Descargar

Los transformadores y sus aplicaciones (página 3)

Enviado por Edian Franco


Partes: 1, 2, 3, 4

Multiplicando numerador y denominador por "R – Xj" y operando resulta:

 Y = frac{R}{R^2 + X^2} - frac{Xj}{R^2 + X^2}

Expresión que permite definir las componentes real e imaginaria de la admitancia en función de los valores resistivo, R, y reactivo, X, de la impedancia:

G = frac{R}{R^2 + X^2}

B = frac{-X}{R^2 + X^2}

Luego,

 Y = G + Bj ,

A G se la denomina conductancia y a B susceptancia.

Si fueran conocidas las componetes G y B de la admitancia, y a partir de ellas se quieren determinar los valore de R y X de la impedancia, puede demostrarse que:

R = frac{G}{G^2 + B^2}

X = frac{-B}{G^2 + B^2}

En los análisis de circuitos en paralelo se suele utilizar la admitancia en lugar de la impedancia para simplificar los cálculos.

3.7- Conductancia

Se denomina Conductancia eléctrica (G) de un conductor a la inversa de la oposición que dicho conductor presenta al movimiento de los electrones en su seno, esto es, a la inversa de su resistencia eléctrica (R), por lo que:

 G= {1 over R}

donde:

G = Conductancia en Siemens R = Resistencia en Ohmios

La unidad de medida de la conductancia en el Sistema internacional de unidades es el Siemens.

Este parámetro es especialmente útil a la hora de tener que manejar valores de resistencia muy pequeños.

4- Leyes Física Aplicadas a los Transformadores

4.1-  Ley de inducción electromagnética de Faraday

La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:

oint_C vec{E} cdot vec{dl} = -  { d over dt } int_S vec{B} cdot vec{dA}

donde vec{E}es el campo eléctrico, dvec{l}es el elemento infinitesimal del contorno C, vec{B}es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de vec{dA}están dadas por la regla de la mano izquierda.

La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.

Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:

nabla times vec{E} = -frac{partial vec{B}} {partial t}

ésta es una de las ecuaciones de Maxwell, las cuales conforman las ecuaciones fundamentales del electromagnetismo. La ley de Faraday, junto con las otras leyes del electromagnetismo, fue incorporada en las ecuaciones de Maxwell, unificando así al electromagnetismo.

 

En el caso de un inductor con N vueltas de alambre, la fórmula anterior se transforma en:

e=-N{d Phi over d t}

donde e es la fuerza electromotriz inducida y dΦ/dt es la tasa de variación temporal del flujo magnético Φ. La dirección de la fuerza electromotriz (el signo negativo en la fórmula) se debe a la ley de Lenz.

4.2- Ley de Ampére original

En física del magnetismo, la ley de Ampére, también conocida como efecto Oersted, relaciona un campo magnético estático con la causa que la produce, es decir, una corriente eléctrica estacionaria. Es análoga a ley de Gauss.

Una corriente eléctrica produce un campo magnético, siguiendo la Ley de Ampére.

Una corriente eléctrica produce un campo magnético, siguiendo la Ley de Ampére.

Forma integral

Dada una superficie abierta S por la que atraviesa una corriente eléctrica I, y dada la curva C, curva contorno de la superficie S, la forma original de la ley de Ampére para medios materiales es:

oint_C vec{H} cdot dvec{l} = int!!!!int_S vec{J} cdot d vec{S} = I_{mathrm{enc}}

donde

vec{H}es el campo magnético,

I_{mathrm{enc}} ,es la corriente encerrada en la curva C,

Y se lee: LA CIRCULACION DEL CAMPO vec{H}a lo largo de la curva C es igual al flujo de la densidad de corriente sobre la superficie abierta S, de la cual C es el contorno.

En presencia de un material magnético en el medio, aparecen campos de magnetización, propios del material, análogamente a los campos de polarización que aparecen en el caso electrostático en presencia de un material dieléctrico en un campo eléctrico.

Definición:

vec{H}= frac {vec{B}} {mu_0} - vec{M}

vec{B}=mu_0(vec{H} + vec{M})

vec{B}=mu_0(1+chi_m)vec{H}=mu_0 mu_r vec{H}=mu vec{H}

donde

vec{B}es la densidad de flujo magnético,

mu_0,es la permeabilidad magnética del vacío,

mu_r,es la permeabilidad magnética del medio material,

Luego, mu=mu_0mu_r ,es la permeabilidad magnética total.

vec{M}es el vector magnetización del material debido al campo magnético.

chi_m,es la suceptibilidad magnética del material.

Un caso particular de interés es cuando el medio es el vacío (mu=mu_0, o sea,  vec{B} = mu_0 vec{H}  ):

oint_C vec{B} cdot dvec{l} = mu_0 I_{mathrm{enc}}

Forma diferencial

A partir del teorema de Stokes, esta ley también se puede expresar de forma diferencial:

vecnablatimesvec H = vec J

donde vec Jes la densidad de corriente que atraviesa el conductor.

4.3-Ley de Ampére-Maxwell

La ley de Ampére-Maxwell o ley de Ampére generalizada es la misma ley corregida por James Clerk Maxwell debido a la corriente de desplazamiento y creó una versión generalizada de la ley, incorporándola a las ecuaciones de Maxwell.

Este término introducido por Maxwell del campo eléctrico en la superficie.

Forma integral

oint_C vec{H} cdot dvec{l} = iint_S vec{J} cdot d vec{S} + {d over dt} iint_S vec{D} cdot d vec{S}

siendo el último término la corriente de desplazamiento.

Forma diferencial

Esta ley también se puede expresar de forma diferencial, para el vacío:

vecnablatimesvec B = mu_0 vec J + mu_0 epsilon_0 frac{partialvec E}{partial t}

o para medios materiales:

vecnablatimesvec H = vec J + frac{partialvec D}{partial t}

 4.4- La ley de Ohm

La ley de Ohm, define una propiedad específica de ciertos materiales por la que se cumple la relación:

V=Icdot R,

Un conductor cumple la ley de Ohm sólo si su curva VI es lineal; esto es si R es independiente de V y de I.

Sin embargo, la relación

 R=frac{V}{I}

sigue siendo la definición general de la resistencia de un conductor, independientemente de si éste cumple o no con la ley de Ohm.

La intensidad de la corriente eléctrica que circula por un dispositivo es directamente proporcional a la diferencia de potencial aplicada e inversamente proporcional a la resistencia del mismo, según expresa la fórmula siguiente:

 I=frac{V}{R}

En donde, empleando unidades del Sistema internacional:

  • I = Intensidad en amperios (A)
  • V = Diferencia de potencial en voltios (V)
  • R = Resistencia en ohmios (Ω).

4.4.1- Enunciado

En un conductor recorrido por una corriente eléctrica, el cociente entre la diferencia de potencial aplicada a los extremos del conductor y la intensidad de la corriente que por él circula, es una cantidad constante, que depende del conductor, denominada resistencia.

La ley enunciada verifica la relación entre voltaje y corriente en un resistor.

4.4.2- Historia

El científico aleman Georg Simon Ohm, mientras experimentaba con materiales conductores, como resultado de su investigación, llegó a determinar que la relación entre voltaje y corriente era constante y nombró a esta constante resistencia.

Esta ley fue formulada por Georg Simon Ohm en 1827, en la obra Die galvanische Kette, mathematisch bearbeitet (Trabajos matemáticos sobre los circuitos eléctricos), basándose en evidencias empíricas. La formulación original, es:

 vec J={sigma}{vec E}

Siendo vec Jla densidad de la corriente, σ la conductividad eléctrica y vec Eel campo eléctrico, sin embargo se suele emplear las fórmulas simplificadas anteriores para el análisis de los circuitos

4.4.3- Deducción

Esquema de un conductor cilindrico donde se muestra la aplicación de la Ley de Ohm

Esquema de un conductor cilindrico donde se muestra la aplicación de la Ley de Ohm

Como ya se destacó anteriormente, las evidencias empíricas mostraban que {vec J}(vector densidad de corriente) es directamente proporcional a vec E(vector campo eléctrico).

Para escribir ésta relación en forma de ecuación, es necesario añadir una constante arbitraria, que posteriormente se llamó factor de conductividad eléctrica, que representaremos como σ. Entonces:

vec J={sigma}{vec E_{r}}

El vector vec E_{r}es el vector resultante de los campos que actúan en la sección de alambre que se va a analizar; es decir, del campo producido por la carga del alambre en sí y del campo externo, producido por una batería, una pila u otra fuente de fem. Por lo tanto:

frac{vec J}sigma={vec E + vec E_{ext}}

Ahora, sabemos que  vec J = frac{I}{A}vec n, donde vec n es un vector unitario de dirección, con lo cual reemplazamos y multiplicamos toda la ecuación por un dvec l :

frac{I}{Asigma}vec n cdot dvec l = ({vec E cdot dvec l + vec E_{ext} cdot dvec l})

Los vectores vec ny dvec l poseen la misma dirección y sentido, con lo cual su producto escalar puede expresarse como el producto de sus magnitudes por el coseno del ángulo formado entre ellos. Es decir:

 vec n cdot dvec l = |vec n|cdot |dvec l|cdot cos theta = (1) cdot |dvec l| cdot cos0 = dl

Por lo tanto, se hace la sustitución:

frac{I}{Asigma} dl = ({vec E cdot dvec l + vec E_{ext} cdot dvec l})

Integrando ambos miembros en la longitud del conductor:

int_{1}^{2} frac{I}{Asigma} dl = int_{1}^{2}({vec E cdot dvec l + vec E_{ext} cdot dvec l}) = int_{1}^{2}{vec E cdot dvec l} + int_{1}^{2}{vec E_{ext} cdot dvec l}

El miembro derecho representa el trabajo total de los campos que actúan en la sección de alambre que se está analizando, y de cada integral resulta:

int_{1}^{2}{vec E cdot dvec l} = phi_{1} - phi_{2}

y

int_{1}^{2}{vec E_{ext} cdot dvec l} = xi

Donde φ1 − φ2 representa la diferencia de potencial entre los puntos 1 y 2, y ξ representa la fem; por tanto, podemos escribir:

frac{I}{Asigma} l_{12} = phi_{1} - phi_{2} + xi = U_{12}

donde U12 representa la caída de potencial entre los puntos 1 y 2.

Como dijimos anteriormente, σ representa la conductividad, por lo que su inversa representará la resistividad, y la representaremos como ρ. Así:

frac{Irho}{A} l_{12} = U_{12}

Finalmente, la expresión frac{rho}{A} l_{12}es lo que se conoce como resistencia eléctrica

Podemos escribir la expresión final:

 Icdot R_{12} = U_{12}

4.5- Ley de Gauss para el campo magnético  

Las líneas de campo magnético comienzan y terminan en el mismo lugar, por lo que no existe un monopolo magnético.

Las líneas de campo magnético comienzan y terminan en el mismo lugar, por lo que no existe un monopolo magnético.

Experimentalmente se llegó al resultado de que los campos magnéticos, a diferencia de los eléctricos, no comienzan y terminan en cargas diferentes. Esta ley primordialmente indica que las líneas de los campos magnéticos deben ser cerradas. En otras palabras, se dice que sobre una superficie cerrada, sea cual sea ésta, no seremos capaces de encerrar una fuente o sumidero de campo, esto expresa la no existencia del monopolo magnético. Matemáticamente esto se expresa así:

vec{nabla} cdot vec{B} = 0

donde vec{B}es la densidad de flujo magnético, también llamada inducción magnética.

Su forma integral equivalente:

oint_S vec{B} cdot dvec{S} = 0

Como en la forma integral del campo eléctrico, esta ecuación sólo funciona si la integral está definida en una superficie cerrada.

5.- Generadores

Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrico entre dos de sus puntos, llamados polos, terminales o bornes. Los generadores eléctricos son máquinas destinadas a transformar la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estator). Si mecánicamente se produce un movimiento relativo entre los conductores y el campo, se generara una fuerza electromotriz (F.E.M.).

Dos principios físicos relacionados entre sí sirven de base al funcionamiento de los generadores y de los motores. El primero es el principio de la inducción descubierto por el científico e inventor británico Michael Faraday en 1831. Si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de un circuito de conducción fijo cuya intensidad puede variar, se establece o se induce una corriente en el conductor. El principio opuesto a éste fue observado en 1820 por el físico francés André Marie Ampére. Si una corriente pasaba a través de un conductor dentro de un campo magnético, éste ejercía una fuerza mecánica sobre el conductor.

La máquina dinamoeléctrica más sencilla es la dinamo de disco desarrollada por Faraday, que consiste en un disco de cobre que se monta de tal forma que la parte del disco que se encuentra entre el centro y el borde quede situada entre los polos de un imán de herradura. Cuando el disco gira, se induce una corriente entre el centro del disco y su borde debido a la acción del campo del imán. El disco puede fabricarse para funcionar como un motor mediante la aplicación de un voltaje entre el borde y el centro del disco, lo que hace que el disco gire gracias a la fuerza producida por la reacción magnética.

Generador en la central eléctrica de Bridal veil Falls, Telluride, Colorado. Se trataría del generador más antiguo que se mantiene en servicio (año 2007) en EEUU.

El campo magnético de un imán permanente es lo suficientemente fuerte como para hacer funcionar una sola dinamo pequeña o motor. Por ello, los electroimanes se emplean en máquinas grandes.

Tanto los motores como los generadores tienen dos unidades básicas: el campo magnético, que es el electroimán con sus bobinas, y la armadura, que es la estructura que sostiene los conductores que cortan el campo magnético y transporta la corriente inducida en un generador, o la corriente de excitación en el caso del motor. La armadura es por lo general un núcleo de hierro dulce laminado, alrededor del cual se enrollan en bobinas los cables conductores.

5.1- Clasificación

Se clasifican en dos tipos fundamentales: primarios y secundarios. Son generadores primarios los que convierten en energía eléctrica la energía de otra naturaleza que reciben o de la que disponen inicialmente, mientras que los secundarios entregan una parte de la energía eléctrica que han recibido previamente . Se agruparán los dispositivos concretos conforme al proceso físico que les sirve de fundamento.

5.1.1- Generadores primarios

LA Energía mecánica es:

    • Triboelectricidad
      • Cuerpos frotados
      • Máquinas electrostáticas
    • Piezoelectricidad
  • Energía magneto-mecánica:
    • Corriente continua: Dinamo
    • Corriente alterna: Alternador

5.1.2- Generadores ideales

Desde el punto de vista teórico (teoría de circuitos) se distinguen dos tipos ideales:

  • generador de voltaje: un generador de voltaje ideal mantiene un voltaje fijo entre sus terminales con independencia de la resistencia de la carga que pueda estar conectada entre ellos.
  • generador de corriente: un generador de corriente ideal mantiene una corriente constante por el circuito externo con independencia de la resistencia de la carga que pueda estar conectada entre ellos.

En la Figura 1 se ve el circuito más simple posible, constituido por un generador de tensión constante E conectado a una carga Rc y en donde su cumpliría la ecuación:

Figura 1: E = I×Rc

E = I×Rc

El generador descrito no tiene existencia real en la práctica, ya que siempre posee lo que, convencionalmente, se ha dado en llamar resistencia interna, que aunque no es realmente una resistencia, en la mayoría de los casos se comporta como tal. En la Figura  se puede ver el mismo circuito anterior, pero donde la resistencia interna del generador viene representada por una resistencia Ri, en serie con el generador, con lo que la ecuación anterior se transforma en:

Figura 2: E = I×(Rc+Ri)

E = I×(Rc+Ri)

5.2- Generadores de Corriente Continúa

Cuando, por un campo magnético, se desplaza un conductor se induce sobre él una . Si a un motor C.C. le hacemos girar el rotor (eje), se estarán moviendo los arrollados de éste dentro de un campo magnético (creado por los imanes del motor).

Si una armadura gira entre dos polos de campo fijos, la corriente en la armadura se mueve en una dirección durante la mitad de cada revolución, y en la otra dirección durante la otra mitad. Para producir un flujo constante de corriente en una dirección, o continua, en un aparato determinado, es necesario disponer de un medio para invertir el flujo de corriente fuera del generador una vez durante cada revolución. En las máquinas antiguas esta inversión se llevaba a cabo mediante un conmutador, un anillo de metal partido montado sobre el eje de una armadura. Las dos mitades del anillo se aislaban entre sí y servían como bornes de la bobina.

 Las escobillas fijas de metal o de carbón se mantenían en contra del conmutador, que al girar conectaba eléctricamente la bobina a los cables externos. Cuando la armadura giraba, cada escobilla estaba en contacto de forma alternativa con las mitades del conmutador, cambiando la posición en el momento en el que la corriente invertía su dirección dentro de la bobina de la armadura.

Así se producía un flujo de corriente de una dirección en el circuito exterior al que el generador estaba conectado. Los generadores de corriente continua funcionan normalmente a voltajes bastante bajos para evitar las chispas que se producen entre las escobillas y el conmutador a voltajes altos. El potencial más alto desarrollado para este tipo de generadores suele ser de 1.500 V. En algunas máquinas más modernas esta inversión se realiza usando aparatos de potencia electrónica, como por ejemplo rectificadores de diodo.

Si este motor no está conectado para que funcione como tal, en sus terminales de alimentación aparecerá la tensión generada internamente. De esta manera un motor de C.C. se convierte en un generador de corriente continua.

La tensión de salida de un generador es directamente proporcional a su velocidad, entonces… es posible saber a que velocidad gira el generador sólo con medir la tensión de salida.

El circuito equivalente del generador CC es casi igual al de un motor CC., solo que en este caso la corriente de excitación no entra, sino que sale.

En el siguiente gráfico se muestra el circuito equivalente de un generador de corriente continua

La tensión de salida se obtiene con ayuda de la ley de tensiones de Kirchoff. Vg = Vb – (Ia x Ra)

Circuito equivalente de un generador de corriente continua (CC) - Electrónica Unicrom

 Donde: – Vb = Fuerza contraelectromotriz del motor (FCEM) – Ia = Corriente de excitación – Ra = Resistencia del devanado

Se puede ver que la tensión de salida es igual a la la FCEM del motor menos la caída de tensión en el devanado del mismo.

– Si un motor de corriente continua aprovecha, la fuerza que se produce sobre un conductor, para poder girar, el generador de CC por el principio recíproco, aprovecha el movimiento de giro del conductor para que sobre el (el conductor) se induzca una tensión.

– En un motor, la corriente que circula por un conductor del motor hace que este se mueva. En un generador, cuando un conductor se mueve se produce sobre el, la circulación de una corriente eléctrica

Si el generador no está cargado (no hay nada conectado la los terminales de salida), Ia es casi cero (0). La tensión de salida Vg y la tensión Vg (fuerza electromotriz del motor) son iguales, debido a que no hay caída en la resistencia Ra. er ecuación anterior.

La velocidad del generador será: Vb/K rpm (revoluciones por minuto)

donde: – K = constante de FCEM – Vb = Fuerza contraelectromotriz del motor (FCEM)

Los generadores modernos de corriente continua utilizan armaduras de tambor, que suelen estar formadas por un gran número de bobinas agrupadas en hendiduras longitudinales dentro del núcleo de la armadura y conectadas a los segmentos adecuados de un conmutador múltiple. Si una armadura tiene un solo circuito de cable, la corriente que se produce aumentará y disminuirá dependiendo de la parte del campo magnético a través del cual se esté moviendo el circuito.

Un conmutador de varios segmentos usado con una armadura de tambor conecta siempre el circuito externo a uno de cable que se mueve a través de un área de alta intensidad del campo, y como resultado la corriente que suministran las bobinas de la armadura es prácticamente constante.

Los campos de los generadores modernos se equipan con cuatro o más polos electromagnéticos que aumentan el tamaño y la resistencia del campo magnético. En algunos casos, se añaden interpolos más pequeños para compensar las distorsiones que causa el efecto magnético de la armadura en el flujo eléctrico del campo.

Los generadores de corriente continua se clasifican según el método que usan para proporcionar corriente de campo que excite los imanes del mismo. Un generador de excitado en serie tiene su campo en serie respecto a la armadura. Un generador de excitado en derivación, tiene su campo conectado en paralelo a la armadura. Un generador de excitado combinado tiene parte de sus campos conectados en serie y parte en paralelo. Los dos últimos tipos de generadores tienen la ventaja de suministrar un voltaje relativamente constante, bajo cargas eléctricas variables. El de excitado en serie se usa sobre todo para suministrar una corriente constante a voltaje variable. Un magneto es un generador pequeño de corriente continua con un campo magnético permanente.

5.3- Generadores de Corriente Alterna 

Si se toma un motor AC y se hace girar mecánicamente su eje, este motor se comportará como un generador AC (generador de corriente alterna)

El funcionamiento de un generador de corriente alterna se basa en:

– Cuando se coloca una bobina en un campo magnético variable se genera en la bobina una tensión que hace que por esta circule una corriente.

– Cuando el campo magnético aumenta, su velocidad de variación aumenta la frecuencia y la tensión de la señal que se genera.

Como se decía antes, un generador simple sin conmutador producirá una corriente eléctrica que cambia de dirección a medida que gira la armadura. Este tipo de corriente alterna es ventajosa para la transmisión de potencia eléctrica, por lo que la mayoría de los generadores eléctricos son de este tipo.

En su forma más simple, un generador de corriente alterna se diferencia de uno de corriente continua en sólo dos aspectos: los extremos de la bobina de su armadura están sacados a los anillos colectores sólidos sin segmentos del árbol del generador en lugar de los conmutadores, y las bobinas de campo se excitan mediante una fuente externa de corriente continua más que con el generador en sí.

Los generadores de corriente alterna de baja velocidad se fabrican con hasta 100 polos, para mejorar su eficiencia y para lograr con más fácilidad la frecuencia deseada. Los alternadores accionados por turbinas de alta velocidad, sin embargo, son a menudo máquinas de dos polos. La frecuencia de la corriente que suministra un generador de corriente alterna es igual a la mitad del producto del número de polos y el número de revoluciones por segundo de la armadura.

A veces, es preferible generar un voltaje tan alto como sea posible. Las armaduras rotatorias no son prácticas en este tipo de aplicaciones, debido a que pueden producirse chispas entre las escobillas y los anillos colectores, y a que pueden producirse fallos mecánicos que podrían causar cortocircuitos. Por tanto, los alternadores se construyen con una armadura fija en la que gira un rotor compuesto de un número de imanes de campo. El principio de funcionamiento es el mismo que el del generador de corriente alterna descrito con anterioridad, excepto en que el campo magnético (en lugar de los conductores de la armadura) está en movimiento.

La corriente que se genera mediante los alternadores descritos más arriba, aumenta hasta un pico, cae hasta cero, desciende hasta un pico negativo y sube otra vez a cero varias veces por segundo, dependiendo de la frecuencia para la que esté diseñada la máquina. Este tipo de corriente se conoce como corriente alterna monofásica. Sin embargo, si la armadura la componen dos bobinas, montadas a 90º una de otra, y con conexiones externas separadas, se producirán dos ondas de corriente, una de las cuales estará en su máximo cuando la otra sea cero.

Este tipo de corriente se denomina corriente alterna bifásica. Si se agrupan tres bobinas de armadura en ángulos de 120º, se producirá corriente en forma de onda triple, conocida como corriente alterna trifásica. Se puede obtener un número mayor de fases incrementando el número de bobinas en la armadura, pero en la práctica de la ingeniería eléctrica moderna se usa sobre todo la corriente alterna trifásica, con el alternador trifásico, que es la máquina dinamoeléctrica que se emplea normalmente para generar potencia eléctrica.

5.3.1- Frecuencia, velocidad y amplitud de salida de un generador AC

Al hacer girar mecánicamente el eje del generador, la frecuencia y la tensión de la señal de salida, aumentan proporcionalmente con la velocidad de giro del eje. La relación que existe entre la velocidad de giro del eje y la frecuencia de la señal generada está dada por la siguiente relación:

Ns = 60 x f / p

donde: f = frecuencia en Hertz (Hz) p = número de polos del generador (motor)

Basta sólo medir la frecuencia de la señal generada y se puede obtener la velocidad

La frecuencia de la señal senoidal generada, se obtiene con la siguiente fórmula:

f (hz) = Ns x p / 60

donde: Ns = velocidad del motor sincrónico en r.p.m. (revoluciones por minuto) p = número de pares de polos del motor

La amplitud de la señal generada por un generador AC se obtiene con la siguiente fórmula:

V (voltios) = K x Ns

donde: K = Constante del motor en V / rpm Ns = Velocidad del motor sincrónico

5.4- Dinamo

Una dinamo o dínamo es un generador eléctrico destinado a la transformación de energía mecánica en eléctrica mediante el fenómeno de la inducción electromagnética.

La corriente generada es producida cuando el campo magnético creado por un imán o un electroimán fijo (inductor) atraviesa una bobina rotatoria (inducido) colocada en su seno. La corriente inducida en esta bobina giratoria, en principio alterna es transformada en contínua mediante la acción de un conmutador giratorio, solidario con el inducido, denominado colector, constituido por unos electrodos denominados delgas, de aquí es conducida al exterior mediante otros contactos fijos llamados escobillas. que hacen contacto por frotamiento con las delgas del colector.

5.4.1- Historia

Durante 1831 y 1832, Michael Faraday descubrió que un conductor eléctrico moviéndose perpendicularmente a un campo magnético generaba una diferencia de potencial. Aprovechando esto, construyó el primer generador electromagnético, el disco de Faraday, un generador homopolar, empleando un disco de cobre que giraba entre los extremos de un imán con forma de herradura, generándose una pequeña corriente continua. También fue utilizado como generador de energía en una bicicleta para producir luz de poca intensidad.

Disco de Faraday.

Disco de Faraday.

5.4.2- Primeros modelos

El dinamo fue el primer generador eléctrico apto para su uso industrial. Emplea principios electromagnéticos para convertir la energía de rotación mecánica en corriente continua. El primer dinamo, basado en los principios de Faraday, fue construido en 1832 por el fabricante francés de herramientas Hipólito Pixii. Empleaba un imán permanente que giraba por medio de una manivela.

Este imán estaba colocado de forma que sus polos norte y sur pasaban al girar junto a un núcleo de hierro con un cable eléctrico enrollado (como un núcleo y una bobina). Pixii descubrió que el imán giratorio producía un pulso de corriente en el cable cada vez que uno de los polos pasaba junto a la bobina; cada polo inducía una corriente en sentido contrario, esto es, una corriente alterna. Añadiendo al esquema un conmutador eléctrico situado en el mismo eje de giro del imán, Pixii convirtió la corriente alterna en corriente continua.

Uno de los principales usos del dinamo es la utilización de la energía eólica, de esta forma el viento hace rotar las aspas conectadas al eje del dinamo, produciendo electricidad y aprovechando esta fuente de energía inagotable.

El dinamo de Gramme

Los diseños de Faraday y Pixii sufrían el mismo problema: inducían picos repentinos de corriente sólo cuando los polos N o S del imán pasaban cerca de la bobina; la mayor parte del tiempo no generaban nada.

Antonio Pacinotti, un científico italiano, resolvió esto reemplazando la bobina giratoria por una de forma toroidal, enroscada en un trozo de hierro con forma de anillo. Así, siempre había parte de la bobina influida magnéticamente por los imanes, suavizando la corriente.

Posteriormente Zénobe Gramme reinventó el diseño al proyectar los primeros generadores comerciales a gran escala, que operaban en París en torno a 1870. Su diseño se conoce como la dinamo de Gramme.

A partir de entonces se han realizado nuevas versiones con mejoras, pero el concepto básico de bucle giratorio sin fin permanece en todas las dinamos modernas.

El dinamo en el automóvil

Uno de los usos más corrientes que se le dio a la dinamo fue el de generador de energía eléctrica para el automóvil. A medida que, desde principios del siglo XX, los automóviles se iban haciendo más complejos, se demostró que los sistemas de generación de energía eléctrica con los que se contaba no eran lo suficientemente potentes para las necesidades del vehículo. Esta circunstancia favoreció la implantación paulatina de la dinamo en el mismo.

Aunque se trataba de un elemento que proporcionaba la energía necesaria con relativamente poco peso, presentaba ciertos problemas. El más importante era que la velocidad de rotación que se le suministraba nunca era constante (las revoluciones del motor están continuamente variando) con lo cual tenía que ser capaz de suministrar la misma corriente en ralentí (movimiento lento) que cuando el motor estaba a pleno rendimiento.

Esto se solucionó con los reguladores que, aunque son sencillos en su diseño, requieren de un reglaje muy delicado. Estos dispositivos debían ser capaces de regular el voltaje y la intensidad. Además debería evitar que la dinamo funcionara como un motor eléctrico cuando el vehículo estuviera al ralentí, que es cuando prácticamente no produce energía, para que el flujo de corriente no se invirtiera.

Dado que las dinamos tienen un diseño muy parecido al de los motores eléctricos, en el automóvil llegaban a funcionar como tales cuando se invertía el flujo de corriente al ser mayor el potencial que suministraba la batería que el potencial que suministraba la dinamo.

6- Motor Eléctrico

Un motor es una máquina capaz de transformar la energía almacenada en combustibles, baterías u otras fuentes, en energía mecánica capaz de realizar un trabajo. En los automóviles este efecto es una fuerza que produce el movimiento.

Existen diversos tipos, siendo común clasificarlos en:

  • motores térmicos, cuando el trabajo se obtiene a partir de algunas diferencias de temperatura.
  • motores eléctricos, cuando el trabajo se obtiene a partir de una corriente eléctrica.
  • motores de combustión interna, cuando el trabajo se obtiene de combustibles, como el petróleo, el alcohol, y aceites naturales como el de maíz (Biodiesel).

En los aerogeneradores, las centrales hidroeléctricas o los reactores nucleares también se transforma algún tipo de energía en otro. Sin embargo, la palabra motor se reserva para los casos en los cuales el resultado inmediato es energía mecánica.

6.1- Motores Eléctricos

Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. Algunos de los motores eléctricos son reversibles, es decir, pueden transformar energía mecánica en energía electrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras realizan a menudo ambas tareas, si se los equipa con frenos regenerativos.

trabaja_motor_electrico-a

Motor Eléctrico

Son ampliamente utilizados en instalaciones industriales, comerciales y de particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Una batería de varios kilogramos equivale a la que contienen 80 g de gasolina. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.

 

20070924klpcnafyq_128

6.2- Clasificación según el elemento que le aporta energía a los motores

  • Aquellos que obtienen la energía de fluidos (Eólicos, hidráulicos, de aire comprimido, térmicos, etc)
  • Aquellos que obtienen la energía de sólidos
  • Aquellos que obtienen la energía de formas especiales (eléctricos)

6.3- Principios de Funcionamiento

Los motores de corriente alterna y los motores de corriente directa se basan en el mismo principio de funcionamiento, el cuál establece que si un conductor por el cual circula una corriente eléctrica se encuentra dentro de la acción de un campo magnético, éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnético.

El conductor tiende a funcionar como un electroimán debido a la corriente eléctrica que circula por el mismo adquiriendo de esta manera propiedades magnéticas, que provocan, debido a la interacción con los polos ubicados en el estator, el movimiento circular que se observa en el rotor del motor.

Partiendo del hecho que cuando pasa corriente eléctrica por un conductor se produce un campo magnético, además si lo ponemos dentro de la acción de un campo magnético potente, el producto de la interacción de ambos campos magnéticos hace que el conductor tienda a desplazarse produciendo así la energía mecánica. Dicha energía es comunicada al exterior mediante un dispositivo llamado flecha.

6.4- Motores de Corriente Alterna

Se denomina motor de corriente alterna a aquellos motores eléctricos que funcionan con corriente alterna. Un motor es una máquina motriz, esto es, un aparato que convierte una forma determinada de energía en energía mecánica de rotación o par. Un motor eléctrico convierte la energía eléctrica en fuerzas de giro por medio de la acción mutua de los campos magnéticos.

Un generador eléctrico, por otra parte, transforma energía mecánica de rotación en energía eléctrica y se le puede llamar una máquina generatriz de fem. Las dos formas básicas son el generador de corriente continua y el generador de corriente alterna, este último más correctamente llamado alternador.

Todos los generadores necesitan una máquina motriz (motor) de algún tipo para producir la fuerza de rotación, por medio de la cual un conductor puede cortar las líneas de fuerza magnéticas y producir una fem. La máquina más simple de los motores y generadores es el alternador.

En algunos casos, tales como barcos, donde la fuente principal de energía es de corriente continua, o donde se desea un gran margen, pueden emplearse motores de c-c. Sin embargo, La mayoría de los motores modernos trabajan con fuentes de corriente alterna.          

Existe una gran variedad de motores de c-a, entre ellos tres tipos básicos: el universal, el síncrono y el de jaula de ardilla.

6.4.1- Los motores de C.A. se clasifican de la siguiente manera:

Asíncrono o de inducción

Los motores asíncronos o de inducción son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias.

Jaula de ardilla

Fundición de aluminio de una jaula de ardilla-Envuelto en hojalata (con una pieza cilíndrica en el medio) en un motor con polos en una hendidura. las varillas de aluminio de la jaula pasan por el interior. En los laterales del frontal están las aletas de la ventilación adicional, fundidas junto con en el conjunto. El devanado superior y el cojinete del motor están ocultos.

Fundición de aluminio de una jaula de ardilla-Envuelto en hojalata (con una pieza cilíndrica en el medio) en un motor con polos en una hendidura. Las varillas de aluminio de la jaula pasan por el interior. En los laterales del frontal están las aletas de la ventilación adicional, fundidas junto con en el conjunto. El devanado superior y el cojinete del motor están ocultos.

Monofásicos

  • Motor de arranque a resistencia.
  • Motor de arranque a condensador.
  • Motor de marcha.
  • Motor de doble capacitor.
  • Motor de polos sombreados.

Trifásicos

  • Motor de Inducción.

A tres fases

Rotor Devanado Monofásicos

  • Motor universal
  • Motor de Inducción-Repulsión.

Trifásicos

  • Motor de rotor devanado.
  • Motor Asincrono
  • Motor Sincrono

Síncrono

En este tipo de motores y en condiciones normales, el rotor gira a las mismas revoluciones que lo hace el campo magnético del estator.

Trifásicos

  • Motor de rotor derivado de los motores de avíones jet.

Motores universales

Los motores universales trabajan con voltajes de corriente continua o corriente alterna. Tal motor, llamado universal, se utiliza en sierra eléctrica, taladro, utensilios de cocina, ventiladores, sopladores, batidoras y otras aplicaciones donde se requiere gran velocidad con cargas débiles o pequeña velocidad. Estos motores para corriente alterna y directa, incluyendo los universales se distinguen por su conmutador devanado y las escobillas.

Los componentes de este motor son: Los campos (estator), la masa (rotor), las escobillas (los excitadores) y las tapas (las cubiertas laterales del motor). El circuito eléctrico es muy simple, tiene solamente una vía para el paso de la corriente, porque el circuito está conectado en serie. Su potencial es mayor por tener mayor flexibilidad en vencer la inercia cuando está en reposo, o sea, tiene un torque excelente, pero tiene una dificultad, y es que no está construido para uso continuo o permanente.

Otra dificultad de los motores universales, en lo que a radio se refiere, son las chispas del colector (chisporroteos) y las interferencias de radio que ello lleva consigo o ruido. Esto se puede reducir por medio de los condensadores de paso, de 0,001 μF a 0,01 μF, conectados de las escobillas a la carcasa del motor y conectando ésta a masa.Estos motores tienen la ventaja que alcanzan grandes velocidades pero con poca fuerza.

Motores síncronos

Implicando, se puede utilizar un alternador como motor en determinadas circunstancias. Si se excita el campo con c-c y se alimenta por los anillos colectores a la bobina del rotor con c-a, la máquina no arrancará. El campo alrededor de la bobina del rotor es alterno en polaridad magnética pero durante un semiperiodo del ciclo completo, intentará moverse en una dirección y durante el siguiente semiperiodo en la dirección opuesta. El resultado es que la máquina permanece parada. La máquina solamente se calentará y posiblemente se quemará.

Para generar el campo magnético del rotor, se suministra una CC al devanado del campo; esto se realiza frecuentemente por medio de una excitatriz, la cual consta de un pequeño generador de CC impulsado por el motor, conectado mecánicamente a él. Se mencionó anteriormente que para obtener un par constante en un motor eléctrico, es necesario mantener los campos magnéticos del rotor y del estator constantes el uno con relación al otro. Esto significa que el campo que rota electromagnéticamente en el estator y el campo que rota mecánicamente en el rotor se deben alinear todo el tiempo.

La única condición para que esto ocurra consiste en que ambos campos roten a la velocidad sincrónica:

n_s = frac{120f}{p}

Es decir, son motores de velocidad constante.

Para una máquina sincrónica de polos no salientes (rotor cilíndrico), el par se puede escribir en términos de la corriente alterna del estator, is(t), y de la corriente continua del rotor, if:

 T = k cdot frac{i_s(t)}{i_f} cdot frac{1}{sen(gamma)}

donde γ es el ángulo entre los campos del estator y del rotor

El rotor de un alternador de dos polos debe hacer una vuelta completa para producir un ciclo de c-a. Debe girar 60 veces por segundo (si la frecuencia fuera de 60 Hz), o 3.600 revoluciones por minuto (rpm), para producir una c-a de 60 Hz. Si se puede girar a 3.600 rpm tal alternador por medio de algún aparato mecánico, como por ejemplo, un motor de c-c, y luego se excita el inducido con una c-a de 60 Hz, continuará girando como un motor síncrono.

Su velocidad de sincronismo es 3.600 rpm. Si funciona con una c-a de 50 Hz, su velocidad de sincronismo será de 3.000 rpm. Mientras la carga no sea demasiado pesada, un motor síncrono gira a su velocidad de sincronismo y solo a esta velocidad. Si la carga llega a ser demasiado grande, el motor va disminuyendo velocidad, pierde su sincronismo y se para. Los motores síncronos de este tipo requieren todos una excitación de c-c para el campo (o rotor), así como una excitación de c-a para el estator.

Se puede fabricar un motor síncrono construyendo el rotor cilíndrico normal de un motor tipo jaula de ardilla con dos lados planos. Un ejemplo de motor síncrono es el reloj eléctrico, que debe arrancarse a mano cuando se para.

 En cuanto se mantiene la c-a en su frecuencia correcta, el reloj marca el tiempo exacto. No es importante la precisión en la amplitud de la tensión.

Motores de jaula de ardilla

La mayor parte de los motores que funcionan con c-a de una sola fase tienen el rotor de tipo jaula de ardilla. Los rotores de jaula de ardilla reales son mucho más compactos y tienen un núcleo de hierro laminado.

Los conductores longitudinales de la jaula de ardilla son de cobre y van soldados a las piezas terminales de metal. Cada conductor forma una espira con el conductor opuesto conectado por las dos piezas circulares de los extremos.

Cuando este rotor está entre dos polos de campos electromagnéticos que han sido magnetizados por una corriente alterna, se induce una fem en las espiras de la jaula de ardilla, una corriente muy grande las recorre y se produce un fuerte campo que contrarresta al que ha producido la corriente (ley de Lenz). Aunque el rotor pueda contrarrestar el campo de los polos estacionarios, no hay razón para que se mueva en una dirección u otra y así permanece parado. Es similar al motor síncrono el cual tampoco se arranca solo. Lo que se necesita es un campo rotatorio en lugar de un campo alterno.

Cuando el campo se produce para que tenga un efecto rotatorio, el motor se llama de tipo de jaula de ardilla. Un motor de fase partida utiliza polos de campo adicionales que están alimentados por corrientes en distinta fase, lo que permite a los dos juegos de polos tener máximos de corriente y de campos magnéticos con muy poca diferencia de tiempo. Los arrollamientos de los polos de campo de fases distintas, se deberían alimentar por c-a bifásicas y producir un campo magnético rotatorio, pero cuando se trabaja con una sola fase, la segunda se consigue normalmente conectando un condensador (o resistencia) en serie con los arrollamientos de fases distintas.

Con ello se puede desplazar la fase en más de 20° y producir un campo magnético máximo en el devanado desfasado que se adelanta sobre el campo magnético del devanado principal.

Desplazamiento real del máximo de intensidad del campo magnético desde un polo al siguiente, atrae al rotor de jaula de ardilla con sus corrientes y campos inducidos, haciéndole girar. Esto hace que el motor se arranque por sí mismo.

El devanado de fase partida puede quedar en el circuito o puede ser desconectado por medio de un conmutador centrífugo que le desconecta cuando el motor alcanza una velocidad predeterminada. Una vez que el motor arranca, funciona mejor sin el devanado de fase partida. De hecho, el rotor de un motor de inducción de fase partida siempre se desliza produciendo un pequeño porcentaje de reducción de la que sería la velocidad de sincronismo.

Si la velocidad de sincronismo fuera 1.800 rpm, el rotor de jaula de ardilla, con una cierta carga, podría girar a 1.750 rpm. Cuanto más grande sea la carga en el motor, más se desliza el rotor. En condiciones óptimas de funcionamiento un motor de fase partida con los polos en fase desconectados, puede funcionar con un rendimiento aproximado del 75%.

Otro modo de producir un campo rotatorio en un motor, consiste en sombrear el campo magnético de los polos de campo. Esto se consigue haciendo una ranura en los polos de campo y colocando un anillo de cobre alrededor de una de las partes del polo.

Mientras la corriente en la bobina de campo está en la parte creciente de la alternancia, el campo magnético aumenta e induce una fem y una corriente en el anillo de cobre. Esto produce un campo magnético alrededor del anillo que contrarresta el magnetismo en la parte del polo donde se halla él.

En este momento se tiene un campo magnético máximo en la parte de polo no sombreada y un mínimo en la parte sombreada. En cuanto la corriente de campo alcanza un máximo, el campo magnético ya no varía y no se induce corriente en el anillo de cobre. Entonces se desarrolla un campo magnético máximo en todo el polo. Mientras la corriente está decreciendo en amplitud el campo disminuye y produce un campo máximo en la parte sombreada del polo.

De esta forma el campo magnético máximo se desplaza de la parte no sombreada a la sombreada de los polos de campo mientras avanza el ciclo de corriente. Este movimiento del máximo de campo produce en el motor el campo rotatorio necesario para que el rotor de jaula de ardilla se arranque solo.

El rendimiento de los motores de polos de inducción sombreados no es alto, varía del 30 al 50 por 100. Una de las principales ventajas de todos los motores de jaula de ardilla, particularmente en aplicaciones de radio, es la falta de colector o de anillos colectores y escobillas. Esto asegura el funcionamiento libre de interferencias cuando se utilizan tales motores. Estos motores también son utilizados en la industria.El mantenimiento que se hace a estos motores es facil.

6.5- Motor de Corriente Continua

El motor de corriente continua es una máquina que convierte la energía eléctrica en mecánica, principalmente mediante el movimiento rotatorio. En la actualidad existen nuevas aplicaciones con motores eléctricos que no producen movimiento rotatorio, sino que con algunas modificaciones, ejercen tracción sobre un riel. Estos motores se conocen como motores lineales.

Esta máquina de corriente continua es una de las más versátiles en la industria. Su fácil control de posición, par y velocidad la han convertido en una de las mejores opciones en aplicaciones de control y automatización de procesos. Pero con la llegada de la electrónica su uso ha disminuido en gran medida, pues los motores de corriente alterna, del tipo asíncrono, pueden ser controlados de igual forma a precios más accesibles para el consumidor medio de la industria. A pesar de esto los motores de corriente continua se siguen utilizando en muchas aplicaciones de potencia (trenes y tranvías) o de precisión (máquinas, micro motores, etc.)

La principal característica del motor de corriente continua es la posibilidad de regular la velocidad desde vacío a plena carga.

Una máquina de corriente continua (generador o motor) se compone principalmente de dos partes, un estator que da soporte mecánico al aparato y tiene un hueco en el centro generalmente de forma cilíndrica. En el estator además se encuentran los polos, que pueden ser de imanes permanentes o devanados con hilo de cobre sobre núcleo de hierro. El rotor es generalmente de forma cilíndrica, también devanado y con núcleo, al que llega la corriente mediante dos escobillas.

Partes: 1, 2, 3, 4
 Página anterior Volver al principio del trabajoPágina siguiente