Descargar

Historia del cálculo (página 2)

Enviado por dkmilko


Partes: 1, 2

El avance que obtuvieron los griegos en cuanto al álgebra y la geometría, los llevó a la constricción de una nueva rama de las matemáticas, llamada, álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, y la expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita.

En Grecia, no se hicieron esperar los problemas que implicaban la construcción de límites, por lo que en su época, Demócrito y otros grandes pensadores intentan darles respuesta con la unificación de las matemáticas y la teoría filosófica atomicista. Considerando de esta forma la primera concepción del método del límite.

El interés que produjeron las matemáticas en Grecia, hace que se considere como la cuna de esta ciencia. Por lo cual se bautizó a la época comprendida de los años 300 a.c y 200 a.c, como la edad de oro de las matemáticas.

Después de esta época, Grecia deja de ser el centro evolutivo de las matemáticas, conflictos sociales y políticos que se vivían en esa época alejan a Grecia de esta ciencia. Por esta situación otro imperio toma las riendas de los avances matemáticos.

MATEMÁTICAS EN LA CULTURA ÁRABE

Los Árabes, que en esos momentos vivían un momento de expansión, no sólo territorial sino intelectual, en poco tiempo logran descifrar más conocimientos de esta materia. La historia de las matemáticas en Los pueblos árabes comienza a partir del siglo VIII.

El imperio musulmán fue el primero en comenzar este desarrollo, intentando traducir todos los textos Griegos al árabe. Por lo que se crean gran cantidad de escuelas de gran importancia, en donde se traducen libros como el Brahmagupta, en donde se explicaba de forma detallada el sistema de numeración hindú, sistema que luego fue conocido como "el de Al-Khowarizmi", que por deformaciones lingüísticas terminó como "algoritmo".

Los avances obtenidos en esta época, enmarcan al concepto del límite, la introducción de los números racionales e irracionales, especialmente los reales positivos, y el desarrollo en la trigonometría, en donde se construyeron tablas trigonométricas de alta exactitud.

RENACIMIENTO Y MATEMÁTICAS MODERNAS

La siguiente época importante en la historia de las matemáticas esta comprendida en la época del renacimiento. En este momento de la historia es cuando aparece el cercano oriente como conocedor de las matemáticas. Aunque la historia de las matemáticas en el cercano oriente, no es tan antigua como en el lejano oriente, su aporte es de gran magnitud, especialmente con la aparición de gran cantidad de obras escritas por los grandes matemáticos de la época.

Es de destacar la obra de Leonardo de Pissa, titulada Liber Abaci, en donde se explicaba de una forma clara el uso del ábaco y el sistema de numeración posicional. Igualmente entre otras obras importantes, se puede mencionar Él practica Geometrie, en donde se resolvían problemas geométricos, especialmente los de calculo de áreas de polígonos.

Uno de los grandes aportes de esta cultura se obtuvo en la introducción de los exponentes fraccionarios y el concepto de números radicales, a demás se estableció un sistema único de números algebraicos, con lo que se izo posible expresar ecuaciones en forma general.

Después de esta larga evolución, las matemáticas entraron en el siglo XIX, en donde se postularon los fundamentos de las matemáticas modernas.

Avances en la resolución de ecuaciones y en lo que hoy se conoce como calculo, hicieron de esta época la de mayor riqueza para esta ciencia.

Entre los grandes desarrollos de esta época se puede mencionar, la resolución de ecuaciones algebraicas radicales, el desarrollo del concepto de grupo, avances en los fundamentos de la geometría hiperbólica no euclidiana, a demás de la realización una muy profunda reconstrucción sobre la base de la creada teoría de límites y la teoría del número real.

Se separaron crearon varias ramas de las matemáticas en ecuaciones diferenciales, la teoría de funciones de variable real y la teoría de funciones de variable compleja.

En el ámbito de la teoria de los conjuntos, se compuso una serie de teorías altamente desarrolladas: los grupos finitos, los grupos discretos infinitos, los grupos continuos, entre ellos los grupos de Lie. Durante los años 1879 a 1884 se elaboraron de forma sistemática la teoría de conjuntos, introduciendo el concepto de potencia de un conjunto, el concepto de punto límite, de conjunto derivado. La teoría general de las potencias de conjuntos, las transformaciones y operaciones sobre conjuntos y las propiedades de los conjuntos ordenados constituyeron fundamentalmente la teoría abstracta de conjuntos

En relación con el análisis matemático en este siglo, se fundamento en un conjunto de procedimientos y métodos de solución de numerosos problemas que crecía rápidamente. Todos estos métodos aun podían dividirse en tres grandes grupos, constituidos en el cálculo diferencial, el cálculo integral y la teoría de ecuaciones diferenciales. Con estos fundamentos se llegó a lo que se conoce como teoría de límites y de funciones, que fueron el tema central en este siglo.

Bernard Bolzano, fue el pionero en el análisis de funciones, en sus trabajos estudio del criterio de convergencia de sucesiones y dio una definición rigurosa de continuidad de funciones. Estudió profundamente las propiedades de las funciones continuas y demostró en relación con éstas una serie de notables teoremas, destacando el denominado teorema de Bolzano: una función continua toma todos los valores comprendidos entre su máximo y su mínimo.

También amplió la clase de curvas continuas, aplicando el método de acumulación de singularidades y obtuvo, entre otras funciones originales, la función que no tiene derivada en ningún punto y conocida actualmente como función de Bolzano

Otro de los grandes avances obtenidos en esta época, fue la introducción de la variable compleja, con ella se pudieron resolver los cálculos de integrales, lo que ejerció una grandísima influencia sobre el desarrollo de la teoría de funciones de variable compleja. Matemáticos como Laplace acudieron a la interpretación en variable compleja, con lo que fue desarrollando el método de resolución de ecuaciones lineales diferenciales.

Ya e el siglo VII, es cuando se hacen populares la construcción de academias reconocidas en ámbito de las matemáticas, como la Academia de Londres y París. En este siglo es cuando comienzan todas las disciplinas matemáticas actuales, como la geometría analítica, los métodos diferenciales e infinitesimales, y el cálculo de probabilidades.

Alrededor del año 1636 Apolonio comienza sus estudios en geometría analítica, descubriendo el principio fundamental de la geometría analítica: "siempre que en una ecuación final aparezcan dos incógnitas, tenemos un lugar geométrico, al describir el extremo de uno de ellos una línea, recta o curva".

Con esto después formulo e identificó las expresiones xy=k2; a2+x2=ky; x2+y2+2ax+2by=c2; a2-x2=ky2 como la hipérbola, parábola, circunferencia y elipse respectivamente. Para el caso de ecuaciones cuadráticas más generales, en las que aparecen varios términos de segundo grado, aplicaron rotaciones de los ejes con objeto de reducirlas a los términos anteriores.

A nivel de los métodos integrales, la mayor fama la adquirió la geometría de los indivisibles, creada por Cavalieri, pensado como un método universal de la geometría. Este método fue creado para la determinación de las medidas de las figuras planas y cuerpos, los cuales se representaban como elementos compuestos de elementos de dimensión menor. Así, las figuras constan de segmentos de rectas paralelas y los cuerpos de planos paralelos. Sin embargo, este método era incapaz de medir longitudes de curvas, ya que los correspondientes indivisibles (los puntos) eran adimensionales. Pese a ello, la integración definida en forma de cuadraturas geométricas, adquirió fama en la primera mitad del siglo XVII, debido a la gran cantidad de problemas que podían resolver.

En el transcurso de este siglo los problemas diferenciales, aun se resolvían por los métodos más diversos, Hacia mediados del siglo XVII se acumuló una reserva lo suficientemente grande de recursos de resolución de estos problemas, actualmente resolubles mediante le diferenciación.

La aparición del análisis infinitesimal fue la culminación de un largo proceso, cuya esencia matemática interna consistió en la acumulación y asimilación teórica de los elementos del cálculo diferencial e integral y la teoría de las series. Para el desarrollo de este proceso se contaba con: el álgebra; las técnicas de cálculo; introducción a las matemáticas variables; el método de coordenadas; ideas infinitesimales clásicas, especialmente de Arquímedes; problemas de cuadraturas; búsqueda de tangentes… Las causas que motivaron este proceso fueron, en primer término, las exigencias de la mecánica, la astronomía y la física. En la resolución de problemas de este género, en la búsqueda de problemas generales de resolución y en la creación del análisis infinitesimal tomaron parte muchos científicos: Kepler, Galileo, Cavalieri, Torricelli, Pascal, Walis, Roberval, Fermat, Descartes, Barrow, Newton, Leibniz, y Euler.

El concepto de Calculo y sus ramificaciones se introdujo en el siglo XVIII, con el gran desarrollo que obtuvo el análisis matemático, creando ramas como el calculo diferencial, integral y de variaciones.

El cálculo diferencial fue desarrollado por los trabajos de Fermat, Barrow, Wallis y Newton entre otros. Así en 1711 Newton introdujo la fórmula de interpolación de diferencias finitas de una función f(x); fórmula extendida por Taylor al caso de infinitos términos bajo ciertas restricciones, utilizando de forma paralela el cálculo diferencial y el cálculo en diferencias finitas. El aparato fundamental del cálculo diferencial era el desarrollo de funciones en series de potencias, especialmente a partir del teorema de Taylor, desarrollándose casi todas las funciones conocidas por los matemáticos de la época. Pero pronto surgió el problema de la convergencia de la serie, que se resolvió en parte con la introducción de términos residuales, así como con la transformación de series en otras que fuesen convergentes. Junto a las series de potencias se incluyeron nuevos tipos de desarrollos de funciones, como son los desarrollos en series asintóticas introducidos por Stirling y Euler. La acumulación de resultados del cálculo diferencial transcurrió rápidamente, acumulando casi todos los resultados que caracterizan su estructura actual

Introducir el calculo integral, se logro con el estudio de J.Bernoulli, quien escribió el primer curso sistemático de cálculo integral en 1742. Sin embargo, fue Euler quien llevó la integración hasta sus últimas consecuencias, de tal forma que los métodos de integración indefinida alcanzaron prácticamente su nivel actual. El cálculo de integrales de tipos especiales ya a comienzos de siglo, conllevó el descubrimiento de una serie de resultados de la teoría de las funciones especiales. Como las funciones gamma y beta, el logaritmo integral o las funciones elípticas.

Este es el desarrollo las matemáticas han obtenido desde que el hombre vió la necesidad de contar, hasta nuestros días. Actualmente gran cantidad de matemáticos siguen en el desarrollo de las matemáticas denominadas matemáticas modernas, de donde sus conceptos son la base de la mayor parte de las ciencias actuales.

CONCLUSIONES

  • La historia del cálculo, comienza desde que comenzó la historia del hombre, cuando este vio la necesidad de contar

  • Han sido muchos los grandes matemáticos que han influido en el desarrollo que actualmente posee el calculo, igualmente que han sido muchas las culturas que han influido en sus avances

  • Las matemáticas, actualmente son la base de todas las ciencias que maneja el hombre, debido a que su campo de acción cubre la totalidad de los conocimientos científicos.

BIBLIOGRAFÍA

  • ÁLGEBRA, DR AURELIO BALDOR, ed. Cultura Centroamericana S.A.

  • MATEMÁTICA CONSTRUCTIVA 6, GUSTAVO CENTENO, ed. Libros y Libres

  • http://almez.pntic.mec.es (PÁGINA RECOMENDADA)

 

 

Autor:

Diego Camilo Rojas

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente