Descargar

Curso de geometría para profesores en matemática (página 2)

Enviado por Carlos Raúl Söhn


Partes: 1, 2
etro de la base=2.p.2,5 Perímetro de la base=15,71 cm Perímetro del círculo=2.p.10,31 Perímetro del círculo=64,77 cm a = 360° a Perímetro Perímetro de la base del círculo °=87°18'46" 64,77 edu.red 8 87° 10,3 cm r 360° ° Para construir el cono se debe utilizar el siguiente procedimiento, utilizando compás y transportador. 2,5 cm Para calcular el área lateral del cono se debe utilizar proporciones, luego calculamos el área total. Asec.cir =p.10,312 87°18'46" 360° Asec.cir=p.10,312.87°18'46" 360° Asec.cir=80,96 cm2 ACono=Abase+Alateral ACono=p.2,52+80,96 ACono=100,59 cm2 Una vez construido el cono, se utiliza la fórmula para calcular el volumen. VCono=Abase.h 3 VCono=p.r2.h 3 h VCono=p.2,52.10 3 VCono=65,45 cm3 Asec.cir 87° 10,31 cm edu.red g r r Realización de la Actividad Nş 6 Cortamos la esfera y medimos el diámetro interior. En mi caso el diámetro interior de la esfera es: d=9,8 cm d Para construir el cono se tiene que aplicar el teorema de Pitágoras para poder hallar la generatriz. g2=r2+r2 g= 2.r2 Calculemos el volumen. VCono=Abase.h 3 g= r. 2 VCono=p.4,92.4,9 g=4,9. 2 3 g=6,93 cm VCono=123,20 cm3 Una vez calculada la generatriz, se debe calcular el ángulo del sector circular utilizando proporciones como realizamos en la actividad N° 5. a = 360° Perímetro de la base=2.p.4,9 Perímetro de la base=30,79 cm Perímetro del círculo=2.p.6,93 cm Perímetro del círculo=43,54 cm 9 Perímetro Perímetro de la base del círculo a=30,79.360° 43,54 a=254°33'30,3" edu.red 255° Construimos el cono sin la base. Calculemos el área. ACono=Abase+Alateral ACono=p.4,92+p.6,932. 254°33'30,3" 360° ACono=90,82 cm2 6,9 cm Una vez construido el cono, verificamos cuantas veces entra el volumen del cono en media esfera. 2 veces Si todo salió bien tendría que entrar 2 veces en media esfera, por lo tanto tendría que entrar 4 veces en la esfera. Calculamos el volumen de la esfera utilizando la fórmula. VCono=p.r2.r 3 VEsfera=4.p.r3 3 VEsfera=4.p.4,93 3 VEsfera=492,81 cm3 10 edu.red h Para calcular el área de la esfera tenemos que utilizar cálculo infinitesimal. Imaginemos la esfera dividida en infinitas pirámides de cualquier base concéntricas. base 0 h r Imaginamos que la base tiende a 0, por lo tanto la h tiende al r de la esfera. Si sumamos el volumen de las infinitas pirámides tendríamos el volumen de la esfera. V1+V2+V3+……..+Vn=VEsfera donde n 8 sabemos que VEsfera=4.p.r3 3 r Sabemos que el volumen de una pirámide es: VPirámide=Abase.h pero como h 3 Entonces VPirámide=Abase.r =1.r.Abase entonces el VEsfera es 3 3 1.r.Abase1+1.r.Abase2+1.r.Abase3+……+1.r.Abasen=4.p.r3 donde n 8 3 3 3 3 3 Podemos sacar factor común y nos quedaría. 1.r.(Abase1+ Abase2+ Abase3+……+ Abasen)=4.p.r3 donde n 8 3 3 AEsfera 1.r.AEsfera=4.p.r3 despejando nos quedaría AEsfera=3.4.p.r32 simplificamos 3 3 3.r Finalmente el área de la esfera nos queda. AEsfera=4.p.r2 Calculemos el área de la esfera utilizando la fórmula. AEsfera=4.p.4,92 AEsfera=301,71 cm2 11 edu.red 12 Realización de la Actividad Nş 7 Una vez construido el cilindro, calculamos el área y el volumen. ACilindro=2.Abase+Alateral ACilindro=2.p.4,92+2.p.4,9.4,9=4.p.4,92 ACilindro=301,71 cm2 VCilindro=A.base.h VCilindro=p.4,92.4,9=p.4,93 VCilindro=369,61 cm3 igual AEsfera igual 3.VEsfera 4 4,9 cm 4,9 cm edu.red Segunda parte Cuerpos Geométricos: Una forma diferente para construirlos “La Matemática nace con el creador y se esconde en nuestra mente.” Prof. Carlos Raúl Söhn 13 edu.red 14 Guía de actividades Actividad Nş 1 Observar atentamente los vídeos educativos. Actividad Nş 2 Construir un prisma de base triangular equilátera con las siguientes medidas: base 10 cm, altura 20 cm. Calcular el área y el volumen. Actividad Nş 3 Construir un prisma de base rectangular cuadrada con las siguientes medidas: base 10 cm, altura 20 cm. Calcular el área y el volumen. Actividad Nş 4 Construir una pirámide de base triangular equilátera con las siguientes medidas: base 10 cm, aristas laterales 20 cm. Calcular el área y el volumen. Actividad Nş 5 Construir una pirámide de base rectangular cuadrada con las siguientes medidas: base 10 cm, aristas laterales 20 cm. Calcular el área y el volumen. Actividad Nş 6 Construir los cinco cuerpos regulares con cualquier medida de arista y completar el siguiente cuadro. Luego trata de hallar alguna relación entre la cantidad de caras, vértices y aristas. Actividad Nş 7 Calcular el área y el volumen de los cinco cuerpos regulares, con cualquier medida de arista. Si tiene alguna duda en la realización de las actividades, no dude en recurrir a la guía de actividades resueltas. edu.red Abase=b.h 2 Abase=10.8,66 2 Abase=43,30 cm2 tan60°= h 5 h=5.tan60° h=5.8,66 cm Alateral=b.h Alateral=10.20 Alateral=200 cm2 Entonces el área total seria. APrisma=2.Abase+3.Alateral APrisma=2.43,30+3.200 APrisma=686,60 cm2 15 10 cm h 60° 5 cm Calculamos el área lateral. 20 cm Guía de actividades resueltas Realización de la Actividad Nş 1 Luego de haber observado atentamente el vídeo educativo los docentes tienen que realizar las actividades planteadas. Realización de la Actividad Nş 2 Luego de construir el prisma de base triangular equilátera utilizando los clips y sorbetes. 20 cm 10 cm Una vez construido el prisma, se utiliza el siguiente procedimiento para calcular el área. Primero se calcula el área de la base aplicando razones trigonométricas. Sabemos que en todo triángulo equilátero sus ángulos interiores valen 60° edu.red 16 Para calcular el volumen aplicamos la fórmula. VPrisma=Abase.h VPrisma=43,30.20 VPrisma=866,03 cm3 Realización de la Actividad Nş 3 Luego de construir el prisma de base rectangular cuadrada utilizando los clips y sorbetes. APrisma=2.100+4.200 APrisma=1000 cm2 10 cm 20 cm 10 cm Calculamos el área de la base que es un cuadrado. Abase=b.h Abase=10.10 Abase=100 cm2 10 cm Luego calculamos el área total ya sabiendo el área lateral de la actividad anterior. APrisma=2.Abase+4.Alateral 20 cm edu.red ap= 375 ap=19,36 cm Alateral=10.19,36 2 Alateral=96,82 cm2 Para calcular el área total usamos el área de la base que calculamos en la actividad 2. APirámide=Abase+3.Alateral APirámide=43,30+3.96,82 APirámide=333,78 cm2 17 20 cm 5 cm ap ap Calculamos el volumen aplicando la fórmula. VPrisma=Abase.h VPrisma=100.20 VPrisma=2000 cm3 Realización de la Actividad Nş 4 Luego de construir la pirámide de base triangular equilátera utilizando los clips y sorbetes. 20 cm 10 cm Para calcular el área lateral tenemos que hallar la apotema utilizando el teorema de Pitágoras. 202=ap2+52 ap2=202-52 edu.red Para poder calcular el volumen primero tenemos que hallar h utilizando el teorema de Pitágoras, pero antes tenemos que hallar el valor b utilizando razones trigonométricas. tan30°= b r 5 b=5.tan30° b=2,89 cm ap2=h2+b2 h2=19,362-2,892 h= 366,67 h=19,15 cm Calculamos el volumen utilizando la fórmula. VPirámide=Abase.h 3 VPirámide=43,30.19,15 3 VPirámide=276,39 cm3 Realización de la Actividad Nş 5 Luego de construir la pirámide de base rectangular cuadrada utilizando los clips y sorbetes. 20 cm 10 cm Calculamos el área total utilizando los datos obtenidos de las actividades 3 y 4. APirámide=Abase+4.Alateral APirámide=100+4.96,82 APirámide=487,30 cm2 18 ° 5 cm b h ap edu.red 19 Para poder calcular el volumen tenemos que hallar la altura utilizando el teorema de Pitágoras y usamos la apotema hallada en la actividad 4. ap2=h2+52 h2=19,362-52 h= 350 h=18,71 cm 5 cm Calculamos el volumen utilizando la fórmula. VPirámide=Abase.h 3 VPirámide=100.18,71 3 VPirámide=623,61 cm3 Realización de la Actividad Nş 6 Luego de construir los cinco cuerpos regulares utilizando los clips y sorbetes, con cualquier medida de arista. h ap Tetraedro Hexaedro Octaedro Dodecaedro Icosaedro edu.red 20 Para completar el cuadro no hay duda que tenemos que contar las caras, vértices y aristas. Si observamos atentamente y realizamos el siguiente cálculo hallaremos una relación: Cant. de caras+Cant. de vértices-Cant. de aristas= Número constante Octaedro 8+6-12=2 Tetraedro 4+4-6=2 Dodecaedro 12+20-30=2 Hexaedro 6+8-12=2 Icosaedro 20+12-30=2 Como observarán siempre da como resultado el valor 2, esta relación se llama fórmula de Euler. Realización de la Actividad Nş 7 Calculemos el área del tetraedro, considerando que la medida de la arista de la cara que es un triangulo equilátero pueden ser cualquiera, la llamaremos a. Hallamos la h aplicando razones trigonométricas. sen60ş= h A Atetraedro=4.a2. 3 4 a h=a.sen60ş h=a. 3 2 Atetraedro=a2. 3 Acara=b.h 2 Acara=a.a. 3 =a2. 3 2.2 4 Para calcular el volumen tenemos que hallar la h. Primero tenemos que calcular el valor b aplicando razones trigonométricas. tan30ş= b =2.b a a 2 b=a.tan30ş=a.sen30ş= a. 1 2 a 2.cos30ş 2. 3 2 2 b=a. 3 6 b 30ş a 2 60ş 4 caras h a b h ap edu.red 21 Ya conocemos la ap que es la altura de la cara, tenemos que calcular la h aplicando el teorema de Pitágoras. ap=a. 3 ap2=h2+b2 2 h2=ap2-b2 b=a. 3 6 h2=(a. 3 )2-(a. 3 )2=a2.3-a2.3 2 6 4 36 h= a2.2=a. 6 3 3 Calculamos el volumen del tetraedro aplicando la fórmula. V=A.base.h 3 V=a2. 3 .a. 6 3.2.2.3 2 V=a3.3. 3.4.3 V=a3. 2 12 Calculemos el área del hexaedro, considerando que la medida de la arista de la cara que es un cuadrado pueden ser cualquiera, la llamaremos a. Para calcular el área de una cara usamos la fórmula. Acara=b.h Acara=a.a Acara=a2 6 caras Ahexaedro=6.a2 Calculamos el volumen del hexaedro aplicando la fórmula. V=Abase.h V=a2.a V=a3 a a a a b ap h edu.red 22 Calculemos el área del octaedro, considerando que la medida de la arista de la cara que es un cuadrado pueden ser cualquiera, la llamaremos a. Ya sabemos el área de la cara cuando calculamos el área del tetraedro. Acara=a2. 3 4 Aoctaedro=8.a2. 4 Aoctaedro=2.a2. 3 a 3 8 caras Calculemos el volumen teniendo en cuenta que son dos pirámides de base rectangular cuadradas iguales. Primero tenemos que calcular la h utilizando el teorema de Pitágoras, ya conocemos la ap y b. 3 ap=a. 2 b=a 2 ap2=h2+b2 h2=(a. 3 )2-(a)2=a2.3-a2=a2.2=a2 2 2 4 4 4 2 h= a2=a. 2 2 2 Calculamos el volumen del octaedro utilizando la fórmula y recordando que son dos pirámides. V=2.Abase.h 3 V=2.a.a.a. 2 3.2 V=a3. 2 3 Calculemos el área de dodecaedro, considerando que la medida de la arista de la cara que es un pentágono regular pueden ser cualquiera, la llamaremos a. Como sabemos las caras son pentágonos regulares, podemos calcular el área dividiéndolo en triángulos isósceles. a a b ap h edu.red Calculamos el ángulo a. a=360° 5 a=72° ß=180°-72° tan54°= b =2.br a 2 ß=54° a 2 b=a.sen54° 2.cos54ş a 12 caras Calculamos el ángulo ß, y luego el valor b aplicando razones trigonométricas. 2 Para poder calcular el sen54ş y cos54ş tenemos que usar el teorema de Moivre. cosn.t+i.senn.t=(cost+i.sent)n en nuestro caso n tiene que valer 5 ya que 5.t=270ş Usando el triángulo de Tartaglia podemos desarrollar un binomio elevado a la quinta. 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 (cost+i.sent)5=cos5t+5.cos4t.i.sent+10.cos3t.i2.sen2t+10.cos2t.i3.sen3t+5.cost.i4.sen4t+i5.sen5t Sabemos que i2=-1, i3=-i, i4=1 y i5=i entonces nos queda: (cost+i.sent)5=cos5t+5.cos4t.i.sent-10.cos3t.sen2t-10.cos2t.i.sen3t+5.cost.sen4t+i.sen5t Separando lo real de lo imaginario nos queda: (cost+i.sent)5=cos5t-10.cos3t.sen2t+5.cos.sen4t+i.(5.cos4t.sent-10.cos2t.sen3t+sen5t) Para poder escribir la parte real en función del cost y la parte imaginaria en función del sent realizamos lo siguiente: (cost+i.sent)5=cost.(cos4t-10.cos2t.sen2t+5.sen4t)+i.sent.(5.cos4t-10.cos2t.sen2t+sen4t) Aplicamos identidades trigonométricas y nos queda de la siguiente forma: 23 ß a 72° b a edu.red (cost+i.sent)5=cost.[cos4t-10.cos2t.(1-cos2t)+5.(1-cos2t)2]+i.sent.[5.(1-sen2t)2-10.(1- sen2t).sen2t+sen4t] Trabajamos un poco con la expresión y nos queda: (cost+i.sent)5=cost.(cos4t-10.cos2t+10.cos4t+5-10.cos2t+5.cos4t)+i.sent.(5-10.sen2t+5.sen4t- 10.sen2t+10.sen4t+sen4t) (cost+i.sent)5=cost.(16.cos4t-20.cos2t+5)+i.sent.(16.sen4t-20.sen2t+5) (cost+i.sent)5=16.cos5t-20.cos3t+5.cost+i.(16.sen5t-20.sen3t+5.sent) De la siguiente expresión podemos deducir: cos5.t+i.sen5.t=(cost+i.sent)5=16.cos5t-20.cos3t+5.cost+i.(16.sen5t-20.sen3t+5.sent) cos5.t=16.cos5t-20.cos3t+5.cost sen5.t=16.sen5t-20.sen3t+5.sent Remplacemos t=54ş, cost=x y sent=y; nos quedaría: cos270ş=16.x5-20.x3+5.x=0 sen270ş=16.y5-20.y3+5.y=-1 16.x5-20.x3+5.x=0 16.x4-20.x2+5=0 Nos queda una bicuadrática que se puede resolver de la siguiente forma: x1-2-3-4=± 20± 400-320=± 20± 80=± 20±4. 5=± 10±2. 5 para t=54ş, cos54ş= 10-2. 5 32 32 32 16 4 16.y5-20.y3+5.y=-1 16.y5-20.y3+5.y+1=0 Utilizamos el teorema de Gauss para hallar una de las raíces. 16.y5-20.y3+5.y+1 probemos dividirlo por y+1, aplicamos la regla de Ruffini. 16 0 -20 0 5 1 -1 -16 16 4 -4 -1 16 -16 -4 4 1 0 Entonces y+1 lo divide, la expresión nos quedaría: (16.y5-20.y3+5.y+1):(y+1)=16.y4-16.y3-4.y2+4.y+1 24 edu.red 16.y4-16.y3-4.y2+4.y+1=0 Trabajamos con la expresión para lograr expresarla como un trinomio cuadrado perfecto. 16.y4-16.y3+4.y2-8.y2+4.y+1=(4.y2)2-2.4.y2.2.y+(2.y)2-2.(4.y2-2.y)+1=(4.y2-2.y)2-2.(4.y2-2.y).1+12= (4.y2-2.y-1)2=0 4.y2-2.y-1=0 y1-2=2± 4+16=2± 20=2±2. 5 para t=54ş, sen54ş=1+ 5 8 8 8 4 Ya estamos en condiciones de calcular b. a.(1+ 5) b=a.sen54°= 4 =a. (1+ 5 )=a. (1+ 5 )2=a. 5+2. 5 luego de varios pasos 2.cos54ş 2 2 5 2. 10-2. 5 (10-2. 5) 2. 10-2. 5 4 Acara= 5.a.a. 5+2. 5=5.a2. 5+2. 5 2.2 5 4 5 5 Adodecaedro= 12.5.a2. 4 Adodecaedro= 15.a2. 5+2. 5 5+2. 5 5 Para poder calcular el volumen tenemos que imaginarnos el cuerpo cortado por la mitad y ejes concéntricos de la siguiente forma. Calculamos el ángulo ? de la siguiente forma. ?=360° 10 ° Cuerpo cortado por la mitad 25 ? edu.red x =a -a .cos108ş x =a2.(1-cos108ş) x =a2.(1-cos2.54ş) 26 F=2.ß x2=(a)2+(a)2-2.a.a.cos108° 2 2 22 2 2 F=2.54° F=108° 2 2 2 2 2 2 2 2 2 2 4 16 x= a2.(6+2. 5)=a. 6+2. 5 16 4 Calculamos el ángulo µ, y luego la ap aplicando el teorema del seno. µ=180°-36° 2 µ=72° a. 6+2. 5 ap =4 a sen72° sen36° ap=sen72°.a. 6+2. 5 sen36° 4 µ 36° ap x a 2 Aplicando identidades trigonométricas el valor x nos quedaría: x2=a2.[1-(1-2.sen254ş)]=a2.(1-1+2.sen254ş)=a2.2.sen254ş=a2.(1+ 5)2=a2.(1+2. 5+5) x Calculamos el ángulo F, y luego x aplicando el teorema del coseno. x x F Imaginamos que el dodecaedro se puede dividir en 12 prismas de base pentagonal concéntricos, y nos imaginamos por donde pasan los ejes con respecto al prisma. Observándolo desde arriba nos quedaría de la siguiente forma. ap ap edu.red Sabemos por identidades trigonométricas que sen72ş=sen2.36ş=2.sen36ş.cos36ş y que cos36ş=sen(90ş-36ş)=sen54ş Entonces sen72ş=2.cos54ş.sen54ş, la ap nos quedaría: ap=2.sen36ş.sen54ş.a. 6+2. 5=a.sen54ş. 6+2. 5=a.(1+ 5). 6+2. 5=a. (1+ 5)2. 6+2. 5 sen36ş 4 2 2 4 8 ap=a. (6+2. 5)2=a.(6+2. 5) 8 8 Calculamos la h del prisma aplicando el teorema de Pitágoras. ap2=h2+b2 h2=ap2-b2 h2=[a.(6+2. 5)]2-(a. 8 2 5+2. 5)2 5 h2=a2.(36+24. 5+20)-a2.(5+2. 5)= 64 4 5 h2=a2.(56+24. 5)-a2.(5+2. 5)=a2.(25+11. 5) 64 20 40 h= a2.(25+11. 5)=a. 25+11. 5 2 10 40 Calculamos el volumen del dodecaedro utilizando la fórmula. V=12.A.base.h 3 V=12.5.a3. (5+2. 5).(25+11. 5)=5.a3. 235+105. 5 3.4.2 5 10 2 50 V=5.a3. 2 47+21. 5 10 27 b h ap edu.red 28 Calculemos el área del icosaedro, considerando que la medida de la arista de la cara que es un pentágono regular pueden ser cualquiera, la llamaremos a. Acara= a2. 3 4 Aicosaedro= 20.a2. 3 4 Aicosaedro= 5.a2. 3 Para poder calcular el volumen tenemos que imaginarnos el cuerpo cortado por la mitad y ejes concéntricos de la siguiente forma. Calculamos el ángulo ? de la siguiente forma. ?=360° 10 ?=36° ap a 20 caras x x Cuerpo cortado por la mitad Imaginamos que el icosaedro se puede dividir en 20 prismas de base triangular equilátera concéntricos, y nos imaginamos por donde pasan los ejes con respecto al prisma. Observándolo desde arriba nos quedaría de la siguiente forma. ap ? edu.red 29 Calculamos el valor de x aplicando proporciones. a x =2 r a a x=a.a 2.a x=a 2 a ap = 2 r sen72° sen36° ap=a.sen72° 2.sen36° ap=a.sen2.36ş=a.2.sen36ş.cos36ş=a.sen54ş 2. sen36ş 2.sen36ş ap=a.(1+ 5) 4 Calculamos la h del prisma aplicando el teorema de Pitágoras. ap2=h2+b2 h2=ap2-b2 h2=[a.(1+ 5)]2-(a. 3)2 4 6 h2=a2.(6+2. 5)-a2.3=a2.(7+3. 5) h= 16 36 a2.(7+3. 5)=a. 24 2 24 7+3. 5 6 b ap h ap 36° a a 2 a 2 Calculamos el ángulo a, y luego la ap aplicando el teorema del seno e identidades trigonométricas. a=180°-36° 2 ° a x edu.red 30 Calculamos el volumen del icosaedro utilizando la fórmula. V=20.Abase.h 3 V=20.a2. 3.a. 7+3. 5=5.a3. 3.(7+3. 5) 6 6 6 3.2.2.2 V=5.a3. 7+3. 5 6 2 Planificación, diseńo y ejecución Objetivo: Realizar un curso sobre cuerpos geométricos relacionado con un blog educativo en cual están los documentos Web 2.0 que poseen las presentaciones Docs en los cuales se utilizan vídeos educativos. Se trata de partir de vídeos educativos significativos sobre cuerpos geométricos concretos. El contenido no es nuevo pero los vídeos educativos son muy entretenido y amenos que motivarán a los docentes a trabajar con cuerpos geométricos en forma concreta. Los docentes tienen que construir los cuerpos geométricos para poder resolver las actividades planteadas. Los docentes tienen que aplicar los contenidos previos adquiridos para lograr el objetivo fijado. Planteo: Se plantean actividades diagramadas y secuenciadas, donde los docentes deben responder partiendo de la observación atenta del blog educativo debiendo justificar matemáticamente sus respuestas. Los vídeos educativos son el punto disparador para que los docentes construyan los cuerpos geométricos y puedan resolver las actividades planteadas. Dicho planteo es para Profesores en Matemática, donde los docentes tendrán que utilizar contenidos previos para poder resolver las actividades. Contenidos previos y herramientas: Propiedades de prismas, propiedades de pirámides, propiedades de cilindro, propiedades de cono, propiedades de esfera, propiedades de los cinco cuerpos regulares, razones trigonométricas, teorema de Pitágoras, cálculo infinitesimal, teorema del seno, teorema del coseno, identidades trigonométricas, teorema de Gauss, regla de Ruffini, triángulo de Tartaglia, teorema de Moivre, ecuaciones de 1ş grado con una incógnita, ecuaciones de 2ş grado con una incógnita, polinomios, manejo de calculadora científica, relación entre unidades, relaciones entre volúmenes, manejo de Internet, lectura critica, propiedades de triángulos, propiedades de cuadriláteros, propiedades de círculo, propiedades de sector circular, propiedades de polígonos regulares, medición, error de medición, cálculo de superficie, cálculo de volumen y aproximación de resultados. Las herramientas a utilizar son: tijera, regla, goma, lápiz, fibra, sorbetes, clips, compás, transportador, cartulina, láminas de acetato, cúter, pelota de goma, cinta adhesiva, arroz, abrochadora, pegamento y calculadora científica. edu.red 31 Etapas y recursos del proyecto multimedia Según Consuelo Belloc de la Universidad de Vigo, Espańa, las etapas que se deben seguir son las siguientes: 1. Análisis 2. Diseńo del Programa 3. Desarrollo del Programa 4. Experimentación y Validación del Programa 5. Realización de la Versión definitiva del programa 6. Elaboración del material complementario 1. El Análisis Según Consuelo Belloc se deben analizar cuestiones tales como: ? Las Características de los usuarios: está destinado a Profesores en Matemática. Los conocimientos previos necesarios para poder entender el proyecto son: propiedades de prismas, propiedades de pirámides, propiedades de cilindro, propiedades de cono, propiedades de esfera, propiedades de los cinco cuerpos regulares, razones trigonométricas, teorema de Pitágoras, cálculo infinitesimal, teorema del seno, teorema del coseno, identidades trigonométricas, teorema de Gauss, regla de Ruffini, triángulo de Tartaglia, teorema de Moivre, ecuaciones de 1ş grado con una incógnita, ecuaciones de 2ş grado con una incógnita, polinomios, manejo de calculadora científica, relación entre unidades, relaciones entre volúmenes, manejo de Internet, lectura critica, propiedades de triángulos, propiedades de cuadriláteros, propiedades de círculo, propiedades de sector circular, propiedades de polígonos regulares, medición, error de medición, cálculo de superficie, cálculo de volumen y aproximación de resultados. Las herramientas a utilizar son: tijera, regla, goma, lápiz, fibra, sorbetes, clips, compás, transportador, cartulina, láminas de acetato, cúter, pelota de goma, cinta adhesiva, arroz, pegamento y calculadora científica. ? Las Características del entorno de aprendizaje: blog educativo con enlaces a las presentaciones Docs en los cuales se encuentran los vídeos educativos, las actividades a resolver y las actividades resueltas. La duración del curso está relacionada con el tiempo de dedicación del docente, o sea que es libre. ? Análisis del contenido: profundización práctica en la construcción de cuerpos geométricos, deducción de las fórmulas para calcular el volumen de cuerpos geométricos, cálculo de la superficie de cuerpos geométricos, cálculo del volumen de cuerpos geométricos. ? Análisis de los Requerimientos técnicos: computadoras que utilicen conexión a Internet con banda ancha. Para el armado del proyecto se necesitó un soft de edición y un soft de conversión de los vídeos educativos, herramientas Web 2.0, presentaciones Docs y blog. Se utilizó para editar los vídeos educativos el soft gratuito Windows Movie Maker 2.0 y para convertir los vídeos educativos en formato flash se utilizó el soft gratuito Koyote Free Video Converter 1.2, ambos programas son muy fáciles de manejar, posteriormente se subió los vídeos a YouTube para que todo el mundo los pueda ver y utilizar en educación. Las presentaciones Docs se armaron con Docs de Google. 2. Diseńo del programa En esta etapa se deben tener en cuenta tanto lo pedagógico como lo informático. El diseńo pedagógico del curso permitirá a establecer: ? Las líneas pedagógicas del curso: se tuvo en cuenta la teoría de Ausubel, en la cual el concepto central que se desarrolla es el de aprendizaje significativo, entendiendo por tal aquel que se relaciona con algún aspecto ya existente en la estructura cognitiva de un individuo y que sea relevante para el material que se intenta aprender; el aprendizaje significativo el proceso de construcción de significados es el elemento central de la enseńanza. El alumno aprende un edu.red 32 contenido cuando puede atribuirle un significado, cuando se construyen significados se pueden establecer conexiones entre lo que se aprende y lo que ya se conoce. ? El Diseńo y la Selección de los contenidos: los contenidos estarían dentro de geometría espacial. La actividad a desarrollar por los docentes será de observación, construcción, cálculo, análisis y fundamentación. La evaluación será en forma autoevaluativa, y on line en los casos que surjan preguntas o inquietudes. La fuente del contenido estará implícito en blog educativo, que será el recurso multimedia. ? La Interactividad del programa: el vínculo estará estrechamente relacionado con el blog educativo. El diseńo técnico esta estrechamente relacionado con el contenido que se quiere trasmitir en base a lo significativo, con la utilización del blog educativo. Los docentes solo tiene que observar atentamente el blog educativo en el cual están las presentaciones Docs y los vídeos educativos y luego trabajar en la construcción de los cuerpos geométricos para su posterior cálculo, análisis y fundamentación, la cual podrán en el caso de dudas, disponer de las respuestas desarrolladas y fundamentadas o utilizar consultas on line. 3. Desarrollo del programa Para esta etapa se deben tener en cuenta los siguientes pasos: ? Desarrollo del prototipo: se fue filmando cada paso de lo que se quería trasmitir y luego con la utilización de los soft de edición y conversión de los vídeos educativos se compagino el producto final acorde a los objetivos planteados. También se elaboró una guía de actividades secuenciadas con los vídeos educativos y una guía de actividades resueltas; todo fue compaginado utilizando un blog educativo en el cual están los documentos Web 2.0, las presentaciones Docs y los vídeos educativos. ? Elaboración de los recursos multimedia: los recursos multimedia utilizados para armar el blog, los documentos Web 2.0, las presentaciones Docs y los vídeos educativos no están al alcance de los docentes, los mismos fueron utilizados exclusivamente por mí persona para la confección de los documentos Web 2.0, las presentaciones Docs y los vídeos educativos y su posterior compaginación en un blog educativo. Solamente el blog educativo seria el medio multimedia que tendrán acceso los docentes, el cual esta estrechamente relacionado con el contenido que se quiere trasmitir. ? Integración de los recursos multimedia: los docentes solo ven el producto final de la elaboración del blog educativo, o sea no participan en el armado del mismo, pero si pueden dejar sugerencias, observaciones, agregados, etc. Los recursos son utilizados únicamente por mí persona. 4. Experimentación y validación del programa Consiste simplemente en realizar una evaluación de los diferentes aspectos del prototipo, analizando la calidad de los mismos y su adecuación. Con el fin de controlar la calidad del blog educativo pueden realizarse diferentes tipos de evaluación: ? La evaluación analítica: los soft de edición y conversión de los vídeos educativos no están al alcance de los docentes ni tampoco la compaginación del blog educativo, solamente el blog educativo es el instrumento con el cual los docentes tiene que trabajar, el mismo es manejado por los docentes, realizando una lectura critica, teniendo en cuenta los tiempos de asimilación analítica particular de cada docente la cual puede variar ya que el tiempo es una variable que manejan los docentes. ? La evaluación experta: la evaluación fue realizada por mí persona ya que soy un experto en la especialidad, teniendo en cuenta los posibles problemas que se podían presentar, los cuales fueron varios y se pudieron resolver satisfactoriamente. edu.red 33 ? La evaluación por observación: la evaluación por observación no existió ya que nunca di un curso para docentes con la utilización de un blog educativo, pero se puede pronosticar que será de gran ayuda el blog educativo para cada docente en particular ya que el mismo propone una enseńanza constructivista significativa la cual se espera será transmitida por los docentes a sus alumnos. ? Evaluación experimental: la evaluación experimental con los docentes no existió, pero se puede esperar un éxito más que envidiable, por el nivel de significación y motivación que generará en los docentes. 5. Realización de la versión definitiva del programa Se puede decir que la versión definitiva del blog educativo y las actividades lograrán los objetivos fijados. 6. Elaboración del material complementario El material complementario al blog educativo es una guía de actividades secuenciadas con los vídeos educativos para el cálculo, análisis y fundamentación por parte de los docentes y una guía de actividades resueltas para apoyatura y autoevaluación. edu.red 34 Fichas de evaluación del proyecto FICHA DE CATALOGACIÓN Y EVALUACIÓN DE LOS VÍDEOS Pere Marqués-2001(modificado por el Prof. Carlos Raúl Söhn) Títulos: Cuerpos Geométricos: Fórmulas para calcular el volumen – Cuerpos Geométricos – versión 2008 – Espańol Idea/Autor/Diseńo/Proyecto/Desarrollo/Realización/Ejecución/Guión/Musicalización/ Compaginación/Efectos/Productor/Dirección: Prof. Carlos Raúl Söhn – Colección/Editorial: Colección 2008 – Editorial Prof. Carlos Raúl Söhn – 2008 – Mar del Plata – Buenos Aires – Argentina Temática: Matemática Objetivos explicitados en los vídeos o en la documentación: Explicación y deducción de las fórmulas para calcular el volumen de cuerpos geométricos. – Técnica para la construcción de cuerpos geométricos utilizando clips y sorbetes. Contenidos que se tratan: Fórmulas para calcular el volumen de cuerpos geométricos y relación entre volúmenes de cuerpos geométricos. – Explicación de construcción de cuerpos geométricos. Destinatarios: Profesores en Matemática – Personas que quieran aprender contenidos sobre cuerpos geométricos – Contenidos previos: propiedades de prismas, propiedades de pirámides, propiedades de cilindro, propiedades de cono, propiedades de esfera, propiedades de los cinco cuerpos regulares, razones trigonométricas, teorema de Pitágoras, cálculo infinitesimal, teorema del seno, teorema del coseno, identidades trigonométricas, teorema de Gauss, regla de Ruffini, triángulo de Tartaglia, teorema de Moivre, ecuaciones de 1ş grado con una incógnita, ecuaciones de 2ş grado con una incógnita, polinomios, manejo de calculadora científica, relación entre unidades, relaciones entre volúmenes, manejo de Internet, lectura critica, propiedades de triángulos, propiedades de cuadriláteros, propiedades de círculo, propiedades de sector circular, propiedades de polígonos regulares, medición, error de medición, cálculo de superficie, cálculo de volumen y aproximación de resultados. TIPOLOGÍA: DOCUMENTAL – NARRATIVO – MONOTEMÁTICO – LECCIÓN TEMÁTICA – MOTIVADOR Breve descripción de de las secuencias de los vídeos: Los primeros videos explican deductivamente las fórmulas para calcular el volumen de cuerpos geométricos. Los segundos videos explican como se puede construir cuerpos geométricos utilizando clips y sorbetes. Valores que potencia o presenta: Motivación en los docentes por lo atractivo de la explicación deductiva de las fórmulas y la técnica de construcción. DOCUMENTACIÓN: NINGUNA – MANUAL – GUÍA DE ACTIVIDADES – GUÍA DE ACTIVIDADES RESUELTAS – LINKS SERVICIO DE TELE INFORMACIÓN: NINGUNO – SOLO CONSULTAS – TIPO CURSO – POR INTERNET REQUISITOS TÉCNICOS: VHS – CDDVD – INTERNET – WEB 2.0 – BLOG – PÁGINA WEB – Windows Movie Maker 2.0 – Koyote Free Video Converter 1.2 – YouTube – Docs de Google edu.red ESPACIOS BLOG DE INTERÉS EDUCATIVO FICHA DE CATALOGACIÓN Y EVALUACIÓN CON PROPUESTA DIDÁCTICA Pere Marqués-UAB/2001(modificado por el Prof. Carlos Raúl Söhn) Dirección URL: http://carlosrsohn.blogia.com/ Título del espacio blog: Curso de Geometría. Destinatarios: Profesores en Matemática – Espańol Idea/Autor/Diseńo/Proyecto/Desarrollo/Realización/Ejecución/Compaginación/Productor/ Dirección: Prof. Carlos Raúl Söhn – – Mar del Plata – Buenos Aires – Argentina Patrocinadores: Universidad Tecnológica Nacional TIPOLOGÍA: TIENDA VIRTUAL – TELEFORMACIÓN TUTORIZADA – BLOG TEMÁTICO – PRENSA ELECTRÓNICA – BLOG DE PRESENTACIÓN – CENTRO DE RECURSOS – PORTAL – MATERIAL DIDÁCTICO ON LINE – ÍNDICE/BUSCADOR – ENTORNO DE COMUNICACIÓN PROPÓSITO: VENTA/DISTRIBUCIÓN – INFORMAR – INSTRUIR – REALIZAR TRÁMITES – COMUNICACIÓN INTERPERSONAL – ENTRETENER/INTERESAR – ALMACENAR ARCHIVOS LIBRE ACCESO: ? SI ? NO – INCLUYE PUBLICIDAD: ? SI ? NO – ACCESO WAP: ? SI ? NO 35 edu.red 36 edu.red Profesor: Carlos Raúl Söhn DNI 16.411.987 Mar del Plata, Prov. de Buenos Aires

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente