Su puesta en marcha se atribuye al biólogo austriaco Ludwig von Bertalanffy, quien acuñó la denominación a mediados del siglo XX.
Historia
Entre 1948 y 1955 W. Ross Ashby y Norbert Wiener desarrollaron la teoría matemática de la comunicación y control de sistemas a través de la regulación de la retro-alimentación (cibernética), que se encuentra estrechamente relacionada con la Teoría de control. En 1950 Ludwig von Bertalanffy plantea la Teoría general de sistemas. En 1970 René Thom y E.C. Zeeman plantean la Teoría de las catástrofes, rama de las matemáticas de acuerdo con bifurcaciones en sistemas dinámicos, que clasifica los fenómenos caracterizados por súbitos desplazamientos en su conducta.
En 1980 David Ruelle, Edward Lorenz, Mitchell Feigenbaum, Steve Smale y James A. Yorke describen la Teoría del Caos, una teoría matemática de sistemas dinámicos no lineales que describe bifurcaciones, extrañas atracciones y movimientos caóticos. John H. Holland, Murray Gell-Mann, Harold Morowitz, W. Brian Arthur, y otros en 1990 plantean el Sistema adaptativo complejo (CAS), una nueva ciencia de la complejidad que describe surgimiento, adaptación y auto-organización. Fue establecida fundamentalmente por investigadores del Instituto de Santa Fe y está basada en simulaciones informáticas. Incluye sistemas de multiagente que han llegado a ser una herramienta importante en el estudio de los sistemas sociales y complejos. Es todavía un activo campo de investigación.
Contextos
Como ciencia urgente, plantea paradigmas diferentes de los de la ciencia clásica. La ciencia de sistemas observa totalidades, fenómenos, isomorfismos, causalidades circulares, y se basa en principios como la subsidiariedad, pervasividad, multicausalidad, determinismo, complementariedad, y de acuerdo con las leyes encontradas en otras disciplinas y mediante el isomorfismo, plantea el entendimiento de la realidad como un complejo, con lo que logra su transdisciplinariedad, y multidisciplinariedad.
Filosofía
La Teoría General de los Sistemas (TGS), propuesta más que fundada, por L. von Bertalanffy (1945) aparece como una meta teoría, una teoría de teorías (en sentido figurado), que partiendo del muy abstracto concepto de sistema busca reglas de valor general, aplicables a cualquier sistema y en cualquier nivel de la realidad.
La TGS surgió debido a la necesidad de abordar científicamente la comprensión de los sistemas concretos que forman la realidad, generalmente complejos y únicos, resultantes de una historia particular, en lugar de sistemas abstractos como los que estudia la Física. Desde el Renacimiento la ciencia operaba aislando:
Componentes de la realidad, como la masa.
Aspectos de los fenómenos, como la aceleración gravitatoria.
Pero los cuerpos que caen lo hacen bajo otras influencias y de manera compleja. Frente a la complejidad de la realidad hay dos opciones:
Negar carácter científico a cualquier empeño por comprender otra cosa que no sean los sistemas abstractos, simplificados, de la Física.
Conviene recordar aquí la rotunda afirmación de Rutherford: «La ciencia es la Física; lo demás es coleccionismo de estampillas».
O si no:
Comenzar a buscar regularidades abstractas comunes a sistemas reales complejos, pertenecientes a distintas disciplinas.
La TGS no es el primer intento histórico de lograr una meta teoría o filosofía científica capaz de abordar muy diferentes niveles de la realidad. El materialismo dialéctico busca un objetivo equivalente combinando el realismo y el materialismo de la ciencia natural con la dialécticahegeliana, a partir de un sistemaidealista. La TGS surge en el siglo XX como un nuevo esfuerzo en la búsqueda de conceptos y leyes válidos para la descripción e interpretación de toda clase de sistemas reales o físicos.
Pensamiento y Teoría General de Sistemas (TGS)
TGS puede ser vista también como un intento de superación, en el terreno de la Biología, de varias de las disputas clásicas de la Filosofía, en torno a la realidad y en torno al conocimiento:
materialismo vs. vitalismo
reduccionismo vs. perspectivismo
mecanicismo vs. teleología
En la disputa entre materialismo y vitalismo la batalla estaba ganada desde antes para la posición monista que ve en el espíritu una manifestación de la materia, un epifenómeno de su organización (adquisición de forma). Pero en torno a la TGS y otras ciencias sistémicas se han formulado conceptos, como el de propiedades emergentes, que han servido para reafirmar la autonomía de fenómenos, como la conciencia, que vuelven a ser vistos como objetos legítimos de investigación científica.
Parecido efecto encontramos en la disputa entre reduccionismo y holismo, en la que la TGS aborda sistemas complejos, totales, buscando analíticamente aspectos esenciales en su composición y en su dinámica que puedan ser objeto de generalización.
En cuanto a la polaridad entre mecanicismo/causalismo y teleología, la aproximación sistémica ofrece una explicación, podríamos decir que mecanicista, del comportamiento orientado a un fin de una cierta clase de sistemas complejos. Fue Norbert Wiener, fundador de la Cibernética quien llamó sistemas teleológicos a los que tienen su comportamiento regulado por retroalimentación negativa.1 Pero la primera y fundamental revelación en este sentido es la que aportó Darwin con la teoría de selección natural, mostrando cómo un mecanismo ciego puede producir orden y adaptación, lo mismo que un sujeto inteligente.2
Desarrollos
Aunque la TGS surgió en el campo de la Biología, pronto se vio su capacidad de inspirar desarrollos en disciplinas distintas y se apreció su influencia en la aparición de otras nuevas. Así se ha ido constituyendo el amplio campo de la sistémica o de las ciencias de los sistemas, con especialidades como la cibernética, la teoría de la información, la teoría de juegos, la teoría del caos o la teoría de las catástrofes. En algunas, como la última, ha seguido ocupando un lugar prominente la Biología.
Más reciente es la influencia de la TGS en las Ciencias Sociales. Destaca la intensa influencia del sociólogo alemán Niklas Luhmann, que ha conseguido introducir sólidamente el pensamiento sistémico en esta área.
Ámbito metamórfico de la teoría
Descripción del propósito
La teoría general de sistemas en su propósito más amplio, contempla la elaboración de herramientas que capaciten a otras ramas de la ciencia en su investigación práctica. Por sí sola, no demuestra ni deja de mostrar efectos prácticos. Para que una teoría de cualquier rama científica esté sólidamente fundamentada, ha de partir de una sólida coherencia sostenida por la TGS. Si se cuenta con resultados de laboratorio y se pretende describir su dinámica entre distintos experimentos, la TGS es el contexto adecuado que permitirá dar soporte a una nueva explicación, que permitirá poner a prueba y verificar su exactitud. Por esto se la ubica en el ámbito de las meta teorías.
La TGS busca descubrir isomorfismos en distintos niveles de la realidad que permitan:
Usar los mismos términos y conceptos para describir rasgos esenciales de sistemas reales muy diferentes; y encontrar leyes generales aplicables a la comprensión de su dinámica.
Favorecer, primero, la formalización de las descripciones de la realidad; luego, a partir de ella, permitir la modelización de las interpretaciones que se hacen de ella.
Facilitar el desarrollo teórico en campos en los que es difícil la abstracción del objeto; o por su complejidad, o por su historicidad, es decir, por su carácter único. Los sistemas históricos están dotados de memoria, y no se les puede comprender sin conocer y tener en cuenta su particular trayectoria en el tiempo.
Superar la oposición entre las dos aproximaciones al conocimiento de la realidad:
La analítica, basada en operaciones de reducción.
La sistémica, basada en la composición.
La aproximación analítica está en el origen de la explosión de la ciencia desde el Renacimiento, pero no resultaba apropiada, en su forma tradicional, para el estudio de sistemas complejos.
Descripción del uso
El contexto en el que la TGS se puso en marcha, es el de una ciencia dominada por las operaciones de reducción características del método analítico. Básicamente, para poder manejar una herramienta tan global, primero se ha de partir de una idea de lo que se pretende demostrar, definir o poner a prueba. Teniendo claro el resultado (partiendo de la observación en cualquiera de sus vertientes), entonces se le aplica un concepto que, lo mejor que se puede asimilar resultando familiar y fácil de entender, es a los métodos matemáticos conocidos como mínimo común múltiplo y máximo común divisor. A semejanza de estos métodos, la TGS trata de ir desengranando los factores que intervienen en el resultado final, a cada factor le otorga un valor conceptual que fundamenta la coherencia de lo observado, enumera todos los valores y trata de analizar todos por separado y, en el proceso de la elaboración de un postulado, trata de ver cuantos conceptos son comunes y no comunes con un mayor índice de repetición, así como los que son comunes con un menor índice de repetición. Con los resultados en mano y un gran esfuerzo de abstracción, se les asignan a conjuntos (teoría de conjuntos), formando objetos. Con la lista de objetos completa y las propiedades de dichos objetos declaradas, se conjeturan las interacciones que existen entre ellos, mediante la generación de un modelo informático que pone a prueba si dichos objetos, virtualizados, muestran un resultado con unos márgenes de error aceptables. En un último paso, se realizan las pruebas de laboratorio. Es entonces cuando las conjeturas, postulados, especulaciones, intuiciones y demás sospechas, se ponen a prueba y nace la teoría.
Como toda herramienta matemática en la que se opera con factores, los factores enumerados que intervienen en estos procesos de investigación y desarrollo no altera el producto final, aunque sí pueden alterar los tiempos para obtener los resultados y la calidad de los mismos; así se ofrece una mayor o menor resistencia económica a la hora de obtener soluciones.
Aplicación
La principal aplicación de esta teoría está orientada a la empresa científica cuyo paradigma exclusivo venía siendo la Física. Los sistemas complejos, como los organismos o las sociedades, permiten este tipo de aproximación sólo con muchas limitaciones. En la aplicación de estudios de modelos sociales, la solución a menudo era negar la pertinencia científica de la investigación de problemas relativos a esos niveles de la realidad, como cuando una sociedad científica prohibió debatir en sus sesiones el contexto del problema de lo que es y no es la conciencia. Esta situación resultaba particularmente insatisfactoria en Biología, una ciencia natural que parecía quedar relegada a la función de describir, obligada a renunciar a cualquier intento de interpretar y predecir, como aplicar la teoría general de los sistemas a los sistemas propios de su disciplina.
Ejemplo de aplicación de la TGS: Teoría del caos
Los factores esenciales de esta teoría se componen de:
Entropía: Viene del griego ??t??p?a (entropía), que significa transformación o vuelta. Su símbolo es la S, y es una meta magnitud termodinámica. La magnitud real mide la variación de la entropía. En el Sistema Internacional es el J/K (o Clausius) definido como la variación de entropía que experimenta un sistema cuando absorbe el calor de 1 Julio (unidad) a la temperatura de 1 Kelvin.
Entalpía: Palabra acuñada en 1850 por el físico alemán Clausius. La entalpía es una meta magnitud de termodinámica simbolizada con la letra H. Su variación se mide, dentro del Sistema Internacional de Unidades, en julio. Establece la cantidad de energía procesada por un sistema y su medio en un instante A de tiempo y lo compara con el instante B, relativo al mismo sistema.
Negentropía: Se puede definir como la tendencia natural que se establece para los excedentes de energía de un sistema, de los cuales no usa. Es una meta magnitud, de la que su variación se mide en la misma magnitud que las anteriores.
Aplicando la teoría de sistemas a la entropía, obtenemos lo siguiente: Cuanta mayor superficie se deba de tomar en cuenta para la transmisión de la información, esta se corromperá de forma proporcional al cuadrado de la distancia a cubrir. Dicha corrupción tiene una manifestación evidente, en forma de calor, de enfermedad, de resistencia, de agotamiento extremo o de estrés laboral. Esto supone una reorganización constante del sistema, el cual dejará de cumplir con su función en el momento que le falte información. Ante la ausencia de información, el sistema cesará su actividad y se transformará en otro sistema con un grado mayor de orden. Dicho fenómeno está gobernado por el principio de Libertad Asintótica.
Enumeración de principios
Principio de libertad asintótica: Cuando el sistema aparenta alcanzar el estado preferente, es indicación de que los medios por los cuales transfiere la información no están capacitados para procesar la suficiente como para adaptarse a las nuevas necesidades impuestas por el cambio de un medio dinámico. Por lo que el medio cambia más rápido de lo que el sistema podrá adaptarse dentro de su periodo de existencia. Esto marca el paso del tiempo de forma relativa al sistema, observando el futuro más lejano para dicho sistema como el estado en el que las propiedades que lo definen como sistema X dejan de expresarse, siendo de uso por otros sistemas que demandan fragmentos de información útiles. Esto define otro principio base de los sistemas: La simetría.
Principio de simetría discreta (TGS base): La simetría física es aquella que solo se puede conceptualizar en la mente, pues dicho estado del sistema inhibe todo tipo de comunicación, al ser esta altamente incierta o con un grado de incertidumbre tan extremo, que no se pueden obtener paquetes claros. Por lo que se requiere un estudio profundo del sistema investigado en base a la estadística.
Proceso de estudio
Proceso 1: Se registra lo directamente observado, se asocia un registro de causa y efecto, y para aquellas que han quedado huérfanas (solo se observa la causa pero se desconoce el efecto) se las encasilla como propiedades diferenciales. Estas propiedades nacen de la necesidad de dar explicación al porqué lo observado no corresponde con lo esperado. De esto nacen las propiedades emergentes.
Proceso 2: Se establecen unos métodos que, aplicados, rompen dicha simetría obteniendo resultados físicos medibles en laboratorio. Los que no se corroboran, se abandonan y se especulan otras posibilidades.
Resumen general:
La entropía está relacionada con la tendencia natural de los objetos a caer en un estado de neutralidad expresiva. Los sistemas tienden a buscar su estado más probable, en el mundo de la física el estado más probable de esos sistemas es simétrico, y el mayor exponente de simetría es la inexpresión de propiedades. A nuestro nivel de realidad, esto se traduce en desorden y desorganización. En otras palabras: Ante un medio caótico, la relación tensorial de todas las fuerzas tenderán a dar un resultado nulo, ofreciendo un margen de expresión tan reducido que, por sí solo es inservible y despreciable.
La dinámica de estos sistemas es la de transformar y transferir la energía, siendo lo inaprovechable energía que se transforma en una alteración interna del sistema. En la medida que va disminuyendo la capacidad de transferencia, va aumentando la entropía interna del sistema.
Propiedad 1: Proceso mediante el cual un sistema tiende a adoptar la tendencia más económica dentro de su esquema de transacción de cargas.
La dinámica del sistema tiende a disipar su esquema de transacción de cargas, debido a que dicho esquema también está sometido a la propiedad 1, convirtiéndolo en un subsistema.
Lo realmente importante, no es lo despreciable del resultado, sino que surjan otros sistemas tan o más caóticos, de los cuales, los valores despreciables que resultan de la no cancelación absoluta de sus tensores sistemáticos, puedan ser sumados a los del sistema vecino, obteniendo así un resultado exponencial. Por lo que se asocian los niveles de estabilidad a un rango de caos con un resultado relativamente predecible, sin tener que estar observando la incertidumbre que causa la dinámica interna del propio sistema.
En sistemas relativamente sencillos, el estudio de los tensores que gobiernan la dinámica interna, ha permitido replicarlos para su utilización por el hombre. A medida que se ha avanzado en el estudio interior de los sistemas, se ha logrado ir replicando sistemas cada vez más complejos.
Aunque la entropía expresa sus propiedades de forma evidente en sistemas cerrados y aislados, también se evidencian, aunque de forma más discreta, a sistemas abiertos; éstos últimos tienen la capacidad de prolongar la expresión de sus propiedades a partir de la importación y exportación de cargas desde y hacia el ambiente, con este proceso generan neguentropía (entropía negativa), y la variación que existe dentro del sistema en el instante A de tiempo con la existente en el B.
Negentropía
La construcción de modelos desde la cosmovisión de la teoría general de los sistemas permite la observación de los fenómenos de un todo, a la vez que se analiza cada una de sus partes sin descuidar la interrelación entre ellas y su impacto sobre el fenómeno general entendiendo al fenómeno como el sistema, a sus partes integrantes como Subsistemas y al fenómeno general como suprasistema.
Sistema complejo
Un Sistema Complejo está compuesto por varias partes interconectadas o entrelazadas cuyos vínculos crean información adicional no visible antes por el observador. Como resultado de las interacciones entre elementos, surgen propiedades nuevas que no pueden explicarse a partir de las propiedades de los elementos aislados. Dichas propiedades se denominan propiedades emergentes.
El sistema complicado, en contraposición, también está formado por varias partes pero los enlaces entre éstas no añaden información adicional. Nos basta con saber cómo funciona cada una de ellas para entender el sistema. En un sistema complejo, en cambio, existen variables ocultas cuyo desconocimiento nos impide analizar el sistema con precisión. Así pues, un sistema complejo, posee más información que la que da cada parte independientemente. Para describir un sistema complejo hace falta no solo conocer el funcionamiento de las partes sino conocer como se relacionan entre sí.
Un ejemplo típico de sistema complejo es la Tierra.
La tierra está formada por varios sistemas simples que la describen:
Campo gravitatorio.
Campo magnético.
Flujo térmico.
Ondas elásticas.
Geodinámica.
Humanidad.
Cada uno de estos sistemas está bien estudiado pero desconocemos la forma en que interactúan y hacen evolucionar el sistema 'Tierra'. Hay, pues, mucha más información oculta en esas interrelaciones de sistemas.
Otros sistemas complejos típicos son:
El tiempo atmosférico.
Terremotos y volcanes.
Los ecosistemas.
Los seres vivos.
La conciencia.
Las Sociedades.
Las Ciudades.
La ingeniería de sistemas o ingeniería de los sistemas es un modo de enfoque interdisciplinario que permite estudiar y comprender la realidad, con el propósito de implementar u optimizar sistemas complejos. Puede verse como la aplicación tecnológica de la teoría de sistemas a los esfuerzos de la ingeniería, adoptando en todo este trabajo el paradigma sistémico. La ingeniería de sistemas integra otras disciplinas y grupos de especialidad en un esfuerzo de equipo, formando un proceso de desarrollo estructurado.
Una de las principales diferencias de la ingeniería de sistemas respecto a otras disciplinas de ingeniería tradicionales, consiste en que la ingeniería de sistemas no construye productos tangibles. Mientras que los ingenieros civiles podrían diseñar edificios o puentes, los ingenieros electrónicos podrían diseñar circuitos, los ingenieros de sistemas tratan con sistemas abstractos con ayuda de las metodologías de la ciencia de sistemas, y confían además en otras disciplinas para diseñar y entregar los productos tangibles que son la realización de esos sistemas.
Otro ámbito que caracteriza a la ingeniería de sistemas es la interrelación con otras disciplinas en un trabajo transdisciplinario.
De manera equivocada algunas personas confunden la ingeniería de sistemas con las ingenierías de computación o en informática, cuando ésta es muchísimo más cercana a la electrónica y la mecánica cuando se aplica.
Historia
Esta área comenzó a desarrollarse en la segunda parte del siglo XX con el veloz avance de la ciencia de sistemas. Las empresas empezaron a tener una creciente aceptación de que la ingeniería de sistemas podía gestionar el comportamiento impredecible y la aparición de características imprevistas de los sistemas (propiedades emergentes). Las decisiones tomadas al comienzo de un proyecto, cuyas consecuencias pueden no haber sido entendidas claramente, tienen una enorme implicación más adelante en la vida del sistema. Un ingeniero de sistemas debe explorar estas cuestiones y tomar decisiones críticas. No hay métodos que garanticen que las decisiones tomadas hoy serán válidas cuando el sistema entre en servicio años o décadas después de ser concebido, pero hay metodologías que ayudan al proceso de toma de decisiones. Ejemplos como la metodología de sistemas blandos
(Soft Systems Methodology), la dinámica de sistemas, modelo de sistemas viables (Viable System Model), teoría del Caos, teoría de la complejidad, y otros que también están siendo explorados, evaluados y desarrollados para apoyar al ingeniero en el proceso de toma de decisiones que se puede llegar a ser por medio del CENAL.
Objetivo
Discutir sobre las muchas maneras en que las computadoras tienen efecto en nuestras vidas.
Reconocer las principales características de las computadoras desde la época antigua hasta la época moderna.
Entender el propósito que tiene el Modelo de Von Newman.
Identificar la clasificación y los componentes de un sistema de computo
¿Qué es Ingeniería de Sistemas?
Ingeniería de Sistemas es la aplicación de las ciencias matemáticas y físicas para desarrollar sistemas que utilicen económicamente los materiales y fuerzas de la naturaleza para el beneficio de la humanidad.
Una definición especialmente completa -y que data de 1974- nos la ofrece un estándar militar de las fuerzas aéreas estadounidenses sobre gestión de la ingeniería (MIL-STD-499B Systems Engineering).
Ingeniería de Sistemas es la aplicación de esfuerzos científicos y de ingeniería para:
(1) transformar una necesidad de operación en una descripción de parámetros de rendimiento del sistema y una configuración del sistema a través del uso de un proceso interactivo de definición, síntesis, análisis, diseño, prueba y evaluación;
(2) integrar parámetros técnicos relacionados para asegurar la compatibilidad de todas las interfaces de programa y funcionales de manera que optimice la definición y diseño del sistema total;
(3) integrar factores de fiabilidad, mantenibilidad, seguridad, supervivencia, humanos y otros en el esfuerzo de ingeniería total a fin de cumplir los objetivos de coste, planificación y rendimiento técnico.
Campos relacionados
Muchos de los campos relacionados podrían ser considerados con estrechas vinculaciones a la ingeniería de sistemas. Muchas de estas áreas han contribuido al desarrollo de la ingeniería de sistemas como área independiente.
Sistemas de Información
Un sistema de información o (SI) es un conjunto de elementos que interactúan entre sí con el fin de apoyar las actividades de una empresa o negocio. No siempre un Sistema de Información debe estar automatizado (en cuyo caso se trataría de un sistema informático), y es válido hablar de Sistemas de Información Manuales. Normalmente se desarrollan siguiendo Metodologías de Desarrollo de Sistemas de Información….
El equipo computacional: el hardware necesario para que el sistema de información pueda operar. El recurso humano que interactúa con el Sistema de Información, el cual está formado por las personas que utilizan el sistema. Un sistema de información realiza cuatro actividades básicas: entrada, almacenamiento, procesamiento y salida de información. es la actualización de datos reales y específicos para la agilización de operaciones en una empresa
Investigación de operaciones
La investigación de operaciones o (IO) se enseña a veces en los departamentos de ingeniería industrial o de matemática aplicada, pero las herramientas de la IO son enseñadas en un curso de estudio en Ingeniería de Sistemas. La IO trata de la optimización de un proceso arbitrario bajo múltiples restricciones. (Para artículos de discusión (en inglés) ver: [1] y [2]).
Página siguiente |