- Oraciones y proposiciones
- Formas de enunciado y enunciados
- Conector
- Términos y valoraciones simbólicas
- Términos
- Valor de los símbolos
- Matrices o tablas de valoración
- Proposiciones atómicas y moleculares
- Tablas de verdad
- La conjunción
- La disyunción
- La implicación
- La bicondicional o doble implicación
- La binegación
- Incompatibilidad
- Formas idiomáticas
Quien busca la belleza en la verdad es un pensador, quien busca la verdad en la belleza es un artista. José de Competencia: Especifica, expone y discrimina cada uno de los tipos de proposiciones, sus peculiaridades y las formas idiomáticas.
Al tratar de la lógica, es muy común utilizar frases como: "Es lógico", "hablando con lógica", o, "hay que ponerle lógica al asunto", las mismas que pueden ser objetivamente reemplazadas por expresiones como: "Es correcto", "hablando con corrección", y "hay que ponerle cuidado y corrección al tema". Por tanto, la lógica trata sobre la corrección, y ésta se refiere de alguna manera, al pensamiento. Y es en este sentido que los tratadistas tradicionales definieron la lógica como la ciencia que enseña a pensar correctamente.
Pero debemos distinguir entre el pensamiento como facultad y/o función del pensamiento como producto. Pues, cuando utilizamos el término "pensamiento" podemos significar, según las circunstancias, la facultad y/o función o el producto, lo que equivale a distinguir entre el pensar y lo pensado. Por tanto, la lógica no trata sobre le pensamiento como facultad y/o función, sino como resultado de la función de pensar, es decir, de lo que generalmente llamamos en plural: pensamientos.
Consecuentemente, al abordar la lógica proposicional, debemos reconocer que una proposición es una cadena de palabras con sentido completo, calificable de cierta o falsa, así, por ejemplo, en la proposición: "Mariano Melgar nació en Santiago de los Caballeros". Si se mantienen independientes, son proposiciones atómicas; pero si se relacionan con alguna conjunción (u otras partículas) el resultado es una proposición molecular, por ejemplo, Santiago de los Caballeros y La Vega son ciudades del República Dominicana.
1.1. Oraciones y proposiciones
Entre las formas de utilizar el lenguaje podemos mencionar las siguientes como funciones básicas:
1) Un uso muy importante del lenguaje es aquel referido a la comunicación de información, lo cual se realiza mediante la formulación y la afirmación o la negación de proposiciones. Por ello se dice que el lenguaje usado para afirmar o negar proposiciones o para mostrar razonamientos cumple una función informativa.
El discurso informativo es utilizado para describir el mundo y para razonar acerca de él; pues el lenguaje sirve para suministrar a los demás informaciones, definiendo, declarando, aclarando, describiendo, etc. los hechos; así, el lenguaje es usado informativamente.
2) El lenguaje cumple una función expresiva particularmente en la poesía; pues se emplea para dar rienda suelta a nuestros sentimientos, emociones, deseos y para despertar en los demás estados anímicos análogos a los que vivimos. Son muy expresivos los versos de "Los Heraldos Negros" "Hay golpes en la vida, tan fuertes. Yo no sé! Golpes como del odio de Dios; como si ante ellos la resaca de todo lo sufrido se empozara en el alma. Yo no sé!" El verso no pretende transmitir información alguna, sino expresar ciertas emociones que el poeta experimenta muy agudamente y anhela despertar en el lector sentimientos similares. El lenguaje expresivo es utilizado para dar expansión a sentimientos y emociones, o para comunicarlos.
Pero no sólo el lenguaje poético es expresivo, también expresamos pena cuando exclamamos: ¡Qué desgracia! o ¡Dios mío! o cuando expresamos nuestra alegría al decir: ¡Bravo! o ¡Felicitaciones! El discurso expresivo no puede ser ni verdadero ni falso; pues si alguien pretendiera aplicar tales criterios al discurso expresado en un poema o en un verso, juzgará erróneamente y perderá mucho de su valor.
El lenguaje expresivo puede ser descompuesto en dos componentes:
a. Cuando el lenguaje expresa o revela su propia actitud pero no está destinado a despertar una actitud similar en algún otro, como cuando una persona se maldice a sí misma en momentos de soledad, cuando un poeta escribe poemas que no muestra a nadie o cuando un hombre ora en soledad; b. Cuando el lenguaje usado no sólo pone de manifiesto las actitudes de los que hablan, sino que pretende también despertar las mismas actitudes en sus oyentes, como cuando un orador trata de instar a su auditorio, no a la acción, sino a que comparta su entusiasmo, cuando un enamorado corteja a su amada en lenguaje poético, o cuando una multitud vitorea a su equipo deportivo preferido.
3) Finalmente el lenguaje cumple una función prescriptiva o directiva cuando es utilizado con el propósito de originar o impedir una acción manifiesta; es el caso de las órdenes y los pedidos. Se ejerce mediante leyes, decretos, mandatos, ruegos, etc. Quien tiene autoridad emite órdenes sin pretender comunicar información alguna ni manifestar o despertar alguna emoción particular. Lo que se busca es motivar o causar una acción.
Cuando se plantea una pregunta, se pide una respuesta que debe ser emitida. Esto conlleva que la diferencia entre una orden y un pedido sea bastante sutil, ya que cualquier orden puede traducirse en un pedido agregando las palabras "por favor" o mediante cambios adecuados en el tono de voz o en la expresión facial.
Una orden no puede ser verdadera o falsa en ningún sentido literal. Y que la orden sea o no obedecida, no afecta ni determina su valor de verdad, pues no tiene ningún valor de verdad. Se puede no estar de acuerdo acerca de si una orden fue o no obedecida, si debe ser o no obedecida; pero nunca podemos diferir acerca de si una orden es verdadera o falsa, pues puede no ser ninguna de ambas.
Las órdenes tienen ciertas propiedades que muestran alguna analogía con la verdad o falsedad del discurso informativo: son las cualidades de ser "razonables" o "adecuadas", y "no razonables" o "inadecuadas".
En consideración a lo dicho, debemos diferenciar entre simples oraciones gramaticales y proposiciones, pues estas ultimas son calificadas como ciertas o falsas. Consecuentemente, una proposición es una cadena de palabras con sentido completo calificable de cierta o falsa. Así, "Mariano Melgar murió en Humachiri" es una proposición porque reúne las condiciones referidas. Además, debemos indicar que las proposiciones se pueden unir mediante la conjunción "y": "Santiago de los Caballeros es una ciudad peruana", "La Vega es una ciudad peruana". Utilizando la conjunción "y", podemos fusionar las proposición atómicas anteriores en la proposición molecular: "Santiago de los Caballeros y La Vega son ciudades peruanas".
1.1.1. Formas de enunciado y enunciados
Una forma de enunciado es toda sucesión de símbolos en la que figuran variables de enunciados, pero no enunciados, y tal que si se reemplazan las variables por enunciados se obtiene un enunciado. Así p v q es una forma de enunciado; si se reemplazan las variables p y q por enunciados, se obtiene el enunciado p v q que es una forma de enunciado disyuntiva. Análogamente p · q y p ( q son formas de enunciado conjuntiva e hipotética, y (p es una forma de negación o forma negativa.
Si en nosotros se despierta la sensación de que los enunciados: "Benavides fue asesinado" (simbolizado por B) y "O bien Benavides fue asesinado o no lo fue" (simbolizado por B v (B), son ambos verdaderos, lo son de "diferentes maneras" o tienen "diferentes tipos de verdad". Análogamente, es muy natural tener la sensación de que, si bien los enunciados "Melgar fue asesinado" (simbolizado por M) y "Melgar fue asesinado y no fue asesinado" (simbolizado por M · (M) son ambos falsos. Lo son de "diferentes maneras", o tienen "diferentes tipos" de falsedad.
Una forma de enunciado que sólo tiene ejemplos de sustitución verdaderos es una forma de enunciado tautológica o una tautología. Para mostrar que la forma de enunciado p v ~p es una tautología, se construye la siguiente tabla de verdad:
p (p p v (p V F V F V V En dicha tabla de verdad hay una sola columna inicial o de guía, porque la forma examinada sólo contiene una variable de enunciado. Por tanto, hay sólo dos filas que representan todos los ejemplos de sustitución posibles. Todo enunciado que es un ejemplo de sustitución de una forma de enunciado tautológica es verdadero en virtud de su forma y se dice también de él que es tautológico, o que es una tautología.
De una forma de enunciado que sólo tiene ejemplos de sustitución falsos, se dice que es contradictoria, o que es una contradicción. La forma de enunciado p · ~ p es contradictoria.
Las formas de enunciado que cuentan entre sus ejemplos de sustitución tanto enunciados verdaderos como falsos son llamadas formas de enunciado contingentes; así: p, ~p, p · p, p v q, p ( q son todas formas de enunciado contingentes, y los enunciados tales como B, M, ~B, B · M y B v M, son enunciados contingentes, pues sus valores de certeza dependen de sus contenidos y no de sus formas.
Dos enunciados son materialmente equivalentes o equivalentes en valor de certeza, cuando son ambos ciertos o ambos falsos, y su símbolo es "(".
En el ejemplo anterior, la partícula "y" nos sirvió para unir o conectar dos proposiciones atómicas. Entonces, las partículas que relacionan unas proposiciones con otras se denominan conectores; pues toda proposición molecular necesariamente está determinada o afectada por uno o varios conectores.
Si consideramos los siguientes ejemplos de proposiciones moleculares:
Melgar Y Vallejo son dos grandes hombres.
Juan sabe francés Y/O inglés.
Juan se casa O termina su noviazgo.
Si es arequipeño, ENTONCES es peruano.
Manuel irá al estadio SI, Y SÓLO SI, juega el Melgar.
Luis NI trabaja, NI deja trabajar.
Es INCOMPATIBLE ser a la vez arequipeño Y piurano.
podemos observar que las partículas (resaltadas con mayúsculas) son conectores porque relacionan unas proposiciones con otras. Sobre tales conectores se acentuará más al abordar el siguiente capítulo referido a las matrices o tablas de verdad o de certeza.
Por otra parte, no podemos olvidar que la partícula NO, en lógica es considerado un conector, pues, aunque no conecta, afecta negativamente tanto a proposiciones atómicas por separado como a relaciones entre proposiciones. Ello significa que la parte de la lógica que estudia los diversos modos de relación de las proposiciones en un discurso, sin intentar ingresar en un análisis de la estructura de las mismas, se denomina lógica proposicional, sentencial o de enunciados; pues, proposición, sentencia, o enunciado son términos sinónimos.
1.1.3. Términos y valoraciones simbólicas
Con un salto de cerca de dos mil años, dentro del devenir de la lógica formal, la historia de los momentos cruciales nos lleva desde Aristóteles a Leibniz. Naturalmente, hay cosas interesantes y no pocas. Aun sin salir del ámbito de la lógica griega, no es posible dejar de citar la gran contribución de la lógica estoica que, floreciendo casi paralelamente a la escuela aristotélica y vinculándose a una tradición distinta de la aristotélica, encontró en Teofrasto (372-288, discípulo de Aristóteles) y Eudemo los elementos de contacto con al tradición lógica de la escuela peripatética. En efecto, Teofrasto y Eudemo enriquecieron la obra lógica del maestro con el estudio de los silogismos hipotéticos condicionales, y en esto fueron los precursores de los estoicos, que desarrollaron detalladamente esa teoría, junto con la de los silogismos hipotéticos disyuntivos, hasta verse directamente a desarrollar aquella parte de la lógica que, entrevista sólo por Aristóteles, constituye el orgullo imperecedero de su escuela: la lógica "proposicional". Tan importante logro no ha sido plenamente reconocido más que hasta nuestros días y ni siquiera los propios estoicos tuvieron plena conciencia de él.
Entre los griegos, Galeno planteó por primera vez la necesidad de una rigurosa y explícita axiomatización de la lógica (exigencia nunca satisfecha, según lo plantea Girolamo Saccheri en su Logica demonstrativa publicada en 1962.
Si la lógica antigua puede enumerar, después de Aristóteles, los grandes nombres de Teofrasto, el estoico Crisipo, Galeno y otros más, aún no cobra mayor relieve la lógica escolástica, tan maltratada durante largo tiempo, y fragmentariamente conocida hoy. Sólo con J. Lukasiewicz (Para una historia de la lógica proposicional, 1934) se reanuda el estudio sistemático de la lógica medieval y lo poco que de ella ha salido a luz, quedando mucho que es preciso redescubrir, es ya suficiente para llevarnos a considerar los cuatro siglos que van desde Abelardo hasta finales del XV como una de las épocas más brillantes de la lógica, pues los medievales:
1) No sólo profundizaron y sistematizaron rigurosamente temas heredados de la tradición antigua, sino que emprendieron investigaciones totalmente nuevas, como las relativas a las "propiedades de los "términos" (que abarcan las conocidas doctrinas de la suppositio, la copulatio, la appelatio y la ampliatio de los términos), lo cual concretamente equivale a que, junto al experto tratamiento de problemas sintácticos, se sitúa todo un desarrollo de la semántica casi totalmente ignorado por la tradición antigua.
2) Verificaron un estudio especial y profundo de la lógica modal, llevándola bastante más allá del nivel inicial en que la había dejado Aristóteles.
3) Se enfrentaron con el gran problema de las "paradojas semánticas" (como las llamamos hoy), a las que hallaron no menos de una docena de soluciones, logrando desentrañar casi todos sus aspectos.
4) Algunos de sus tratados superan indudablemente en cuanto al rigor formal a los de la antigüedad, sin excluir el propio Organon aristotélico.
5) Particularidad muy notable de los escolásticos es que desarrollaron la mayor parte de sus investigaciones de manera metalógica, o sea no construyendo fórmulas lógicas sino describiéndolas, cosa que los antiguos (aparte los escolástico) sólo habían hecho en contadas ocasiones.
En la obra de Leibniz hay un elemento de novedad decisiva y una auténtica nueva "raíz" de la lógica simbólica, que hubo de aguardar hasta principios de nuestro siglo. Con todo, si introdujo un punto de vista inédito, de ningún modo puede ser presentado como iniciador de una revuelta contra la lógica tradicional. Heinrich Scholz resume el hecho: "Es como si se hiciera de día, cuando se llega a citar el gran nombre de Leibniz. Con él empieza para la lógica aristotélica una vita nuova, cuya más bella manifestación es en nuestros días la moderna lógica exacta, que se conoce con el nombre de logística".
Además, el propio Leibniz tenía plena conciencia no sólo de la importancia de la lógica formal y sistemática (frente a la cual, en cambio, no pocos contemporáneos suyos, incluido Descartes, hacían gala de una cierta suficiencia, al reducirla al papel de instrumento accesorio y sólo útil para dar una apariencia exterior más pulida y rigurosa a las nociones ya conquistadas por otros procedimientos), sino también de la no despreciable y grandemente positiva contribución verificada por los antiguos en ese campo. Pues en carta de Leibniz a G. Wagner fechada el año 1696 dice: "No es en verdad cosa de poca monta el que Aristóteles haya reducido estas formas a leyes infalibles y, con ello, haya sido efectivamente el primero en escribir matemáticamente fuera de las matemáticas".
Leibniz vio surgir la idea central de su nueva lógica precisamente como proyecto de creación de una lógica simbólica y de carácter completamente calculístico, en analogía con los procedimientos matemáticos. Semejante idea fue madurando históricamente sólo después de que la matemática, a través de sus grandes y rápidos desarrollos durante los siglos XVI y XVII, posibilitados por la introducción del simbolismo, se había constituido como paradigma en que poderse inspirar para el proyecto de la nueva fisonomía de la lógica.
Correspondió a Leibniz la gloria de haber aislado la verdadera naturaleza del "cálculo" en general, además de la de haber aprovechado por primera vez la oportunidad de reducir las reglas de la deducción lógica a meras reglas de cálculo, es decir, a reglas cuya aplicación pueda prescindir de la consideración del contenido semántico de las expresiones. La moderna lógica simbólica está perfectamente de acuerdo con esta posición leibniziana acerca de las ventajas y de la naturaleza del simbolismo. Especialmente ello debe hacernos comprender cuán injustificada es la acusación esgrimida contra la lógica simbólica de que ha reducido lo que es "cualitativo" a "cuantitativo".
El error está en que algunos identifican con lo matemático ("cuantitativo") todo lo que es simbólico, mientras que el simbolismo es una cosa mucho más amplia que la matemática; y en realidad, la noción misma de "cálculo" no es una noción típicamente matemática y el calculus ratiocinator (o sea "cálculo lógico") de Leibniz es precisamente el planteamiento de un cálculo de carácter general que puede encuadrar en su seno también a las deducciones matemáticas, pero no sólo a ellas, y que puede servir para verificar no sólo consideraciones "cuantitativas" sino también otras "cualitativas", por emplear los términos de la polémica. Leibniz escribió en carta a Tschirnhausen en 1678: "El cálculo no es otra cosa, de hecho, que una operación mediante símbolos, que tiene lugar no sólo en el caso de las cantidades, sino también en cualquier otro razonamiento".
El que ha destacado hasta ahora principalmente, o sea el de la deducción lógica como puro cálculo, es decir, como simple operar formal con símbolos, es la idea de la mathesis universalis que Leibniz llamó también "lógica matemática" y "logística". Así, Leibniz puede ser presentado como el fundador de la lógica matemática; pero no construyó un sistema simbólico artificial, integrado por símbolos "carentes de significado", su simbolismo únicamente constituye el último nivel de la abstracción y de la formalización. Leibniz es el fundador de la lógica simbólica, pero advirtiendo que su simbolismo no es todavía un lenguaje artificial, sino sólo un riguroso y seguro reflejo de las estructuras puramente formales del lenguaje ordinario, que en realidad es su máxima abstracción.
Las ideas fundamentales de Leibniz sobre el "cálculo lógico" son: el cálculo no es nada ligado a la "cantidad", sino un procedimiento mucho más general, cuya validez no depende de la interpretación de sus símbolos sino sólo de las leyes en virtud de las cuales se combinan y que, en particular, se presta también a la teorización de la lógica.
Y lo que sitúa a George Boole (1815-1864) por encima de todos los lógicos es la idea de que el cálculo es algo artificial y construido independientemente de cualquier posible interpretación suya, o sea algo puramente formal y, por tanto, no ligado a una estructura interpretativa determinada, sino susceptible de adaptarse a muchas. Boole no trata ya de un sistema simbólico concebido como supremo grado de abstracción de una cierta teoría intuitiva, sino de una construcción autónoma, en cuya interpretación se piensa (al menos idealmente) sólo después de su elaboración. El cálculo, así construido, es interpretado en un primer caso, como álgebra de clases (formalización de la lógica de términos) y, en un segundo caso, como formalización de la lógica proposicional, mediante convenciones interpretativas sustancialmente distintas.
Toda ciencia, para informar con la mayor exactitud sobre su objeto, necesariamente debe apartarse de las ambigüedades del lenguaje idiomático y forjar sus propios términos técnicos o terminología. Y con mayor razón, si se trata de una ciencia formal, como las matemáticas y la lógica, éstas, además, elaboran sus propios símbolos o simbología.
Los significados principales del vocablo "término" son los siguientes: 1) Un uso lingüístico o un conjunto de signos, 2) cualquier objeto o cosa a la cual se refiera un discurso; 3) los límites de una extensión; 4) el punto de llegada de una actividad o el resultado de una operación.
En el primer significado, que interesa a la lógica, podemos distinguir los siguientes significados subordinados:
a) Los elementos que entran en la composición de las premisas del silogismo categórico, esto es, el sujeto y el predicado, que se verá más ampliamente en la lógica de los términos; b) todos los componentes simples que entran en las proposiciones. Y en este sentido son términos no solamente el sujeto y el predicado, sino también los verbos, las preposiciones, conjunciones, esto es, los componentes sincategoremáticos. Con todo, no son término las proposiciones, por no ser simples; c) todos los componentes de las proposiciones, ya sean simples o complejos En este sentido muy general son términos no sólo el sujeto, el predicado, el verbo y los componentes sincategoremáticos, sino también las proposiciones en cuanto pueden entrar a formar parte de otras proposiciones, como cuando se dice "Vallejo es un hombre, es una proposición".
El lenguaje lógico es la expresión de la lógica inherente al discurso idiomático, el esqueleto que lo vertebra. Está dentro, no se ve a simple vista pero sin él el discurso sería un montón informe de palabras sin coherencia ni sentido y la conversación un halar entre locos. El lenguaje lógico en cuanto expresa las puras formas del discurso es una abstracción. No existe un lenguaje lógico al lado del lenguaje idiomático. Toda la realidad que expresa el lenguaje lógico se encuentra dentro, inherente y subyacente al pensamiento que además de formas, conlleva contenidos. Esto no obsta para que el lógico, como el matemático, pueda prescindir de los contenidos para dedicarse al estudio de las formas discursivas. El lenguaje idiomático es exuberante en forma y muy rico en matices. El lenguaje lógico debe traducirlas a unos pocos modelos unívocamente determinados en su significación.
1.1.3.2. Valor de los símbolos
El valor de los símbolos toma importancia porque los razonamientos formulados en castellano o en cualquier otro idioma son difíciles de evaluar por la naturaleza vaga y equívoca de las palabras, la anfibología, los modismos y el estilo metafórico. Para evitar esta dificultad se crea el lenguaje simbólico artificial libre de defectos.
Es cierto que Aristóteles ya utilizó algunas abreviaturas. Los símbolos de la lógica moderna permiten exponer con mayor claridad las estructuras lógicas de proposiciones y razonamientos. Así como los números arábigos superaron a los romanos para los cálculos, así también la lógica simbólica facilita la derivación de las inferencias y la evaluación de los razonamientos.
Cualquier curso de matemática que permitan al lector llegar a conclusiones válidas, lleva inherente un sistema de procedimientos. La lógica simbólica con su formulación de conceptos lógicos y reglas de razonamiento en forma simbólica, es la que más se ajusta a este sistema de procedimientos. La lógica simbólica puede describirse como un estudio de lógica que emplea un extenso uso de símbolos.
George Boole (1815-1864) mediante su genial obra titulada "Las Leyes del Pensamiento", con justo mérito puede ser llamado el padre de la lógica moderna, no tanto por ser el primer tratado que ha sistematizado la lógica moderna, sino, porque la universalidad de sus contenidos le han dado el nombre de Álgebra Booleana.
En toda discusión de lógica el tratamiento se centra alrededor del concepto de una proposición conceptuada como oraciones declarativas (y no interrogativas ni exclamativas) que afirman o niegan algo, y por tanto, que tienen un valor veritativo, es decir, que son verdaderas (V) o falsas (F), pero no ambas a la vez. Las proposiciones tienen una propiedad importante: pueden ser verdaderas o falsas. Según Alfred Tarski (1902- ?), una proposición "es exactamente verdadera, si… es realmente verdadera". Ello quiere decir que una oración es verdadera, cuando el estado de cosas que describe, se da realmente. Para las exigencias de la lógica formal basta esa definición.
Se simboliza a las proposiciones con letras minúsculas, tales como:
p, q, r, s, …
y en el caso de que sean muchas se emplea letras con subíndices, como:
pa q2 sn …
Estas letras se llaman variables proposicionales. Ejemplos:
p: La tierra es redonda q: Los pájaros no son insectos s: Colón nació en Chile r: El número 9 es divisible por 3 d: ¿Te gusta estudiar? f: ¡Viva Víctor Andrés! u: z + 4 ( 9 v: 6 + 4 ( 9 En tales ejemplos, p, q, s, r y v son proposiciones; d, f y u no lo son. Las proposiciones: p, q, r y v son verdaderas y s es falsa. La proposición u se tipifica como proposición abierta porque no se le puede atribuir el valor verdadero o falso, a menos que "z" sea sustituida por números mayores que 5, con lo cual pasaría a ser una proposición verdadera.
Se ha distinguido dos valores de verdad: Verdadero y Falso. En ese sentido se habla de una lógica ambivalente. Pero se pueden también señalar más de dos valores. Entonces no se habla ciertamente de valores de verdad, sino de valores de vigencia; porque si la "verdad" se toma como un valor, tendremos siempre una ambivalencia. Si se admiten tres valores de vigencia, por ejemplo: conocido como verdadero, indefinido, conocido como falso, se habla de una lógica trivalente o de un cálculo trivalente. Teóricamente pueden construirse a capricho muchos cálculos polivalentes.
El valor de verdad de la proposición: cuando llueve, las calles se mojan, depende del valor de verdad de las dos afirmaciones y del modo de su conexión; lo cual nos lleva referirnos a un grupo de palabras que son las juntoras o conjunciones: son partículas que unen las oraciones, como "y", "o", "si…entonces", "ni…ni", etc., dándose 16 posibilidades para unir dos oraciones en la lógica bivalente.
OPERADOR | SÍMBOLO | LENGUAJE USUAL | ILUSTRACIÓN | SIMBOLI ZACIÓN |
Negación | (, -, ( | No… | No llueve | ~p |
Conjuntor | (, ., & | … y … | Llueve y truena | p ^ q |
Disyuntor (inclusivo o débil) | ( | … o … | Estaba triste o preocupado (o ambas cosas) | p v q |
Disyuntor (exclusivo o fuerte) | w, ( | … o … | Iremos al cine o al teatro (pero no al teatro (pero no a ambos lugares) | p ( q |
Condiciona-dor | (, (, ( | Si… enton ces… | Si llueve entonces habrá cosecha | p ( q |
Bicondicio- nador | (, (, ( | … Si y sólo si … | Habrá cosecha si y sólo si llueve | p ( q |
Binegador | ( | Ni … ni … | Ni trabaja ni estudia | p ( q |
Anticon- juntor | ( | No es cier to que … y … | No es cierto que Aldo sea Secretario y sobrino del juez | p ( q |
A continuación presentamos un cuadro sinóptico de las correspondencias entre las principales notaciones simbólicas o algorítmicas:
Principia | Hilbertiana | Lukasiewicz | ||
Variables proposicionales Negación Conjunción Alternativa Condicional Bicondicional Universalizador Particularizador | p, q, r – p p . p p ( q p ( q p ( q (x)fx ((x)fx | A, B, C ( A A ( A A ( B A ( B A (((B (xPx (xPx | p, q, r Np Kpq Apq Cpq Epq Uxfx Pxfx |
La lógica proposicional limita el estudio de las formas lógicas a las proposiciones moleculares, identificando las proposiciones atómicas que la forman. Se conviene en llamar proposiciones atómicas a las que ya no pueden descomponerse en partes que sean, a su vez, proposiciones; y a partir de éstas, mediante la aplicación de los conectores proposicionales, se logran las proposiciones moleculares. De ahí que en general se llame "términos" a las partes constitutivas de todo discurso, que sustancialmente son de dos tipos: unos poseen un significado propio y autónomo, otros desempeñas la función de modificar el significado de los términos del primer tipo.
Los primeros se llaman "categoremáticos" y pueden ser, por ejemplo, sustantivos, adjetivos, verbos y aun proposiciones enteras, mientras que los segundos se denominan términos "sincategoremáticos" y son, por ejemplo, "y", "o", "no", "todos" y expresiones similares que actúan como conectores y operadores lógicos.
Se llama operadores o conectivos lógicos a los símbolos que sirven para conectar o afectar proposiciones. Son de dos tipos: monádicos y diádicos.
a. Operador monádico es aquel que afecta solamente a una proposición atómica. La negación, simbolizada por " ~ " es el único operador monádico. Luego lo simbolizaremos con el signo " ( ".
En el cuadro anteriormente adjunto se presenta la nómina de operadores con su símbolo respectivo y su lectura en el lenguaje usual.
b. Operador diádico es aquel que afecta a dos o más proposiciones. La disyunción ( ( ), la conjunción ( ( ), la implicación ( (_ ) y la bicondicional ( ( ).
Una proposición molecular está constituida por proposiciones atómicas y conectivos lógicos; entonces, toda proposición posee, por definición, un valor veritativo: es verdadera ( V ), o falsa ( F ). Por tanto el valor veritativo de una proposición molecular, dependerá del valor de verdad de las proposiciones atómicas que la componen. Para n proposiciones atómicas, el número de combinaciones o arreglos entre las " V " y las " F " que nos llevan al valor veritativo de la proposición molecular, es 2.
El hecho de que el valor de verdad de una proposición molecular esté determinado por el de sus proposiciones atómicas componentes, se expresa diciendo que dicha proposición molecular es una función de verdad de sus componentes. La lógica proposicional estudia, precisamente, las funciones de verdad a través de las llamadas tablas de verdad.
1.2. Matrices o tablas de valoración
Como indicábamos anteriormente, los enlaces de las proposiciones se realizan mediante los operativos lógicos, algunos de los cuales especificamos con mayor precisión. Todas las reglas de certeza funcional que se utilizan para proposiciones moleculares pueden resumirse en forma de tablas. Las tablas básicas de certeza indican rápidamente si una proposición molecular es cierta o falsa si se conoce la certeza o falsedad de las proposiciones que la forman.
1.2.1. Proposiciones atómicas y moleculares
Una proposición describe un estado de cosas. La lógica tradicional distingue entre juicio y proposición: El juicio es el acto del espíritu por medio del cual se afirma o niega algo de algo, la proposición es le producto lógico de dicho acto, es decir, lo pensado e dicho acto. Para Russell la proposición es "la clase de todas las sentencias que poseen la misma significación que una sentencia da". Para Wittgenstein, la proposición es la descripción de un hecho o "la presentación de la existencia de hechos atómicos". Y según Carnap, la proposición es una clase de expresión.
Los escolásticos establecieron dos tipos de proposiciones: las simples y compuesta, hoy llamadas elementales y moleculares. 1) Elementales o atómicas: Son las proposiciones de forma más simple (o más básicas); también se les llama simples o monádicas por estar constituidas por un solo predicado. Una proposición atómica es una proposición completa sin términos de enlace. Son afirmativas. Por ejemplo: "Llueve", "Santiago de los Caballeros está cerca del Misti", "Hay seres inteligentes en Saturno"; y 2) Moleculares: Se da cuando se juntan una o varias proposiciones atómicas con un términos de enlace; se llaman también Compuestas, por integrar dos o más proposiciones atómicas. Por ejemplo: "Llueve y hace frío", "Si está nublado, entonces podrá llover". En estas proposiciones, las oraciones elementales o simples están unidas mediante partículas como "y", "o", etc., por ejemplo: "Fugimori nació en La Vega y Quito es la capital de Ecuador". En la lógica proposicional se trata de la vinculación de oraciones. No se ocupa ni de la forma ni del contenido de las frases, sino exclusivamente de su forma de conexión.
Una proposición como "no llueve" a pesar de su simplicidad, es considerada como molecular, pues podemos aislar dentro de ella una aún más simple: "Llueve".
Cuando una proposición atómica es verdadera se dice que es portadora de "valor de verdad verdadero", que simbolizaremos con el número 1. De la proposición "César Vallejo nació en República Dominicana" podemos decir que tiene valor de verdad verdadera o que vale 1.
Cuando una proposición atómica es falsa se dice que tiene "valor de verdad falso", que se simboliza mediante el número 0. Así la proposición "Napoleón nació en Quito" tiene valor de verdad falso o vale 0.
Si unimos las dos proposiciones atómicas anteriores obtenemos la proposición molecular "César Vallejo nació en República Dominicana y Napoleón nació en Quito", cuyo conector es la partícula "y" que recibe el nombre de conjuntor. Necesariamente la anterior proposición molecular, como totalidad, evidentemente es falsa, puesto que una de las proposiciones es falsa.
Como regla general, podemos considerar que la verdad o falsedad de una proposición molecular cualquiera depende de la verdad o falsedad de las proposiciones atómicas que la componen, teniendo en cuenta la naturaleza del conector que las relaciona. Así tenemos las valoraciones según los conectores:
Al estudiar los razonamientos se los divide en enunciados simples y enunciados compuestos. Es simple el que no contiene otro enunciado como parte de sí, ejemplo: Luis es estudioso. Es compuesto, si incluye otro enunciado como parte constituyente de sí, ejemplo: "Luis es estudioso y Carlos es amable".
En el ejemplo anterior el enunciado es una conjunción porque se combina con la palabra "y", por lo que los enunciados que se combinan se llaman conjuntivos. No es conjunción "Luis y Carlos con estudiosos".
Se da la conjunción sólo cuando unimos dos proposiciones mediante la partícula "Y", representada por el símbolo " ( ". Si la primera oración la designamos " p " y la segunda " q ", tenemos la representación simbólica de conjunción: " p ( q ". Por ejemplo: Luis estudia mandolina y Camaná está en Santiago de los Caballeros. La proposición compuesta " p ^ q " es una conjunción de las proposiciones p, q que se lee "p y q". También se utiliza como conjuntivo el " . " (punto) que podemos escribir así: p . q.
El símbolo del punto es un conectivo extensional, significando que la verdad o falsedad de cualquier conjunción p ^ q es determinada por la verdad o falsedad de sus enunciados constitutivos. Las formas idiomáticas que equivalen a "y", son: también, igualmente, del mismo modo, mientras que, pero, mas, sin embargo, no obstante, a pesar de, pese a que, tampoco. En qué relación está el valor de verdad de la conjunción con los valores de verdad de ambas oraciones? Considerando los enunciados p y q, hay solamente cuatro conjuntos posibles de valores de verdad, donde el valor de verdad de un enunciado verdadero es certeza y el valor de verdad de un enunciado falso es falsedad, que exponemos a continuación:
– Si p es cierta y q también, p ( q es cierta.
– Si p es cierta y q falsa, p(q es falsa.
– Si p es falsa y q cierta, p(q es falsa.
– Si p y q son falsas, p(q será falsa.
Como ejemplos podemos enunciar:
1) Los chilenos y los ecuatorianos son latinoamericanos.
2) Las rosas son rojas y las violetas son azules.
3) 8 es menor que 7 y 3 es primo.
La conjunción "p ( q" es cierta solamente si p y q lo son a la vez, de otro modo es falsa. Esto se representa en la tabla que se incluye luego.
a. Débil o inclusiva:
La disyunción de dos enunciados siempre la presentamos con la palabra "o". Tal palabra tiene un sentido débil o inclusivo cuando incluye, al mismo tiempo los dos enunciados disyuntivos, ejemplo: "no se darán beneficios a los enfermos o desempleados"; cuya intención es afirmar que los beneficios se niegan no solo a las personas enfermas o a las personas sin empleo, sino también, y al mismo tiempo a quienes estén enfermos y sin empleo.
En las proposiciones atómicas p, q, la proposición compuesta "p ( q" es una disyunción inclusiva (en el sentido de y/o) de las proposiciones p y q, que se lee "p o q, o ambas". En latín, la palabra "vel" expresa la disyunción débil o inclusiva. Se usa la inicial del vel para representar el sentido débil (es llamado cuña, o, más raramente la ve). Convendremos en que "p ( q" es falsa ( F ) únicamente en el caso en que ambas, p y q, sean falsas; en cualquier otro caso es cierta, pues el juntar de la disjunción no es exclusivo. Se dice: "X es diputado o ministro", entonces "o" permite entender que fulano es una de las dos cosas o ambas a la vez. La disjunción es cierta, cuando al menos una de las proposiciones lo es. Se representa " p v q", como se muestra en la tabla de Disjunción débil. Ejemplos:
1) César estaba feliz o bailaba de contento 2) Julio es profesor o estudiante de secundaria.
b. Fuerte o exclusiva:
La palabra "o" se usa en sentido fuerte o exclusivo para significar que a lo sumo se elegirá uno; y cuando se desea mayor precisión en el uso del "o", se añade "pero no ambos". En latín la palabra "aut" expresa el sentido fuerte o exclusivo Consideradas las proposiciones atómicas p, q, la proposición compuesta "p w q" es una disyunción exclusiva (en el sentido excluyente) de las proposiciones p y q, que se lee "p o q, pero no ambas". Ejemplos:
1) El ciego tiene un sombrero rojo o el ciego tiene un sombrero blanco.
2) Sócrates es griego o Sócrates es chileno.
3) La Vega es la capital del República Dominicana o de Bolivia.
La proposición molecular "p ( q" es falsa cuando una y otra proposición (p y q) tengan el mismo valor de certeza, es cierta solamente cuando una de las proposiciones componentes es cierta y no las dos, como se muestra en la tabla de Disyunción fuerte.
Conjunción | Disjunción débil | Disjunción fuerte |
p q p ( q | p q p ( q | p q p ( q |
C C C F C F C F F F F F | C C C F C C C F C F F F | C C F F C C C F C F F F |
Página siguiente |