Núcleo
E l núcleo celular es un orgánulo membranoso que se encuentra en las células eucariotas. Contiene la mayor parte del material genético celular, organizado en múltiples moléculas lineales de ADN de gran longitud formando complejos con una gran variedad de proteínas como las histonas para formar los cromosomas. El conjunto de genes de esos cromosomas se denomina genoma nuclear. La función del núcleo es mantener la integridad de esos genes y controlar las actividades celulares regulando la expresión génica. Por ello se dice que el núcleo es el centro de control de la célula.
Las principales estructuras que constituyen el núcleo son la envoltura nuclear, una doble membrana que rodea completamente al orgánulo y separa ese contenido del citoplasma, además de contar con poros nucleares que permiten el paso a través de la membrana para la expresión genética y el mantenimiento cromosómico.
- a. Envoltura nuclear: La envuelta nuclear separa físicamente al nucleoplasma (cromatina y demás componentes del interior nuclear) del citoplasma y regula el movimiento de macromoléculas entre ellos, establece la forma nuclear y contribuye a la organización interna del núcleo ya que aporta lugares de anclaje para la cromatina. La envuelta nuclear está formada por una membrana doble, externa e interna, quedando entre ambas un espacio intermembranoso de aproximadamente 25-40 nm, formando todos estos elementos las denominas cisternas perinucleares. La membrana externa se continúa con la del retículo endoplasmático y posee ribosomas adheridos. La membrana interna contiene una composición molecular diferente y posee proteínas transmembrana que interactúan con la cromatina y con la lámina nuclear, el otro componente de la envuelta nuclear. Existe una comunicación entre la membrana nuclear interna y externa en la periferia de los poros nucleares. Las proteínas se sintetizan en el retículo endoplasmático que llegan a la membrana interna por difusión, pero sólo aquellas que interaccionan con las proteínas de la lámina nuclear o de la cromatina se mantienen aquí.
- b. Cromatina: El nucleoplasma, rodeado por la envuelta nuclear, contiene la cromatina, la cual se puede considerar como el ADN (ácido desoxirribonucleico) más todas las moléculas relacionadas con su organización, fundamentalmente histonas. El ADN está formado por 4 desoxirribonucleótidos (abreviado como nucleótidos). Cada nucleótido contiene una sucesión de tres componentes: base, pentosa y grupo fosfato. Las bases son cuatro, dos púricas: adenina (A) y guanina (G), y dos pirimidínicas: timina (T) y citosina (C). La pentosa es la desoxiribosa. Cada base se une a una pentosa formando un desoxinucleósido. Cada desoxirribonucleósido se une un grupo fostato por un carbono de la pentosa formándose un desoxirribonucleótido. Así, una cadena de ADN está formado por una sucesión de nucleótidos unidos entre sí por los grupos fosfato. Esto es una cadena simple pero el ADN está formado por dos cadenas simples gracias a la complementariedad que existe entre las bases A y T y entre G y C, las cuales establecen uniones del tipo puentes de hidrógeno. Las dos hebras son antiparalelas, es decir, que en los extremos tenemos el carbono 3' de una cadena y el 5' de la otra. Ambas se disponen en forma de doble hélice de unos 2.5 nm de anchura. Los nucleótidos no sólo están en el ADN. Pueden estar formando parte de otras moléculas con funciones totalmente diferentes. Por ejemplo el ATP (adenosín trifosfato) es la molécula de transferencia energética, o el AMPc (adenosín monofostato cíclico) que es un segundo mensajero celular muy importante. El ADN no se encuentra libre en el núcleo sino asociado a proteínas como las histonas y a otras proteínas implicadas en su procesamiento, formando en conjunto la cromatina. Las histonas son proteínas asociadas al ADN que determinan su organización. . Es interesante señalar que cuando se ha producido la división celular y se vuelven a desempaquetar a los cromosomas, la cromatina de cada uno de ellos suele ocupar un territorio concreto dentro del interior nuclear. Es decir, en el interior del núcleo no existe una madeja enredada de cromatina correspondiente a cromosomas diferentes sino un espacio compartimentado donde cada cromosoma suele ocupar una región del nucleoplasma más o menos delimitada donde cada cromosoma descondensa su cromatina.
- c. Nucléolo: El nucléolo es un compartimento nuclear formado por cromatina y visible al microscopio óptico. Las células de mamíferos contienen desde 1 a 5 nucléolos. Sus dimensiones varían dependiendo de la actividad de la célula y puede llegar a ser muy grande, del orden de micrómetros de diámetro. Normalmente las células que están realizando una gran síntesis proteica poseen nucléolos grandes. Durante la mitosis desaparece, permitiendo a la cromatina que lo forma reorganizarse para constituir los cromosomas. En el nucléolo se dan procesos relacionados con la generación de los ribosomas: síntesis y maduración del ARN ribosómico (ARNr) y ensamblaje de las subunidades ribosómicas. El ensamblaje de las subunidades ribosómicas es un proceso curioso de trasiego de moléculas entre el citoplasma y el nucleoplasma. Primero se transcriben los genes de dichas proteínas, que se localizan fuera de la cromatina nucleolar. Éste ARNm debe salir al citosol donde es traducido a proteínas por los ribosomas libres. Estas proteínas entrarán en el núcleo y llegan hasta el nucléolo. Aquí se asocian con los ARNr para formar las subunidades ribosómicas que deberán ser exportadas de nuevo al citosol atravesando otra vez los poros nucleares. Así, la visibilidad del nucléolo se debe a que muchos genes que producen ARNr se están transcribiendo, a que hay muchas proteínas implicadas en el procesamiento de ese primer transcrito, a las proteínas de las subunidades ribosómicas y a aquellas proteínas relacionadas con el ensamblaje de éstos. Se estima que hay unas 690 proteínas diferentes asociadas de forma estable con el nucléolo.
- d. Nucleoesqueleto: Las lamininas constituyen los principales componentes de nucleoesqueleto, son las determinantes del tamaño nuclear, del mantenimiento de la forma nuclear, de la integridad mecánica del núcleo, proporcionando apoyo estructural a la periferia nuclear, así como del espacio existente entre los distintos complejos nuclear del poro. Las lamininas actúan también en la organización de la cromatina al actuar como sitios de anclaje o de unión para la cromatina. Una matriz de láminas se extiende hacia el interior del núcleo. La cromatina contenida en un núcleo de una célula en interface se organiza en grandes bucles de DNA y regiones específicas de estos bucles se unen a la matriz de láminas. La organización laminar normal es esencial para la replicación del DNA y puede jugar un papel en la regulación de la expresión génica. Las láminas tienen también un papel fundamental durante reorganización del núcleo en la división celular. Así, la lámina nuclear participa en el control del desensamblaje del núcleo en la profase y la reorganización de nuevo del mismo en la telofase durante el proceso de mitosis
Orgánulos
- a. Ribosomas: Los ribosomas, visibles al microscopio electrónico como partículas esféricas, son complejos supramoleculares encargados de ensamblar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero. Elaborados en el núcleo, desempeñan su función de síntesis de proteínas en el citoplasma. Están formados por ARN ribosómico y por diversos tipos de proteínas. Estructuralmente, tienen dos subunidades. En las células, estos orgánulos aparecen en diferentes estados de disociación. Cuando están completos, pueden estar aislados o formando grupos (polisomas). También pueden aparecer asociados al retículo endoplasmático rugoso o a la envoltura nuclear. Los ribosomas son estructuras globulares, carentes de membrana. Pueden encontrarse libres en el citoplasma o adheridos a las membranas del retículo endoplasmático. Unas proteínas (riboforinas) sirven de nexo entre ambas estructuras. Su estructura es sencilla: dos subunidades (una mayor o otra menor) de diferente coeficiente de sedimentación. Su función consiste únicamente en ser el orgánulo lector del ARN mensajero, con órdenes de ensamblar los aminoácidos que formarán la proteína. Son orgánulos sintetizadores de proteínas.
- b. Retículo endoplasmático: El retículo endoplasmático es orgánulo vesicular interconectado que forma cisternas, tubos aplanados y sáculos comunicados entre sí. Intervienen en funciones relacionadas con la síntesis proteica, glicosilación de proteínas, metabolismo de lípidos y algunos esteroides, detoxificación, así como el tráfico de vesículas. En células especializadas, como las miofibrillas o células musculares, se diferencia en el retículo sarcoplásmico, orgánulo decisivo para que se produzca la contracción muscular. El retículo endoplasmático rugoso se encuentra unido a la membrana nuclear externa mientras que el retículo endoplasmático liso es una prolongación del retículo endoplasmático rugoso. El retículo endoplasmático rugoso tiene esa apariencia debido a los numerosos ribosomas adheridos a su membrana mediante unas proteínas denominadas "riboforinas". Tiene unos sáculos más redondeados cuyo interior se conoce como "luz del retículo" o "lumen" donde caen las proteínas sintetizadas en él. Está muy desarrollado en las células que por su función deben realizar una activa labor de síntesis, como las células hepáticas o las células del páncreas. El retículo endoplasmático liso no tiene ribosomas y participa en el metabolismo de lípidos. El retículo endoplasmático tiene variedad de formas: túbulos, vesículas, cisternas. En algunos casos en una misma célula se pueden observar los tres tipos.
- c. Aparato de Golgi: es un orgánulo formado por apilamientos de sáculos denominados dictiosomas, si bien, como ente dinámico, estos pueden interpretarse como estructuras puntuales fruto de la coalescencia de vesículas. Recibe las vesículas del retículo endoplasmático rugoso que han de seguir siendo procesadas. Dentro de las funciones que posee el aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación, glicosilación de lípidos y la síntesis de polisacáridos de la matriz extracelular. Posee tres compartimientos; uno proximal al retículo endoplasmático, denominado «compartimento cis», donde se produce la fosforilación de las manosas de las enzimas que han de dirigirse al lisosoma; el «compartimento intermedio», con abundantes manosidasas y N-acetil-glucosamina transferasas; y el «compartimento o red trans», el más distal, donde se transfieren residuos de galactosa y ácido siálico, y del que emergen las vesículas con los diversos destinos celulares.
Las principales funciones del aparato de Golgi vienen a ser las siguientes:
- Modificación de sustancias sintetizadas en el RER: En el aparato de Golgi se transforman las sustancias procedentes del RER. Estas transformaciones pueden ser agregaciones de restos de carbohidratos para conseguir la estructura definitiva o para ser proteolizados y así adquirir su conformación activa. Por ejemplo, en el RER de las células acinosas del páncreas se sintetiza la proinsulina que debido a las transformaciones que sufre en el aparato de Golgi, adquirirá la forma o conformación definitiva de la insulina. Las enzimas que se encuentran en el interior de los dictiosomas son capaces de modificar las macromoléculas mediante glicosilación (adición de carbohidratos) y fosforilación (adición de fosfatos). Para ello, el aparato de Golgi transporta ciertas sustancias como nucleótidos y azúcares al interior del orgánulo desde el citoplasma
- Secreción celular: las sustancias atraviesan todos los sáculos del aparato de Golgi y cuando llegan a la cara trans del dictiosoma, en forma de vesículas de secreción, son transportadas a su destino fuera de la célula, atravesando la membrana citoplasmática por exocitosis. Un ejemplo de esto son los proteoglicanos que conforman la matriz extracelular de los animales. El aparato de Golgi es el orgánulo de mayor síntesis de carbohidratos.5 Esto incluye la producción de glicosaminoglicanos (GAGs), largos polisacáridos que son anclados a las proteínas sintetizadas en el RE para dar lugar a los proteoglicanos. De esto se encargarán las enzimas del Golgi por medio de un residuo de xilosa.
- Producción de membrana plasmática: los gránulos de secreción cuando se unen a la membrana en la exocitosis pasan a formar parte de esta, aumentando el volumen y la superficie de la célula.
- Formación de los lisosomas primarios.
- Formación del acrosoma de los espermios.
- d. Lisosomas: son orgánulos que albergan multitud de enzimas hidrolíticas. De morfología muy variable, no se ha demostrado su existencia en células vegetales. Una característica que agrupa a todos los lisosomas es la posesión de hidrolasas ácidas: proteasas, nucleasas, glucosidasas, lisozima, arilsulfatasas, lipasas, fosfolipasas y fosfatasas. Procede de la fusión de vesículas procedentes del aparato de Golgi, que, a su vez, se fusionan en un tipo de orgánulo denominado endosoma temprano, el cual, al acidificarse y ganar en enzimas hidrolíticos, pasa a convertirse en el lisosoma funcional. Sus funciones abarcan desde la degradación de macromoléculas endógenas o procedentes de la fagocitosis a la intervención en procesos de apoptosis. El pH en el interior de los lisosomas es de 4,8 (bastante menor que el del citosol, que es neutro) debido a que las enzimas proteolíticas funcionan mejor con un pH ácido. La membrana del lisosoma estabiliza el pH bajo bombeando iones (H+) desde el citosol, y así mismo, protege al citosol e igualmente al resto de la célula de las enzimas digestivas que hay en el interior del lisosoma. Las enzimas lisosomales son capaces de digerir bacterias y otras sustancias que entran en la célula por fagocitosis, u otros procesos de endocitosis. Los lisosomas utilizan sus enzimas para reciclar los diferentes orgánulos de la célula, englobándolos, digiriéndolos y liberando sus residuos en el citosol. De esta forma los orgánulos de la célula se están continuamente reponiendo. El proceso de digestión de los orgánulos se llama autofagia. Por ejemplo, las células hepáticas se reconstituyen por completo una vez cada dos semanas. Las enzimas más importantes del lisosoma son: Lipasas, que digiere lípidos; Glucosidasas, que digiere carbohidratos; Proteasas, que digiere proteínas; Nucleasas, que digiere ácidos nucleícos.
e. Cuerpos multivesiculares: Los cuerpos multivesiculares y posteriormente los endosomas tardíos son la antesala de la degradación de las moléculas endocitadas, la cual se realiza finalmente en los lisosomas gracias a unas enzimas denominadas hidrolasas ácidas. Las moléculas destinadas a la degradación llegan desde los endosomas tempranos (bien mediante vesículas o bien mediante la transformación de los endosomas tempranos en cuerpos multivesiculares). Las hidrolasas ácidas también llegan a los endosomas tardíos empaquetadas en vesículas enviadas desde el TGN del aparato de Golgi. Desde éstos se producirá un último reciclado mediante vesículas hacia endosomas tempranos y hacia el TGN del aparato de Golgi. Sin embargo, estas enzimas no tendrán su máxima actividad hasta llegar a los lisosomas. Desde los endosomas tardíos se produce un último reciclado de vesículas hacia el TGN y endosomas tempranos. La acción de las bombas de protones localizadas en las membranas de estos endosomas irá acidificando progresivametne el pH interno y por tanto favoreciendo la acción de las hidrolasas ácidas, cuya actividad óptima se da a un pH próximo a 5, el cual se alcanza en los lisosomas. El aspecto multivesicular que se observa a microscopía electrónica de los cuerpos multivesiculares se debe a que en sus membranas se producen invaginaciones que resultarán en vesículas en su interior. De esta manera se pueden degradar las moléculas que forman parte integral de las membranas, aunque en dichas invaginaciones entra además parte del fluido citosólico, que también será degradado. Como dijimos anteriormente los endosomas tardíos se forman por maduración de los cuerpos multivesiculares. Algunos tipos celulares como las células hematopoyéticas, los linfocitos, las células dendríticas, las células epiteliales intestinales, los mastocitos y las células tumorales, realizan un tipo de tráfico vesicular un tanto extraño. Los cuerpos multivesiculares, en vez de convertirse en lisosomas, se fusionan con la membrana plasmática liberando sus vesículas internas (de 30 a 60 nm de diámetro) al espacio extracelular. A estas vesículas liberadas se les denomina exosomas y poseen una composición molecular distinta a otros compartimentos intracelulares, por ejemplo poseen mucho colesterol y esfingomielina.
f. Laminillas anulares: son orgánulos poco frecuentes que aparecen, por ejemplo, en las células que se dividen con rapidez, como las células germinales en sus primeras etapas y algunas células cancerosas. Consisten en pilas o rimeros de cisternas limitadas por membrana, de forma aplanada y disposición paralela, en cuya superficie aparecen poros. Esto recuerda la envoltura nuclear con sus poros y se cree que estas membranas anulares son precursoras de envolturas nucleares o sitios de almacenamiento de RNA.
g. Peroxisomas: Los peroxisomas son orgánulos muy comunes en forma de vesículas que contienen abundantes enzimas de tipo oxidasa y catalasa; de tan abundantes, es común que cristalicen en su interior. Estas enzimas cumplen funciones de detoxificación celular. Otras funciones de los peroxisomas son: las oxidaciones flavínicas generales, el catabolismo de las purinas, la beta-oxidación de los ácidos grasos, el ciclo del glioxilato, el metabolismo del ácido glicólico y la detoxificación en general. Se forman de vesículas procedentes del retículo endoplasmático.
h. Mitocondrias: Las mitocondrias son orgánulos de aspecto, número y tamaño variable que intervienen en el ciclo de Krebs, fosforilación oxidativa y en la cadena de transporte de electrones de la respiración. Presentan una doble membrana, externa e interna, que dejan entre ellas un espacio perimitocondrial; la membrana interna, plegada en crestas hacia el interior de la matriz mitocondrial, posee una gran superficie. En su interior posee generalmente una sola molécula de ADN, el genoma mitocondrial, típicamente circular, así como ribosomas más semejantes a los bacterianos que a los eucariotas.12 Según la teoría endosimbiótica, se asume que la primera protomitocondria era un tipo de proteobacteria. La principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas. La morfología de la mitocondria es difícil de describir puesto que son estructuras muy plásticas que se deforman, se dividen y fusionan. Normalmente se las representa en forma alargada. Su tamaño oscila entre 0,5 y 1 µm de diámetro y hasta 7 µm de longitud. Su número depende de las necesidades energéticas de la célula. Al conjunto de las mitocondrias de la célula se le denomina condrioma celular.
i. Melanosomas: es un orgánulo que contiene melanina, el pigmento absorbente de luz más común en el reino animal. Las células que producen melanosomas se denominan melanocitos, mientras que las células que simplemente han ingerido los melanosomas se denominan melanofagos. Los melanosomas están delimitados por una membrana lipídida y son generalmente esféricos o alargados. Su forma es constante para un tipo dado de especie y célula. Tienen una ultraestructura característica en la microscopia electrónica, que varía según la madurez del melanosoma. Antes de que contenga los suficientes pigmentos para ser visto por el microscopio óptico se conoce como pre-melanosoma. En algunos melanocitos, los melanosomas permanecen estáticos dentro de la célula. En otros tipos de melanocitos, la célula puede extender su superficie con seudópodos largos, llevando los melanosomas lejos del centro de la célula y aumentando la eficacia de la célula en la absorción de luz absorbente. Por ejemplo, esto sucede lentamente en los melanocitos cutáneos en respuesta a la luz ultravioleta, a la vez que la producción de nuevos melanosomas y de la donación creciente de melanosomas a los queratinocitos adyacentes, las células normales de la superficie de la piel. Estos cambios son colectivamente responsables del bronceado después de la exposición a la luz del sol o a los rayos ultravioletas. En muchas especies de peces, anfibios, crustáceos y reptiles, los melanosomas pueden ser altamente móviles dentro de la célula en respuesta al control hormonal (o a veces de los nervios), y esto conduce a los cambios visibles de color que utilizan para señalar su comportamiento. Los bonitos y rápidos cambios de color de muchos cefalópodos (pulpos y calamares) se basan sin embargo en un sistema distinto, los cromatóforo. La melanina es una familia de grandes polímeros sintetizados por un sistema de enzimas, especialmente la tirosinasa). Se piensa que la polimerización de la melanina tiene lugar por amiloidogénesis de la proteína pMel, que está presente en grandes cantidades en los melanosomas.
Inclusiones
Consiste en sustancias nutritivas almacenadas, productos secundarios inactivos del metabolismo o acumulaciones de sustancias endógenas o exógenas que exhiben una tinción (pigmentación) propia.
a. Partículas de glucógeno: Forman parte de las inclusiones por almacenamiento. Son depósitos de glucosa, que se observan como partículas o rosetas fuertemente electrón denso. A nivel de MO son PAS positivas. En algunas células forman grandes agregados de partículas.
b. Gotitas de lípidos: Los lípidos biológicos constituyen un grupo químicamente diversos de compuestos, cuya característica común y definitoria es su insolubilidad en agua. Las funciones biológicas de los lípidos son igualmente diversas. En muchos organismos las grasas y los aceites son las formas principales de almacenamiento energético, mientras que los fosfolípidos y los esteroles constituyen la mitad de la masa de las membranas biológicas. Otros lípidos, aun estando presentes en cantidades relativamente pequeñas, juegan papeles cruciales como cofactores enzimáticos, transportadores electrónicos, agentes emulsionantes, hormonas y mensajeros intracelulares.
c. Inclusiones cristalinas: En el citoplasma existen sustancias inertes hidrofobicas llamadas inclusiones. Se encuentran en todas las células eucariotas ,tanto vegetales como animales, siendo las inclusiones más comunes las de almidon y glucogeno. Inclusiones cristalinas: se observan en forma de cristales, y se trata de depósitos proteicos.
1. celulas vegetales: estas inclusiones proceden de sales cristalizadas, formando cristales llamados drusas y ráfides.
2. celulas animales: las células de los tubos seminíferos de los mamíferos presentan inclusiones llamadas cristales de Charcot Bottcher. Inclusiones hidófobas: se trata de productos sintetizados por la célula. 1. celulas vegetales: se encuentran en grandes vacuolas o por el citoplasma. ejem: granos de almidón, gotas de grasa, aceites esenciales, látex.. 2. celulas animales: glucógeno: muy abundante en células hepáticas y musculares.las células animales utilizan el glucógeno que se ha acumulado en el hígado como principal fuente energética.
Citoesqueleto..
Las células poseen un andamiaje que permite el mantenimiento de su forma y estructura, pero más aún, este es un sistema dinámico que interactúa con el resto de componentes celulares generando un alto grado de orden interno. Dicho andamiaje está formado por una serie de proteínas que se agrupan dando lugar a estructuras filamentosas que, mediante otras proteínas, interactúan entre ellas dando lugar a una especie de retículo. El mencionado andamiaje recibe el nombre decitoesqueleto, y sus elementos mayoritarios son: los microtúbulos, los microfilamentos y los filamentos intermedios.
a. Microfilamentos: Los microfilamentos o filamentos de actina están formados por una proteína globular, la actina, que puede polimerizar dando lugar a estructuras filiformes. Dicha actina se expresa en todas las células del cuerpo y especialmente en las musculares ya que está implicada en la contracción muscular, por interacción con la miosina. Además, posee lugares de unión a ATP, lo que dota a sus filamentos de polaridad. Puede encontrarse en forma libre o polimerizarse en microfilamentos, que son esenciales para funciones celulares tan importantes como la movilidad y la contracción de la célula durante la división celular.
Citoesqueleto eucariota: microfilamentos en rojo, microtúbulos en verde y núcleo en azul.
b. Microtúbulos: Los microtúbulos son estructuras tubulares de 25 nm de diámetro exterior y unos 12 nm de diámetro interior, con longitudes que varían entre unos pocos nanómetros a micrómetros, que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el citoplasma. Se hallan en las células eucariotas y están formadas por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina. Las tubulinas poseen capacidad de unir GTP. Los microtúbulos intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis) y que, junto con los microfilamentos y los filamentos intermedios, forman el citoesqueleto. Además, constituyen la estructura interna de los cilios y los flagelos.
c. Filamentos intermedios: Los filamentos intermedios son componentes del citoesqueleto. Formados por agrupaciones de proteínas fibrosas, su nombre deriva de su diámetro, de 10 nm, menor que el de los microtúbulos, de 24 nm, pero mayor que el de los microfilamentos, de 7 nm. Son ubicuos en las células animales, y no existen en plantas ni hongos. Forman un grupo heterogéneo, clasificado en cinco familias: las queratinas, en células epiteliales; los neurofilamentos, en neuronas; los gliofilamentos, en células gliales; la desmina, en músculo liso y estriado; y la vimentina, en células derivadas del mesénquima.
Micrografía al microscopio electrónico de barrido mostrando la superficie de células ciliadas del epitelio de los bronquiolos.
d. Centríolos: son una pareja de estructuras que forman parte del citoesqueleto de células animales. Semejantes a cilindros huecos, están rodeados de un material proteico denso llamado material pericentriolar; todos ellos forman el centrosoma o centro organizador de microtúbulos que permiten la polimerización de microtúbulos de dímeros de tubulina que forman parte del citoesqueleto. Los centríolos se posicionan perpendicularmente entre sí. Sus funciones son participar en la mitosis, durante la cual generan el huso acromático, y en la citocinesis, así como, se postula, intervenir en la nucleación de microtúbulos.
e. Cilios y flagelos: Se trata de especializaciones de la superficie celular con motilidad; con una estructura basada en agrupaciones de microtúbulos, ambos se diferencian en la mayor longitud y menor número de los flagelos, y en la mayor variabilidad de la estructura molecular de estos últimos.
Ciclo celular.
a. Fases del ciclo celular.
El ciclo celular es el proceso ordenado y repetitivo en el tiempo mediante el cual una célula madre crece y se divide en dos células hijas. Las células que no se están dividiendo se encuentran en una fase conocida como G0, paralela al ciclo. La regulación del ciclo celular es esencial para el correcto funcionamiento de las células sanas, está claramente estructurado en fases
El estado de no división o interfase. La célula realiza sus funciones específicas y, si está destinada a avanzar a la división celular, comienza por realizar la duplicación de su ADN.
El estado de división, llamado fase M, situación que comprende la mitosis y citocinesis. En algunas células la citocinesis no se produce, obteniéndose como resultado de la división una masa celular plurinucleada denominada plasmodio.
A diferencia de lo que sucede en la mitosis, donde la dotación genética se mantiene, existe una variante de la división celular, propia de las células de la línea germinal, denominada meiosis. En ella, se reduce la dotación genética diploide, común a todas las células somáticas del organismo, a una haploide, esto es, con una sola copia del genoma. De este modo, la fusión, durante la fecundación, de dos gametos haploides procedentes de dos parentales distintos da como resultado un zigoto, un nuevo individuo, diploide, equivalente en dotación genética a sus padres.
La interfase consta de tres estadios claramente definidos.
Fase G1: es la primera fase del ciclo celular, en la que existe crecimiento celular con síntesis de proteínas y de ARN. Es el período que trascurre entre el fin de una mitosis y el inicio de la síntesis de ADN. En él la célula dobla su tamaño y masa debido a la continua síntesis de todos sus componentes, como resultado de la expresión de los genes que codifican las proteínas responsables de su fenotipo particular.
Fase S: es la segunda fase del ciclo, en la que se produce la replicación o síntesis del ADN. Como resultado cada cromosoma se duplica y queda formado por dos cromátidas idénticas. Con la duplicación del ADN, el núcleo contiene el doble de proteínas nucleares y de ADN que al principio.
Fase G2: es la segunda fase de crecimiento del ciclo celular en la que continúa la síntesis de proteínas y ARN. Al final de este período se observa al microscopio cambios en la estructura celular, que indican el principio de la división celular. Termina cuando los cromosomas empiezan a condensarse al inicio de la mitosis.
La fase M es la fase de la división celular en la cual una célula progenitora se divide en dos células hijas hijas idénticas entre sí y a la madre. Esta fase incluye la mitosis, a su vez dividida en: profase, metafase, anafase, telofase; y la citocinesis, que se inicia ya en la telofase mitótica.
La incorrecta regulación del ciclo celular puede conducir a la aparición de células precancerígenas que, si no son inducidas al suicidio mediante apoptosis, puede dar lugar a la aparición de cáncer. Los fallos conducentes a dicha desregulación están relacionados con la genética celular: lo más común son las alteraciones en oncogenes, genes supresores de tumores y genes de reparación del ADN.
b. Células madres y células hijas
Existen diferentes tipos de células madre, aunque las más empleadas en biología son las células madre embrionarias y las adultas:
Células madre embrionarias (pluripotentes): Generalmente se obtienen de la masa celular interna del blastocisto. El blastocisto está formado por una capa externa denominada trofoblasto, formada por unas 70 células, y una masa celular interna constituida por unas 30 células que son las células madre embrionarias que tienen la capacidad de diferenciarse en todos los tipos celulares que aparecen en el organismo adulto, dando lugar a los tejidos y órganos. En la actualidad se utilizan como modelo para estudiar el desarrollo embrionario y para entender cuáles son los mecanismos y las señales que permiten a una célula pluripotente llegar a formar cualquier célula plenamente diferenciada del organismo. Asimismo, están comenzando a ser utilizadas con éxito en terapias biomédicas.
Células madre germinales: Se trata de células madre embrionarias pluripotenciales que se derivan de los esbozos gonadales del embrión. Estos esbozos gonadales se encuentran en una zona específica del embrión denominada cresta gonadal, que dará lugar a los óvulos y espermatozoides. Tienen una capacidad de diferenciación similar a las de las células madre embrionarias, pero su aislamiento resulta más difícil.
Células madre fetales: Estas células madre aparecen en órganos fetales como,hígado, pulmón y poseen características similares a sus homólogas en tejidos adultos, aunque parecen mostrar mayor capacidad de expansión y diferenciación. Su procedencia no está del todo clara. Podrían tener origen embrionario o bien tratarse de nuevas oleadas de progenitores sin relación con las células madre embrionarias.
Células madre adultas: Son células no diferenciadas que se encuentran en tejidos y órganos adultos y que poseen la capacidad de diferenciarse para dar lugar a células adultas del tejido en el que se encuentran, por lo tanto se consideran células multipotenciales. En un individuo adulto se conocen hasta ahora alrededor de 20 tipos distintos de células madre, que son las encargadas de regenerar tejidos en continuo desgaste (como la piel o la sangre) o dañados (como el hígado). Su capacidad es más limitada para generar células especializadas. Las células madre hematopoyéticas de médula ósea (encargadas de la formación de la sangre) son las más conocidas y empleadas en la clínica desde hace tiempo. En la misma médula, aunque también en sangre del cordón umbilical, en sangre periférica y en la grasa corporal se ha encontrado otro tipo de célula madre, denominada mesenquimal que puede diferenciarse en numerosos tipos de células de los tres derivados embrionarios (musculares, vasculares, nerviosas, hematopoyéticas, óseas). Aunque aún no se ha podido determinar su relevancia fisiológica se están realizando abundantes ensayos clínicos para sustituir tejidos dañados (corazón) por derivados de estas células.
La célula madre por excelencia es el cigoto, formado cuando un óvulo es fecundado por un espermatozoide. El cigoto es totipotente, es decir, puede dar lugar a todas las células del feto y a la parte embrionaria de la placenta.
Conforme el embrión se va desarrollando, sus células van perdiendo esta propiedad (totipotencia) de forma progresiva, llegando a la fase de blástula o blastocisto en la que contiene células pluripotentes (células madre embrionarias) capaces de diferenciarse en cualquier célula del organismo salvo las de la parte embrionaria de la placenta. Conforme avanza el desarrollo embrionario se forman diferentes poblaciones de células madre con una potencialidad de regenerar tejidos cada vez más restringida y que en la edad adulta se encuentran en "nichos" en algunos tejidos del organismo.
Meiosis
Meiosis es una de las formas de la reproducción celular. Este proceso se realiza en las glándulas sexuales para la producción de gametos. Es un proceso de división celular en el cual una célula diploide (2n) experimenta dos divisiones sucesivas, con la capacidad de generar cuatro células haploides (n). En los organismos con reproduccion sexual tiene importancia ya que es el mecanismo por el que se producen los óvulos y espermatozoides (gametos).1 Este proceso se lleva a cabo en dos divisiones nucleares y citoplasmáticas, llamadas primera y segunda división meiótica o simplemente meiosis I y meiosis II. Ambas comprenden profase, metafase, anafase y telofase.
Proceso celular
Los pasos preparatorios que conducen a la meiosis son idénticos en patrón y nombre a la interfase del ciclo mitótico de la célula. La interfase se divide en tres fases:
Fase G1: caracterizada por el aumento de tamaño de la célula debido a la fabricación acelerada de orgánulos, proteínas y otras materias celulares.
Fase S :se replica el material genético, es decir, el ADN se replica dando origen a dos cadenas nuevas, unidas por el centrómero. Los cromosomas, que hasta el momento tenían una sola cromátida, ahora tienen dos. Se replica el 98% del ADN, el 2% restante queda sin replicar.
Fase G2: la célula continúa aumentando su biomasa.
Meiosis I
En meiosis 1, los cromosomas en una célula diploide se dividen nuevamente. Este es el paso de la meiosis que genera diversidad genética.
Meiosis. Se divide en dos etapas. Meiosis I o fase reductiva: su principal característica es que el material genético de las células hijas es la mitad (n) del de las células progenitoras (2n). Meiosis II o fase duplicativa: las células resultantes de esta etapa tiene el mismo contenido genético que sus células progenitoras (n).
Profase I
La Profase I de la primera división meiótica es la etapa más compleja del proceso y a su vez se divide en 5 subetapas, que son:
Leptoteno: La primera etapa de Profase I es la etapa del leptoteno, durante la cual los cromosomas individuales comienzan a condensar en filamentos largos dentro del núcleo. Cada cromosoma tiene un elemento axial, un armazón proteico que lo recorre a lo largo, y por el cual se ancla a la envuelta nuclear. A lo largo de los cromosomas van apareciendo unos pequeños engrosamientos denominados cromómeros. La masa cromática es 4c y es diploide 2n.
Zigoteno: Los cromosomas homólogos comienzan a acercarse hasta quedar recombinados en toda su longitud. Esto se conoce como sinapsis (unión) y el complejo resultante se conoce como bivalente o tétrada (nombre que prefieren los citogenetistas), donde los cromosomas homólogos (paterno y materno) se aparean, asociándose así cromátidas homólogas. Producto de la sinapsis, se forma el complejo sinaptonémico (estructura observable solo con el microscopio electrónico).La disposición de los cromómeros a lo largo del cromosoma parece estar determinado genéticamente. Tal es así que incluso se utiliza la disposición de estos cromómeros para poder distinguir cada cromosoma durante la profase I meiótica. Además el eje proteico central pasa a formar los elementos laterales del complejo sinaptonémico, una estructura proteica con forma de escalera formada por dos elementos laterales y uno central que se van cerrando a modo de cremallera y que garantiza el perfecto apareamiento entre homólogos. En el apareamiento entre homólogos también está implicada la secuencia de genes de cada cromosoma, lo cual evita el apareamiento entre cromosomas no homólogos. Durante el zigoteno concluye la replicación del ADN (2% restante) que recibe el nombre de zig-ADN.
Paquiteno: Una vez que los cromosomas homólogos están perfectamente apareados formando estructuras que se denominan bivalentes se produce el fenómeno de entrecruzamiento cromosómico (crossing-over) en el cual las cromátidas homólogas no hermanas intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la variación genética entre la descendencia de progenitores que se reproducen por vía sexual. La recombinación genética está mediada por la aparición entre los dos homólogos de una estructura proteica de 90 nm de diámetro llamada nódulo de recombinación. En él se encuentran las enzimas que medían en el proceso de recombinación. Durante esta fase se produce una pequeña síntesis de ADN, que probablemente está relacionada con fenómenos de reparación de ADN ligados al proceso de recombinación.
Diploteno: Los cromosomas continúan condensándose hasta que se pueden comenzar a observar las dos cromátidas de cada cromosoma. Además en este momento se pueden observar los lugares del cromosoma donde se ha producido la recombinación. Estas estructuras en forma de X reciben el nombre quiasmas. Cada quiasma se origina en un sitio de entrecruzamiento, lugar en el que anteriormente se rompieron dos cromatidas homólogas que intercambiaron material genético y se reunieron. En este punto la meiosis puede sufrir una pausa, como ocurre en el caso de la formación de los óvulos humanos. Así, la línea germinal de los óvulos humanos sufre esta pausa hacia el séptimo mes del desarrollo embrionario y su proceso de meiosis no continuará hasta alcanzar la madurez sexual. A este estado de latencia se le denomina dictioteno.
Diacinesis Esta etapa apenas se distingue del diplonema. Podemos observar los cromosomas algo más condensados y los quiasmas. El final de la diacinesis y por tanto de la profase I meiótica viene marcado por la rotura de la membrana nuclear. Durante toda la profase I continuó la síntesis de ARN en el núcleo. Al final de la diacinesis cesa la síntesis de ARN y desaparece el nucléolo.
Anotaciones de la Profase I
La membrana nuclear desaparece. Un cinetocoro se forma por cada cromosoma, no uno por cada cromátida, y los cromosomas adosados a fibras del huso comienzan a moverse. Algunas veces las tétradas son visibles al microscopio. Las cromátidas hermanas continúan estrechamente alineadas en toda su longitud, pero los cromosomas homólogos ya no lo están y sus centrómeros y cinetocoros se encuentran separados.
Metafase I
El huso cromático aparece totalmente desarrollado, los cromosomas se sitúan en el plano ecuatorial y unen sus centromeros a los filamentos del huso.
Anafase I
Los quiasmas se separan de forma uniforme. Los microtúbulos del huso se acortan en la región del cinetocoro, con lo que se consigue remolcar los cromosomas homólogos a lados opuestos de la célula, junto con la ayuda de proteínas motoras. Ya que cada cromosoma homólogo tiene solo un cinetocoro, se forma un juego haploide (n) en cada lado. En la repartición de cromosomas homólogos, para cada par, el cromosoma materno se dirige a un polo y el paterno al contrario. Por tanto el número de cromosomas maternos y paternos que haya a cada polo varía al azar en cada meiosis. Por ejemplo, para el caso de una especie 2n = 4 puede ocurrir que un polo tenga dos cromosomas maternos y el otro los dos paternos; o bien que cada polo tenga uno materno y otro paterno.
Telofase I
Cada célula hija ahora tiene la mitad del número de cromosomas pero cada cromosoma consiste en un par de cromátidas. Los microtubulos que componen la red del huso mitótico desaparece, y una membrana nuclear nueva rodea cada sistema haploide. Los cromosomas se desenrollan nuevamente dentro de la carioteca (membrana nuclear). Ocurre la citocinesis (proceso paralelo en el que se separa la membrana celular en las células animales o la formación de esta en las células vegetales, finalizando con la creación de dos células hijas). Después suele ocurrir la intercinesis, parecido a una segunda interfase, pero no es una interfase verdadera, ya que no ocurre ninguna réplica del ADN. No es un proceso universal, ya que si no ocurre las células pasan directamente a la metafase II.
Meiosis II
La meiosis II es similar a la mitosis. Las cromatidas de cada cromosoma ya no son idénticas en razón de la recombinación. La meiosis II separa las cromatidas produciendo dos células hijas, cada una con 23 cromosomas (haploide), y cada cromosoma tiene solamente una cromatida.
Profase II
Profase Temprana: Comienzan a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles.
Profase Tardía II: Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula.
Metafase II
Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatides se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas.
Anafase II
Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la mitosis, cada cromátida se denomina ahora cromosoma.
Telofase II
En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1.- Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2.- Se intercambian segmentos de ADN.
Adaptaciones generales de las células, muerte celular
a. Adaptaciones celulares
Hiperplasia: es el aumento en el número de células en un órgano o tejido, dando lugar habitualmente a un aumento del volumen del órgano o tejido. frecuentemente está asociada a la hipertrofia. por ejemplo, el crecimiento inducido hormonalmente en el útero implica a la vez un número aumentado de células musculares y células epiteliales y el agrandamiento de esas células. hiperplasia fisiológica, la cual a su vez puede ser hormonal, que aumenta la capacidad funcional de un tejido cuando se necesita, por ejemplo, la proliferación del epitelio glandular de la mama femenina en la pubertad y durante el embarazo y, compensadora, que aumenta la masa tisular tras el daño resección parcial, ejemplo, la proliferación de las células hepáticas residuales y la regeneración del hígado después de una hepatectomía parcial. La hiperplasia generalmente se debe a una producción local aumentada de factores de crecimiento, niveles aumentados de receptores de fc en las células respondedoras, o activación de una determinada vía de señalización intracelular. todos estos cambios dan lugar a la producción de factores de transcripción que activan muchos genes celulares, incluyendo genes que codifican fc, de una proliferación celular. En la hiperplasia hormonal, las propias hormonas actúan como factores de crecimiento y desencadenan la transcripción de diversos genes celulares. el aumento de la masa tisular también se consigue por el desarrollo de nuevas células a partir de celulas madre. por ejemplo, la hiperplasia hepática en la hepatitis crónica, en la cual está comprometida la capacidad proliferativa de los hepatocitos. hiperplasia patologica, la mayoría de las cuales están producidas por un estímulo hormonal excesivo o factores de crecimiento que actúan sobre las células diana. por ejemplo, la hiperplasia endometrial, el equilibrio entre estrógenos y progesterona está alterado, lo cual da lugar a aumentos absolutos o relativos de estrógenos con la hiperplasia subsiguiente de las glándulas endometriales y es causa frecuente de hemorragia menstrual anormal. La hiperplasia prostática es otro ejemplo de hiperplasia patológica en respuesta a los andrógenos. La hiperplasia patológica constituye un terreno fértil en el cual puede surgir posteriormente la proliferación cancerosa. La hiperplasia también es una respuesta importante de las células del tejido conectivo en la curación de heridas en las que, la proliferación de fibroblastos y vasos sanguíneos ayuda a la reparación debido a los factores de crecimiento, los cuales también están implicados con ciertas infecciones víricas, tales como el papiloma virus que produce verrugas en la piel.
Hipertrofia: se refiere a un aumento en el tamaño de las células, lo que da lugar a un aumento en el tamaño del órgano. el aumento del tamaño de las células se debe a la síntesis de más componentes estructurales producida por un aumento de la demanda funcional o por estimulación hormonal específica. por ejemplo, los músculos de los físicoculturistas, son el resultado de un aumento del tamaño de las fibras musculares individuales en respuesta de la demanda. así, la carga de trabajo está compartida por una mayor masa de componentes celulares y a cada fibra muscular se le ahorra un exceso de trabajo y de esta manera escapa a la lesión. la célula muscular agrandada consigue un nuevo equilibrio, permitiéndole funcionar a un mayor nivel de actividad. El mecanismo implica muchas vías de transducción de señal, dando lugar a la inducción de un número de genes que, a su vez, estimulan la síntesis de numerosas proteínas celulares. en el corazón existen dos grupos de señales: los desencadenantes mecánicos tales como la distensión, y los desencadenantes tróficos, tales como los factores de crecimiento polipeptídicos y los agentes vasoactivos. Finalmente alcanza un límite más allá del cual el agrandamiento de la masa muscular ya no es capaz de compensar el aumento de la carga y se sigue de insuficiencia cardiaca. o sea que la hipertrofia puede ser fisiológica o patológica.
Atrofia: la disminución en el tamaño de la célula por pérdida de sustancia celular se conoce como atrofia y puede culminar con la muerte celular. La atrofia fisiológica es común durante el principio del desarrollo. Algunas estructuras embrionarias, tales como la notocorda y el conducto tirogloso sufren atrofia durante el desarrollo fetal. el útero disminuye de tamaño poco después del parto. La atrofia patológica depende de la causa subyacente y puede ser localizada o generalizada: carga de trabajo disminuida (atrofia por desuso), cuando un miembro roto se inmoviliza con una escayola o cuando el paciente está sujeto a un reposo completo en cama, rápidamente se sigue de una atrofia muscular esquelética.
b. Muerte celular
La muerte celular programada o apoptosis es el conjunto de reacciones bioquímicas que ocurren en las células cuando se diferencian y ejercen funciones normales, concluyendo tras un cierto número de divisiones celulares con la muerte celular de una forma ordenada y silenciosa; por lo que a la apoptosis se le conoce como muerte celular programada.
En contraste con la necrosis, que es una forma de muerte celular resultante de un daño agudo a los tejidos, la apoptosis es un proceso ordenado, que generalmente confiere ventajas al conjunto del organismo durante su ciclo normal de vida. Por ejemplo, la diferenciación de los dedos humanos durante el desarrollo embrionario requiere que las células de las membranas intermedias inicien un proceso apoptótico para que los dedos puedan separarse
La necrosis: de una célula sucede cuando algún agente externo (traumatismo, tóxico, agentes infecciosos, etc.) actúa sobre ella induciendo su muerte. Las células que degeneran ocasionan una serie de reacciones locales que conducen a respuestas de tipo inflamatorio que son probablemente la manifestación más importante de este proceso. La acción del agente inductor de la necrosis produce una alteración en las membranas plasmática y mitocondrial, donde se alojan las bombas iónicas (fundamentalmente de Na+, K+ y Ca++) que se encargan de mantener el adecuado equilibrio iónico intra-extracelular. Esta alteración en los sistemas homeostáticos dispara un mecanismo de defensa frente a la alteración de la homeostasis. Así, el núcleo de la célula comienza a transcribir ADN con información para la síntesis de proteínas protectoras de la célula (hsp – heat-shock proteins-, chaperonas). En ocasiones estas proteínas son capaces de restaurar las funciones celulares, pero en otras no y es entonces cuando la célula continuará de manera inevitable hacia su destrucción.
Apoptosis: Desde el punto de vista del envejecimiento, el proceso de eliminación de células por apoptosis tiene una significación funcional más importante. Durante el desarrollo embrionario y en las fases posteriores además de la proliferación celular se produce, de forma fisiológica, un proceso de remodelación de los órganos de la economía que implica la muerte "programada" de numerosas células. Sin este proceso de muerte celular programada nuestro organismo tendría una morfología difícil de reconocer y probablemente muchas de sus funciones estarían comprometidas. Por medio de la MCP se eliminan células que después de haber cumplido sus funciones, fundamentalmente en el desarrollo, deben ser eliminadas. El núcleo cambia notablemente de forma y se aprecia como la cromatina, que normalmente está en forma de eucromatina o cromatina dispersa (indica actividad transcripcional del ADN), comienza a concentrarse formando cromatina condensada o heterocromatina (indica que el ADN no está transcribiendo). Finalmente todo el núcleo se hace muy denso por la condensación total de la cromatina (falta total de actividad transcripcional del ADN). La consecuencia última de este proceso es la falta de síntesis de ARN mensajero, ribosómico y de transferencia, la imposibilidad de la síntesis de proteínas y la consiguiente muerte y fragmentación de la célula. Este proceso de fragmentación se manifiesta morfológicamente por la aparición de diferentes vesículas esféricas (cuerpos apoptóticos), rodeados de membrana celular, que contienen diversos organoides citoplasmáticos degenerados. Estos cuerpos apoptóticos van siendo fagocitados por los macrófagos sin ningún tipo de reacción inflamatoria acompañante. Esta ausencia de reacciones locales del tipo inflamatorio es fundamental para entender la "limpieza" biológica del proceso de apoptosis en contraposición al proceso de necrosis.
Conclusión
Pese a la gran diversidad de seres vivos que existe en la biosfera, todos ellos se caracterizan por estar formados por unas pequeñas unidades llamadas células.
La célula es la base de la vida, tanto a nivel estructural como a nivel funcional, ya que es la unidad mínima de un organismo capaz de actuar de manera autónoma.
Existe gran diversidad en cuanto a la forma y el tamaño de las células, pero todas tienen en común:
-Membrana plasmática, es una estructura fina y elástica que envuelve a la célula, la delimita, la aísla del exterior pero permite el intercambio de sustancias entre el medio interno y externo.
– Citoplasma, es el espacio interior delimitado por la membrana plasmática en el que se encuentran los orgánulos celulares.
-ADN, todas las células poseen una molécula llamada ADN (ácido desoxirribonucleico). Esta molécula contiene toda la información genética del organismo y regula todos los procesos que tienen lugar en el interior de la célula. Cuando el ADN está libre en el citoplasma hablamos de células procariotas. Cuando el ADN está incluido dentro de otra membrana o envoltura llamada núcleo, hablamos de células eucariotas.
Existen dos tipos de células eucariotas, que se diferencian en:
– Célula vegetal: se caracterizan por tener una pared celular rígida de celulosa que rodea la membrana plasmática y le confiere resistencia a la célula; poseen unas estructuras pigmentadas llamadas cloroplastos donde se encuentran las clorofilas y poseen unas vacuolas de gran tamaño donde almacenan sustancias de reserva.
–Célula animal: carecen de pared celular, por lo que no tienen una forma definida; también carecen de cloroplastos. Pueden tener vacuolas pero de tamaño mucho menor que las de las células vegetales. Sin embargo tienen centriolos, una estructura implicada en la división celular de la que carecen las células vegetales.
Bibliografía
Mayor, S., Pagano, R.E . Pathways of clathrin-independent endocytosis. 2007. Nature reviews in molecular and cell biology. 8:603-612.
Histología texto y atlas color con biología celular y molecular. Ff
Autor:
Leonardo Velasco
Prof. Dr. Victor Hugo
Cátedra: Histologia
1er Semestre T.S.U. Citotecnología
San Cristóbal, Noviembre de 2012.
REPÚBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN SUPERIOR
CONVENIO UCV – UNET
ESTADO TÁCHIRA- SAN CRISTÓBAL
Página anterior | Volver al principio del trabajo | Página siguiente |