Descargar

Biografías de Físicos (página 2)

Enviado por Digicentro Famal


Partes: 1, 2

Hacia 1507, Copérnico elaboró su primera exposición de un sistema astronómico heliocéntrico en el cual la Tierra orbitaba en torno al Sol, en oposición con el tradicional sistema tolemaico, en el que los movimientos de todos los cuerpos celestes tenían como centro nuestro planeta. Una serie limitada de copias manuscritas del esquema circuló entre los estudiosos de la astronomía, y a raíz de ello Copérnico empezó a ser considerado como un astrónomo notable; con todo, sus investigaciones se basaron principalmente en el estudio de los textos y de los datos establecidos por sus predecesores, ya que apenas superan el medio centenar las observaciones de que se tiene constancia que realizó a lo largo de su vida.

BIOGRAFÍA DE ISAAC NEWTON

Científico inglés (Woolsthorpe, Lincolnshire, 1642 – Londres, 1727). Hijo póstumo y prematuro, su madre preparó para él un destino de granjero; pero finalmente se convenció del talento del muchacho y le envió a la Universidad de Cambridge, en donde hubo de trabajar para pagarse los estudios. Allí Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos de mediados del siglo XVII, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros.

Tras su graduación en 1665, Isaac Newton se orientó hacia la investigación en Física y Matemáticas, con tal acierto que a los 29 años ya había formulado teorías que señalarían el camino de la ciencia moderna hasta el siglo xx; por entonces ya había obtenido una cátedra en su universidad (1669).

Suele considerarse a Isaac Newton uno de los protagonistas principales de la llamada «Revolución científica» del siglo XVII y, en cualquier caso, el padre de la mecánica moderna. No obstante, siempre fue remiso a dar publicidad a sus descubrimientos, razón por la que muchos de ellos se conocieron con años de retraso.

Newton coincidió con Leibniz en el descubrimiento del cálculo integral, que contribuiría a una profunda renovación de las Matemáticas; también formuló el teorema del binomio (binomio de Newton). Pero sus aportaciones esenciales se produjeron en el terreno de la Física.

Sus primeras investigaciones giraron en torno a la óptica: explicando la composición de la luz blanca como mezcla de los colores del arco iris, Isaac Newton formuló una teoría sobre la naturaleza corpuscular de la luz y diseñó en 1668 el primer telescopio de reflector, del tipo de los que se usan actualmente en la mayoría de los observatorios astronómicos; más tarde recogió su visión de esta materia en la obra Óptica (1703).

También trabajó en otras áreas, como la termodinámica y la acústica; pero su lugar en la historia de la ciencia se lo debe sobre todo a su refundación de la mecánica. En su obra más importante, Principios matemáticos de la filosofía natural (1687), formuló rigurosamente las tres leyes fundamentales del movimiento: la primera ley de Newton o ley de la inercia, según la cual todo cuerpo permanece en reposo o en movimiento rectilíneo uniforme si no actúa sobre él ninguna fuerza; la segunda o principio fundamental de la dinámica, según el cual la aceleración que experimenta un cuerpo es igual a la fuerza ejercida sobre él dividida por su masa; y la tercera, que explica que por cada fuerza o acción ejercida sobre un cuerpo existe una reacción igual de sentido contrario.

De estas tres leyes dedujo una cuarta, que es la más conocida: la ley de la gravedad, que según la leyenda le fue sugerida por la observación de la caída de una manzana del árbol. Descubrió que la fuerza de atracción entre la Tierra y la Luna era directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa, calculándose dicha fuerza mediante el producto de ese cociente por una constante G; al extender ese principio general a todos los cuerpos del Universo lo convirtió en la ley de gravitación universal.

La mayor parte de estas ideas circulaban ya en el ambiente científico de la época; pero Newton les dio el carácter sistemático de una teoría general, capaz de sustentar la concepción científica del Universo durante varios siglos. Hasta que terminó su trabajo científico propiamente dicho (hacia 1693), Newton se dedicó a aplicar sus principios generales a la resolución de problemas concretos, como la predicción de la posición exacta de los cuerpos celestes, convirtiéndose en el mayor astrónomo del siglo. Sobre todos estos temas mantuvo agrios debates con otros científicos (como Halley, Hooker, Leibniz o Flamsteed), en los que encajó mal las críticas y se mostró extremadamente celoso de sus posiciones.

Como profesor de Cambridge, Newton se enfrentó a los abusos de Jacobo II contra la universidad, lo cual le llevó a aceptar un escaño en el Parlamento surgido de la «Gloriosa Revolución» (1689-90). En 1696 el régimen le nombró director de la Casa de la Moneda, buscando en él un administrador inteligente y honrado para poner coto a las falsificaciones. Volvería a representar a su universidad en el Parlamento en 1701. En 1703 fue nombrado presidente de la Royal Society de Londres. Y en 1705 culminó la ascensión de su prestigio al ser nombrado caballero.

BIOGRAFÍA DE GALILEO GALILEI

(Pisa, actual Italia, 1564-Arcetri, id., 1642) Físico y astrónomo italiano. Fue el primogénito del florentino Vincenzo Galilei, músico por vocación aunque obligado a dedicarse al comercio para sobrevivir. En 1574 la familia se trasladó a Florencia, y Galileo fue enviado un tiempo -quizá como novicio- al monasterio de Santa Maria di Vallombrosa, hasta que, en 1581, su padre lo matriculó como estudiante de medicina en la Universidad de Pisa. Pero en 1585, tras haberse iniciado en las matemáticas fuera de las aulas, abandonó los estudios universitarios sin obtener ningún título, aunque sí había adquirido gusto por la filosofía y la literatura.

En 1589 consiguió una plaza, mal remunerada, en el Estudio de Pisa. Allí escribió un texto sobre el movimiento, que mantuvo inédito, en el cual criticaba los puntos de vista de Aristóteles acerca de la caída libre de los graves y el movimiento de los proyectiles; una tradición apócrifa, pero muy divulgada, le atribuye haber ilustrado sus críticas con una serie de experimentos públicos realizados desde lo alto del Campanile de Pisa.

En 1592 pasó a ocupar una cátedra de matemáticas en Padua e inició un fructífero período de su vida científica: se ocupó de arquitectura militar y de topografía, realizó diversas invenciones mecánicas, reemprendió sus estudios sobre el movimiento y descubrió el isocronismo del péndulo. En 1599 se unió a la joven veneciana Marina Gamba, de quien se separó en 1610 tras haber tenido con ella dos hijas y un hijo.

En julio de 1609 visitó Venecia y tuvo noticia de la fabricación del anteojo, a cuyo perfeccionamiento se dedicó, y con el cual realizó las primeras observaciones de la Luna; descubrió también cuatro satélites de Júpiter y observó las fases de Venus, fenómeno que sólo podía explicarse si se aceptaba la hipótesis heliocéntrica de Copérnico. Galileo publicó sus descubrimientos en un breve texto, El mensajero sideral, que le dio fama en toda Europa y le valió la concesión de una cátedra honoraria en Pisa.

En 1611 viajó a Roma, donde el príncipe Federico Cesi lo hizo primer miembro de la Accademia dei Lincei, fundada por él, y luego patrocinó la publicación (1612) de las observaciones de Galileo sobre las manchas solares. Pero la profesión de copernicanismo contenida en el texto provocó una denuncia ante el Santo Oficio; en 1616, tras la inclusión en el Índice de libros prohibidos de la obra de Copérnico, Galileo fue advertido de que no debía exponer públicamente las tesis condenadas.

Su silencio no se rompió hasta que, en 1623, alentado a raíz de la elección del nuevo papa Urbano VIII, publicó El ensayador, donde expuso sus criterios metodológicos y, en particular, su concepción de las matemáticas como lenguaje de la naturaleza. La benévola acogida del libro por parte del pontífice lo animó a completar la gran obra con la que pretendía poner punto final a la controversia sobre los sistemas astronómicos, y en 1632 apareció, finalmente, su Diálogo sobre los dos máximos sistemas del mundo; la crítica a la distinción aristotélica entre física terrestre y física celeste, la enunciación del principio de la relatividad del movimiento, así como el argumento del flujo y el reflujo del mar presentado (erróneamente) como prueba del movimiento de la Tierra, hicieron del texto un verdadero manifiesto copernicano.

El Santo Oficio abrió un proceso a Galileo que terminó con su condena a prisión perpetua, pena suavizada al permitírsele que la cumpliera en su villa de Arcetri. Allí transcurrieron los últimos años de su vida, ensombrecidos por la muerte de su hija Virginia, por la ceguera y por una salud cada vez más quebrantada. Consiguió, con todo, acabar la última de sus obras, los Discursos y demostraciones matemáticas en torno a dos nuevas ciencias, donde, a partir de la discusión sobre la estructura y la resistencia de los materiales, demostró las leyes de caída de los cuerpos en el vacío y elaboró una teoría completa sobre el movimiento de los proyectiles. El análisis galileano del movimiento sentó las bases físicas y matemáticas sobre las que los científicos de la siguiente generación edificaron la mecánica física.

BIOGRAFÍA  DE RENé DESCARTES

(La Haye, Francia, 1596 – Estocolmo, Suecia, 1650) Filósofo y matemático francés. René Descartes se educó en el colegio jesuita de La Fléche (1604-1612), donde gozó de un cierto trato de favor en atención a su delicada salud.

Obtuvo el título de bachiller y de licenciado en derecho por la facultad de Poitiers (1616), y a los veintidós años partió hacia los Países Bajos, donde sirvió como soldado en el ejército de Mauricio de Nassau. En 1619 se enroló en las filas del duque de Baviera; el 10 de noviembre, en el curso de tres sueños sucesivos, René Descartes experimentó la famosa «revelación» que lo condujo a la elaboración de su método.

Tras renunciar a la vida militar, Descartes viajó por Alemania y los Países Bajos y regresó a Francia en 1622, para vender sus posesiones y asegurarse así una vida independiente; pasó una temporada en Italia (1623-1625) y se afincó luego en París, donde se relacionó con la mayoría de científicos de la época. En 1628 decidió instalarse en los Países Bajos lugar que consideró más favorable para cumplir los objetivos filosóficos y científicos que se había fijado, y residió allí hasta 1649.

Los cinco primeros años los dedicó principalmente a elaborar su propio sistema del mundo y su concepción del hombre y del cuerpo humano, que estaba a punto de completar en 1633 cuando, al tener noticia de la condena de Galileo, renunció a la publicación de su obra, que tendría lugar póstumamente.

En 1637 apareció su famoso Discurso del método, presentado como prólogo a tres ensayos científicos. Descartes proponía una duda metódica, que sometiese a juicio todos los conocimientos de la época, aunque, a diferencia de los escépticos, la suya era una duda orientada a la búsqueda de principios últimos sobre los cuales cimentar sólidamente el saber.

Este principio lo halló en la existencia de la propia conciencia que duda, en su famosa formulación «pienso, luego existo». Sobre la base de esta primera evidencia, pudo desandar en parte el camino de su escepticismo, hallando en Dios el garante último de la verdad de las evidencias de la razón, que se manifiestan como ideas «claras y distintas».

El método cartesiano, que Descartes propuso para todas las ciencias y disciplinas, consiste en descomponer los problemas complejos en partes progresivamente más sencillas hasta hallar sus elementos básicos, las ideas simples, que se presentan a la razón de un modo evidente, y proceder a partir de ellas, por síntesis, a reconstruir todo el complejo, exigiendo a cada nueva relación establecida entre ideas simples la misma evidencia de éstas.

Los ensayos científicos que seguían, ofrecían un compendio de sus teorías físicas, entre las que destaca su formulación de la ley de inercia y una especificación de su método para las matemáticas. Los fundamentos de su física mecanicista, que hacía de la extensión la principal propiedad de los cuerpos materiales, los situó en la metafísica que expuso en 1641, donde enunció así mismo su demostración de la existencia y la perfección de Dios y de la inmortalidad del alma. El mecanicismo radical de las teorías físicas de Descartes, sin embargo, determinó que fuesen superadas más adelante.

Pronto su filosofía empezó a ser conocida y comenzó a hacerse famoso, lo cual le acarreó amenazas de persecución religiosa por parte de algunas autoridades académicas y eclesiásticas, tanto en los Países Bajos como en Francia. En 1649 aceptó la invitación de la reina Cristina de Suecia y se desplazó a Estocolmo, donde murió cinco meses después de su llegada a consecuencia de una neumonía.

Descartes es considerado como el iniciador de la filosofía racionalista moderna por su planteamiento y resolución del problema de hallar un fundamento del conocimiento que garantice la certeza de éste, y como el filósofo que supone el punto de ruptura definitivo con la escolástica.

BIOGRAFIA DE ALBERT EINSTEIN

Albert Einstein: su vida y obra. (Ulm, 1879 – Princeton, 1955) Científico estadounidense de origen alemán. En 1880 su familia se trasladó a Munich y luego (1894-96) a Milán. Frecuentó un instituto muniqués, prosiguió sus estudios en Italia y finalmente se matriculó en la Escuela Politécnica de Zurich (1896-1901). Obtenida la ciudadanía suiza (1901), encontró un empleo en el Departamento de Patentes; aquel mismo año contrajo matrimonio.

En 1905 publicó en Annalen der Physik sus primeros trabajos sobre la teoría de los quanta, la de la relatividad y los movimientos brownianos, y llegó a profesor libre de la Universidad de Berna. En 1909 fue nombrado profesor adjunto de la de Zurich y en 1910 pasó a enseñar Física teórica en la Universidad alemana de Praga. Luego dio clases de esta misma disciplina en la Escuela Politécnica zuriquesa (1912). En 1913, nombrado miembro de la Academia de Prusia, se trasladó a Berlín. En 1916 se casó en segundas nupcias. Publicó entonces Die Grundlage der allgemeinen Relativitätstheorie e inició una serie de viajes a los Estados Unidos, Inglaterra, Francia, China, Japón, Palestina y España (1919-32).

En 1924 entregó a la imprenta Ãœber die spezielle und die allgemeine Relativitätstheorie y el año siguiente recibió el premio Nobel por su teoría sobre el efecto fotoeléctrico. En 1933 abandonó la Academia de Prusia y se enfrentó valerosamente a Hitler. Iniciada la persecución nazi contra los judíos, marchó a América y enseñó en el Instituto de Estudios Superiores de Princeton (Nueva Jersey). En 1945 se retiró a la vida privada, a pesar de lo cual prosiguió intensamente su actividad científica.

Einstein es uno de los grandes genios de la humanidad y en el ámbito de las ciencias físicas ha llevado a cabo una revolución todavía en marcha y cuyos alcances no pueden medirse aún en toda su amplitud. En su primera formulación (teoría de la relatividad restringida) extendió a los fenómenos ópticos y electromagnéticos el principio de relatividad galileo-newtoniano, anteriormente limitado sólo al campo de la Mecánica, y afirmó la validez de las leyes de esta última tanto respecto de un sistema galileano de referencia K, como en relación con otro de referencia K' en movimiento rectilíneo y uniforme respecto de K.

Según las teorías de Einstein, la ley de la propagación de la luz en el vacío debe tener, como cualquier otra general de la naturaleza, la misma expresión ya referida, por ejemplo, a una garita ferroviaria o a un vagón de tren en movimiento rectilíneo y uniforme en relación con ésta; dicho en otros términos, la velocidad de la luz no se ajusta a la de los sistemas de referencia que se mueven en línea recta y de manera uniforme respecto del movimiento de la misma luz. En realidad, el experimento de Michelson-Morley, mil veces repetido y comprobado a partir de 1881, había demostrado la diferencia existente entre la velocidad de la luz y la de la Tierra.

La relatividad restringida ofrece la razón de tal hecho, antes inexplicable. A su vez, la invariabilidad de la velocidad de la luz lleva a la introducción, en Física, de las transformaciones de Lorentz, según las cuales la distancia temporal entre dos acontecimientos y la que separa dos puntos de un cuerpo rígido se hallan en función del movimiento del sistema de referencia, y por ello resultan distintas para K y K'. Ello nos libra, en la formulación de las leyes ópticas y electromagnéticas, de la relación con el hipotético sistema fijo "absoluto", rompecabezas metafísico de la Física clásica, puesto que tales leyes, como aparecen formuladas en la relatividad restringida, valen para K e igualmente para K', lo mismo que las de la Mecánica.

El tránsito de la Física clásica a la relatividad restringida representa no sólo un progreso metodológico. Esta última, en efecto, presenta -como observa Einstein (Sobre la teoría especial y general de la relatividad)- un valor heurístico mucho mayor que el de la Física clásica, por cuanto permite incluir en la teoría, como consecuencia de ella, un notable número de fenómenos, entre los que figuran, por ejemplo, la aparente excepción en la relación de la velocidad de la luz con la de una corriente de agua en el experimento de Fizeau; el aumento de la masa de los electrones al incrementarse las velocidades de éstos, observado en los rayos catódicos y en las emanaciones del radio; la masa de los rayos cósmicos, cuarenta mil veces superior a la de la misma en reposo; el efecto Doppler; el efecto Compton; la existencia del fotón y la magnitud de su impulso, previstas por Einstein y comprobadas luego experimentalmente; la cantidad de energía requerida por las masas de los núcleos para la transmutación de los elementos; la fina estructura de las rayas del espectro, calculada por Sommerfield mediante la Mecánica relativista; la existencia de los electrones positivos, prevista por Dirac como solución a ciertas ecuaciones procedentes de la Mecánica de la relatividad; el magnetismo de los electrones, calculado por Dirac con la transformación de las ecuaciones de Schrödinger en las correspondientes de la Mecánica relativista, etc.

Una de las consecuencias de la relatividad restringida es el descubrimiento de la existencia de una energía E igual a mc2 en toda masa m. Esta famosa y casi mágica fórmula nos dice que la masa puede transformarse en energía, y viceversa; de ahí el memorable anuncio hecho por Einstein hace cincuenta años sobre la posibilidad de la desintegración de la materia, llevada luego a cabo por Fermi.

Sin embargo, la relatividad restringida no elimina el sistema fijo absoluto del campo de la Física de la gravitación. Tal sistema, en última instancia, nace del hecho por el cual la relatividad restringida admite aún, en la formulación de las leyes de la naturaleza, la necesidad de situarse bajo el ángulo de los sistemas privilegiados K y K' ¿Qué ocurriría de ser formuladas las leyes físicas de tal suerte que valieran también para un sistema K" en movimiento rectilíneo no uniforme, o bien uniforme pero no según una línea recta? Aquí la distinción entre campo de inercia y de gravitación deja de ser absoluta, puesto que, por ejemplo, respecto de varios individuos situados en un ascensor que caiga de acuerdo con un movimiento uniformemente acelerado, todos los objetos del interior del ascensor se hallan en un campo de inercia (quien dejara suelto entonces un pañuelo vería cómo éste se mantiene inmóvil ante sí), en tanto que para un observador situado fuera, y en relación con el cual el aparato se mueve con un movimiento uniformemente acelerado, el ascensor se comporta como un campo de gravitación.

La relatividad general es precisamente la Física que mantiene la validez de las leyes incluso respecto del sistema K". El postulado de ésta tiene como consecuencia inmediata la igualdad de la masa inerte y de la ponderal, que la Física clásica había de limitarse a aceptar como hecho inexplicable. Con la relatividad general, la Física alcanza el mayor grado de generalidad y, si cabe, de objetividad. ¿Qué ley natural, en efecto, es válida para sistemas de referencia privilegiados? Ninguna, en realidad. Las leyes naturales deben poder ser aplicables a cualquier sistema de referencia; es ilógico pensar, por ejemplo, que la Física no resulta admisible dentro de un ascensor que caiga con un movimiento uniformemente acelerado o en un tiovivo que gire.

La relatividad general comporta la previsión teórica de numerosos hechos; así, por ejemplo: la desviación de los rayos luminosos que se aproximan a una masa; la traslación de las rayas espectrales; la del movimiento perihélico de Mercurio, etc. La experiencia ha confirmado plenamente estas previsiones teóricas.

Durante los últimos años de su existencia, Einstein fijó los fundamentos de una tercera teoría, la del "campo unitario", que unifica en un solo sistema tanto las ecuaciones del ámbito electromagnético como las del campo de la gravitación. El desarrollo ulterior de esta teoría, dejada por el sabio como herencia, permitirá seguramente la obtención -según observa Infeld, discípulo de Einstein- no sólo de las ecuaciones de ambos campos, sino también de las correspondientes a la teoría de los quanta. Entre sus obras deben destacarse Las bases de la teoría general de la relatividad (1916); Sobre la teoría especial y general de la relatividad (1920); Geometría y experiencia (1921) y El significado de la relatividad (1945).

BIOGRAFIA DE MAX PLANCK

(Ernst Karl Ludwig Planck; Kiel, actual Alemania, 1858-Gotinga, Alemania, 1947) Físico alemán. Dotado de una extraordinaria capacidad para disciplinas tan dispares como las artes, las ciencias y las letras, se decantó finalmente por las ciencias puras, y siguió estudios de física en las universidades de Munich y Berlín; en ésta tuvo como profesores a Helmholtz y Kirchhoff. Tras doctorarse por la Universidad de Munich con una tesis acerca del segundo principio de la termodinámica (1879), fue sucesivamente profesor en las universidades de Munich, Kiel (1885) y Berlín (1889), en la última de las cuales sucedió a su antiguo profesor, Kirchhoff. Enunció la ley de Wien (1896) y aplicó el segundo principio de la termodinámica, formulando a su vez la ley de la radiación que lleva su nombre (ley de Planck, 1900).

A lo largo del año 1900 logró deducir dicha ley de los principios fundamentales de la termodinámica, para lo cual partió de dos suposiciones: por un lado, la teoría de L. Boltzmann, según la cual el segundo principio de la termodinámica tiene carácter estadístico, y por otro, que el cuerpo negro absorbe la energía electromagnética en cantidades indivisibles elementales, a las que dio el nombre de quanta (cuantos).

El valor de dichos cuantos debía ser igual a la frecuencia de las ondas multiplicada por una constante universal, la llamada constante de Planck. Este descubrimiento le permitió, además, deducir los valores de constantes como la de Boltzmann y el número de Avogadro.

Ocupado en el estudio de la radiación del cuerpo negro, trató de describir todas sus características termodinámicas, e hizo intervenir, además de la energía, la entropía. Conforme a la opinión de L. Boltzmann de que no lograría obtener una solución satisfactoria para el equilibrio entre la materia y la radiación si no suponía una discontinuidad en los procesos de absorción y emisión, logró proponer la «fórmula de Planck», que representa con exactitud la distribución espectral de la energía para la radiación del llamado cuerpo negro. Para llegar a este resultado tuvo que admitir que los electrones no podían describir movimientos arbitrarios, sino tan sólo determinados movimientos privilegiados y, en consecuencia, que sus energías radiantes se emitían y se absorbían en cantidades finitas iguales, es decir, que estaban cuantificadas.

La hipótesis cuántica de Planck supuso una revolución en la física del siglo XX, e influyó tanto en Einstein (efecto fotoeléctrico) como en N. Bohr (modelo de átomo de Bohr). El primero concluyó, en 1905, que la única explicación válida para el llamado efecto fotoeléctrico consiste en suponer que en una radiación de frecuencia determinada la energía se concentra en corpúsculos (cuantos de luz, conocidos en la actualidad como fotones) cuyo valor es igual al producto de la constante de Planck por dicha frecuencia. A pesar de ello, tanto Planck como el propio Einstein fueron reacios a aceptar la interpretación probabilística de la mecánica cuántica (escuela de Copenhague). Sus trabajos fueron reconocidos en 1918 con la concesión del Premio Nobel de Física por la formulación de la hipótesis de los cuantos y de la ley de la radiación.

Fue secretario de la Academia Prusiana de Ciencias (1912-1938) y presidente de la Kaiser Wilhelm Gesellschaft de Ciencias de Berlín (1930-1937) que, acabada la Segunda Guerra Mundial, adoptó el nombre de Sociedad Max Planck. Su vida privada estuvo presidida por la desgracia: contrajo nupcias en dos ocasiones, sus cuatro hijos murieron en circunstancias trágicas y su casa quedó arrasada en 1944 durante un bombardeo; recogido por las tropas estadounidenses, fue trasladado a Gotinga, donde residió hasta su muerte.

BIOGRAFÍA DE JOSEPH-LOUIS GAY-LUSSAC

(Saint-Léonard-de-Noblat, Francia, 1778-París, 1850) Físico francés. Se graduó en la école Polytechnique parisina en 1800. Abandonó una posterior ampliación de sus estudios tras aceptar la oferta de colaborador en el laboratorio de Claude-Louis Berthollet, bajo el patrocinio de Napoleón. En 1802 observó que todos los gases se expanden una misma fracción de volumen para un mismo aumento en la temperatura, lo que reveló la existencia de un coeficiente de expansión térmica común que hizo posible la definición de una nueva escala de temperaturas, establecida con posterioridad por lord Kelvin. En 1804 efectuó una ascensión en globo aerostático que le permitió corroborar que tanto el campo magnético terrestre como la composición química de la atmósfera permanecen constantes a partir de una determinada altura. En 1808, año en que contrajo matrimonio, enunció la ley de los volúmenes de combinación que lleva su nombre, según la cual los volúmenes de dos gases que reaccionan entre sí en idénticas condiciones de presión y temperatura guardan una relación sencilla.

BIOGRAFIA DE CHARLES COULOMB

(Angulema, Francia, 1736-París, 1806) Físico francés. Su delebridad se basa sobre todo en que enunció la ley física que lleva su nombre (ley de Coulomb), que establece que la fuerza existente entre dos cargas eléctricas es proporcional al producto de las cargas eléctricas e inversamente proporcional al cuadrado de la distancia que las separa. Las fuerzas de Coulomb son unas de las más importantes que intervienen en las reacciones atómicas.

Después de pasar nueve años en las Indias Occidentales como ingeniero militar, regresó a Francia con la salud maltrecha. Tras el estallido de la Revolución Francesa, se retiró a su pequeña propiedad en la localidad de Blois, donde se consagró a la investigación científica. En 1802 fue nombrado inspector de la enseñanza pública.

Influido por los trabajos del inglés Joseph Priestley (ley de Priestley) sobre la repulsión entre cargas eléctricas del mismo signo, desarrolló un aparato de medición de las fuerzas eléctricas involucradas en la ley de Priestley, y publicó sus resultados entre 1785 y 1789. Estableció que las fuerzas generadas entre polos magnéticos iguales u opuestos son inversamente proporcionales al cuadrado de la distancia entre ellos, lo cual sirvió de base para que, posteriormente, Simon-Denis Poisson elaborara la teoría matemática que explica las fuerzas de tipo magnético.

También realizó investigaciones sobre las fuerzas de rozamiento, y sobre molinos de viento, así como también acerca de la elasticidad de los metales y las fibras de seda. La unidad de carga eléctrica del Sistema Internacional lleva el nombre de culombio (simbolizado C) en su honor.

 

 

 

 

 

Autor:

Francisco Augusto Montas Ram?rez

peniel2806[arroba]hotmail.com

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente