Descargar

Sistema Operativo Linux

Enviado por eryx


    Introducción

    En una era de cambios en el ambiente computacional, de una amplia oferta en sistemas operativos e interfaces gráficas y sobre todo, del costo que representa contar con un sistema operativo que interactue con el software sin problemas, surge con fuerza inusitada: Linux

    LINUX es un sistema operativo, compatible Unix. Dos características muy peculiares lo diferencian del resto de los sistemas que podemos encontrar en el mercado, la primera, es que es libre, esto significa que no tenemos que pagar ningún tipo de licencia a ninguna casa desarrolladora de software por el uso del mismo, la segunda, es que el sistema viene acompañado del código fuente. El sistema lo forman el núcleo del sistema (kernel) mas un gran numero de programas / librerías que hacen posible su utilización.

    LINUX se distribuye bajo la GNU Public License: Ingles , por lo tanto, el código fuente tiene que estar siempre accesible.

    El sistema ha sido diseñado y programado por multitud de programadores alrededor del mundo. El núcleo del sistema sigue en continuo desarrollo bajo la coordinación de Linus Torvalds, la persona de la que partió la idea de este proyecto, a principios de la década de los noventa.

    Día a día, más y más programas / aplicaciones están disponibles para este sistema, y la calidad de los mismos aumenta de versión a versión. La gran mayoría de los mismos vienen acompañados del código fuente y se distribuyen gratuitamente bajo los términos de licencia de la GNU Public License.

    En los últimos tiempos, ciertas casas de software comercial han empezado a distribuir sus productos para Linux y la presencia del mismo en empresas aumenta rápidamente por la excelente relación calidad – precio que se consigue con Linux.

    Las plataformas en las que en un principio se puede utilizar Linux son 386-, 486-. Pentium, Pentium Pro, Pentium II, Amiga y Atari, también existen versiones para su utilización en otras plataformas, como Alpha, ARM, MIPS, PowerPC y SPARC.

    Reseña

    Historia del Linux: Linux fue creado originalmente por Linus Torvald en la Universidad de Helsinki en Finlandia, siendo él estudiante de informática. Pero ha continuado su desarrollado con la ayuda de muchos otros programadores a través de Internet.

    Linux originalmente inicio el desarrollo del núcleo como su proyecto favorito, inspirado por su interés en Minix, un pequeño sistema Unix desarrollado por Andy Tannenbaum. Él se propuso a crear lo que en sus propias palabras seria un "mejor Minix que el Minix".

    El 5 de octubre de 1991, Linux anuncio su primera versión "oficial" de Linux, versión 0.02. Desde entonces , muchos programadores han respondido a su llamada, y han ayudado a construir Linux como el sistema operativo completamente funcional que es hoy.

    ¿QUÉ ES LINUX?

    Linux es un sistema operativo diseñado por cientos de programadores de todo el planeta, aunque el principal responsable del proyecto es Linus Tovalds. Su objetivo inicial es propulsar el software de libre distribución junto con su código fuente para que pueda ser modificado por cualquier persona, dando rienda suelta a la creatividad. El hecho de que el sistema operativo incluya su propio código fuente expande enormemente las posibilidades de este sistema. Este método también es aplicado en numerosas ocasiones a los programas que corren en el sistema, lo que hace que podamos encontrar muchisimos programas útiles totalmente gratuitos y con su código fuente. Y la cuestión es que, señores y señoras, Linux es un sistema operativo totalmente gratuito.

    Mi máquina corre Linux, y puedo asegurar que es uno de los sistemas que más aprovecha mi computadora, es decir, con el consigo ejecutar tareas mucho más rápido que con otros sistemas operativos comerciales. Y es que Linux no requiere grandes prestaciones para funcionar.

    Las funciones principales de este magnífico sistema operativo son:

    • Sistema multitarea En Linux es posible ejecutar varios programas a la vez sin necesidad de tener que parar la ejecución de cada aplicación.
    • Sistema multiusuario Varios usuarios pueden acceder a las aplicaciones y recursos del sistema Linux al mismo tiempo. Y, por supuesto, cada uno de ellos puede ejecutar varios programas a la vez (multitarea).
    • Shells programables Un shell conecta las ordenes de un usuario con el Kernel de Linux (el núcleo del sistema), y al ser programables se puede modificar para adaptarlo a tus necesidades. Por ejemplo, es muy útil para realizar procesos en segundo plano.
    • Independencia de dispositivos Linux admite cualquier tipo de dispositivo (módems, impresoras) gracias a que cada una vez instalado uno nuevo, se añade al Kernel el enlace o controlador necesario con el dispositivo, haciendo que el Kernel y el enlace se fusionen. Linux posee una gran adaptabilidad y no se encuentra limitado como otros sistemas operativos.
    • Comunicaciones Linux es el sistema más flexible para poder conectarse a cualquier ordenador del mundo. Internet se creó y desarrollo dentro del mundo de Unix, y por lo tanto Linux tiene las mayores capacidades para navegar, ya que Unix y Linux son sistemas prácticamente idénticos. Con linux podrá montar un servidor en su propia casa sin tener que pagar las enormes cantidades de dinero que piden otros sistemas.

    Linux no sacrifica en ningún momento la creatividad, tal y como lo hacen algunas compañías informáticas. Linux es una ventana abierta por la que es posible huir hacia un mundo donde la verdadera informática puede ser disfrutada sin limites ni monopolios.

    Linux es distribuido mediante una serie de distribuciones como RedHat, Slackware, Debían … las cuales se diferencian por su método de instalación y por los paquetes (software) que viene incluido. Es posible que encuentre a la venta versiones de Linux y piense: "si, si…. decían que era gratis…" No se asuste, todo el software de Linux esta regido por la licencia de GNU, con la cual cualquier persona puede modificar un programa y venderlo según el desee, con la condición que la persona que compra ese producto puede realizar la misma acción o simplemente hacer copias para todos aquellos que lo quieran sin tener que pagar más (por lo tanto no se extrañe si encuentra distribución comerciales). Esta licencia es la garantía que afirma la absoluta libertad de este sistema operativo. Si no desea ni siquiera pagar esa mísera cantidad puede descargárselo de Internet totalmente gratis (bueno, sólo tendrá que pagar la factura de teléfono ).

    Características de Linux

    • multitarea: varios programas (realmente procesos) ejecutándose al mismo tiempo.
    • multiusuario: varios usuarios en la misma máquina al mismo tiempo (y sin licencias para todos).
    • multiplataforma: corre en muchas CPUs distintas, no sólo Intel.
    • funciona en modo protegido 386.
    • tiene protección de la memoria entre procesos, de manera que uno de ellos no pueda colgar el sistema.
    • carga de ejecutables por demanda: Linux sólo lee de disco aquellas partes de un programa que están siendo usadas actualmente.
    • política de copia en escritura para la compartición de páginas entre ejecutables: esto significa que varios procesos pueden usar la misma zona de memoria para ejecutarse. Cuando alguno intenta escribir en esa memoria, la página (4Kb de memoria) se copia a otro lugar. Esta política de copia en escritura tiene dos beneficios: aumenta la velocidad y reduce el uso de memoria.
    • memoria virtual usando paginación (sin intercambio de procesos completos) a disco: una partición o un archivo en el sistema de archivos, o ambos, con la posibilidad de añadir más áreas de intercambio sobre la marcha (se sigue denominando intercambio, es en realidad un intercambio de páginas). Un total de 16 zonas de intercambio de 128Mb de tamaño máximo pueden ser usadas en un momento dado con un límite teórico de 2Gb para intercambio.
    • la memoria se gestiona como un recurso unificado para los programas de usuario y para el caché de disco, de tal forma que toda la memoria libre puede ser usada para caché y éste puede a su vez ser reducido cuando se ejecuten grandes programas.
    • librerías compartidas de carga dinámica (DLL's) y librerías estáticas también, por supuesto.
    • se realizan volcados de estado (core dumps) para posibilitar los análisis post-mortem, permitiendo el uso de depuradores sobre los programas no sólo en ejecución sino también tras abortar éstos por cualquier motivo.
    • casi totalmente compatible con POSIX, System V y BSD a nivel fuente.
    • mediante un módulo de emulación de iBCS2, casi completamente compatible con SCO, SVR3 y SVR4 a nivel binario.
    • todo el código fuente está disponible, incluyendo el núcleo completo y todos los drivers, las herramientas de desarrollo y todos los programas de usuario; además todo ello se puede distribuir libremente. Hay algunos programas comerciales que están siendo ofrecidos para Linux actualmente sin código fuente, pero todo lo que ha sido gratuito sigue siendo gratuito.
    • control de tareas POSIX.
    • pseudo-terminales (pty's).
    • emulación de 387 en el núcleo, de tal forma que los programas no tengan que hacer su propia emulación matemática. Cualquier máquina que ejecute Linux parecerá dotada de coprocesador matemático. Por supuesto, si tu ordenador ya tiene una FPU (unidad de coma flotante), será usada en lugar de la emulación, pudiendo incluso compilar tu propio kernel sin la emulación matemática y conseguir un pequeño ahorro de memoria.
    • soporte para muchos teclados nacionales o adaptados y es bastante fácil añadir nuevos dinámicamente.
    • consolas virtuales múltiples: varias sesiones de login a través de la consola entre las que se puede cambiar con las combinaciones adecuadas de teclas (totalmente independiente del hardware de video). Se crean dinámicamente y puedes tener hasta 64.
    • soporte para varios sistemas de archivo comunes, incluyendo minix-1, Xenix y todos los sistemas de archivo típicos de System V, y tiene un avanzado sistema de archivos propio con una capacidad de hasta 4 Tb y nombres de archivos de hasta 255 caracteres de longitud.
    • acceso transparente a particiones MS-DOS (o a particiones OS/2 FAT) mediante un sistema de archivos especial: no necesitas ningún comando especial para usar la partición MS-DOS, parece un sistema de archivos normal de Unix (excepto por algunas graciosas restricciones en los nombres de archivo, permisos, y esas cosas). Las particiones comprimidas de MS-DOS 6 no son accesibles en este momento, y no se espera que lo sean en el futuro. El soporte para VFAT (WNT, Windows 95) ha sido añadido al núcleo de desarrollo y estará en la próxima versión estable.
    • un sistema de archivos especial llamado UMSDOS que permite que Linux sea instalado en un sistema de archivos DOS.
    • soporte en sólo lectura de HPFS-2 del OS/2 2.1
    • sistema de archivos de CD-ROM que lee todos los formatos estándar de CD-ROM.
    • TCP/IP, incluyendo ftp, telnet, NFS, etc.
    • Appletalk disponible en el actual núcleo de desarrollo.
    • software cliente y servidor Netware disponible en los núcleos de desarrollo.

    LINUX – COMANDOS BÁSICOS

    date muestra la fecha del sistema.

    date –u mmddhhhhaa cambia la fecha del sistema, ej. 1202120095 es igual a mes 12, día 02, hora 12:00 y año 1995.

    logout sale de la actual sesión.

    login sale de la actual sesión.

    ^D sale de la actual sesión.

    Alt+F1 inicia una consola virtual (varias a la vez: F1,F2,F3…)

    passwd cambia el password del actual usuario.

    ^C aborta programa en ejecución.

    ^S paraliza la pantalla.

    ^Q anula la paralización de la pantalla.

    who lista los usuarios conectados.

    who am i lista tu nombre.

    who you are lista tu nombre.

    mail nombre envía correo, se finaliza escribiendo un punto en una línea sola.

    mail visualiza tu correo, teclea ? para ayuda.

    ls lista directorios y ficheros.

    ls –i lista directorios y ficheros con sus i-números.

    ls –a lista directorios y ficheros en orden alfabético.

    ls –s lista directorios y ficheros con su tamaño en bloque (1 bloque= 512 bytes)

    ls –r lista directorios y ficheros en orden inverso.

    ls –u lista directorios y ficheros según último acceso.

    ls –l lista todos los directorios y ficheros en formato largo.

    Head –nº lines selecciona la primera línea (ej. ls|head –1 lines)

    cat file file … visualiza seguidamente los ficheros indicados.

    cat file file > file graba los dos archivos en uno.

    ln file link crea un enlace a un archivo, los dos contienen el mismo fichero físico, si cambias uno, cambia el otro. Pero si borras uno todavía queda el otro.

    cp file file copia ficheros.

    rm file borra ficheros.

    mv file file mueve o cambia de nombre.

    pwd muestra el directorio actual.

    cd cambia de directorio.

    mkdir directorio crea un directorio.

    rmdir directorio borra un directorio.

    comando & hace que el proceso sea desatendido en 2º plano (background).

    ps [nº] muestra los procesos desatendidos.

    ps alx muestra los procesos desatendidos asociados a la terminal (a), los no asociados (x) y hace una lista larga (l).

    Elementos de la lista larga:

    STA (Estado del proceso)

    O (Inexistente) S (Durmiendo) W (Esperando)

    I (Intermedio) R (Ejecutándose) Z (Terminado)

    Z (Parado)

    UID (Nº de Identificación del propietario)

    PID (Nº de Identificación del proceso)

    PPID (Nº de Identificación del proceso padre)

    PRI (Prioridad, nº altos=baja prioridad)

    WCHAN (Suceso al que espera) NICE (Nº para calcular la pri.)

    TTY (Terminal) STTY (Tiempo de ejecución)

    kill nº detiene la ejecución de un proceso en background.

    at hora o fecha <<EOF ejecuta algo a una hora establecida (para salir escribir EOF) Posibilidades para hora o fecha: 8am, 2130, 12N fri week (siguiente semana), 2PM apr 3, now +1minute, now +1 hour, 4PM +2 days, 1PM tomorrow,…

    comando ; comando se pueden escribir varios comandos a la vez.

    comando > file redirecciona la salida a un archivo.

    (comando ; comando) > file redirecciona toda la salida del conjunto a un archivo.

    comando >> file redirecciona la salida a un archivo, pero lo añade al final de este.

    comando < file > file redirecciona de forma contraria para acabar llevando el resultado a un archivo.

    comando | comando tubo (pipeline) la salida del 1º la envía hacia el 2º.

    *, ?, […], … caracteres de sustitución.

    echo * lista directorios y ficheros.

    echo –n "Hoy es `date`, hola $variable" hace eco sin carro de retorno (-n) de la frase Hoy es, ejecuta el comando date (entre acentos), hace eco de hola y imprime el contenido de la variable. Para eliminar los valores especiales de algunos caracteres deberemos escribir / antes, ejemplo "Hola /"Pepe/"".

    mesg y permite que te escriban los usuarios del sistema.

    mesg n prohibe que te escriban a los usuarios del sistema.

    mesg muestra el estado actual (escribir o no).

    tty muestra tu número (archivo) de terminal.

    write nombre [tty] para comunicarse con un usuario conectado al sistema. Para salir ^D, para indicar al otro el fin del mensaje –oo-, y el fin de la comunicación –oo-. Si el usuario pertenece a otra terminal, se debe indicar. Si el usuario tiene el mesg en no o esta realizando una tarea específica no podremos comunicarnos.

    cmp file file comprueba si son idénticos, si lo son no aparece ninguna salida.

    comm [-nº] file file lista las palabras comunes de los dos archivos, en el número se indica la columna a comparar: 0,1,2,3.

    diff file file lista las palabras diferentes de los dos archivos.

    find . –file … –mtime 1 –size +10 –type f busca en el directorio actual los ficheros con dicho nombre, que hayan sido modificados hace 1 día, con un tamaño mayor a 10 bloques y del tipo fichero.

    find / -name … –atime 1 –size –20 –type d busca en el directorio actual los directorios con dicho nombre, que hayan tenido acceso hace 1 día, con tamaño menor que 20 bloques y del tipo directorio.

    find . –name –ok rm {} ; busca en el directorio actual y borra los ficheros encontrados que cumplan los requisitos.

    lpr file imprime el archivo.

    pr file imprime el archivo junto a un encabezamiento, la fecha, hora, …

    tail nº file muestra la cola de un archivo, en nº se debe especificar: +2l (a partir de la segunda línea por arriba), -10l (a partir de la décima línea por abajo). Si en lugar de l (línea) podemos escribir b (bloque) ó c (carácter).

    tr caracteres caracteres cambia los caracteres por los indicados a continuación. (Ejemplo: tr abc ABC).

    tee file muestra los datos en un punto intermedio.

    du muestra el tamaño por bloques de cada archivo y directorio.

    du –s muestra el tamaño total por bloques.

    file file indica el tipo de archivo que es (empty cannot open directory English text ascii text data).

    stty información sobre nuestro terminal.

    stty [-] raw lee carácter a carácter. Se anula añadiendo el signo – al comando.

    stty [-] cooked lee línea a línea. Se anula añadiendo el signo – al comando.

    stty [-] cbreak mezcla de los dos anteriores. Se anula añadiendo el signo – al comando.

    stty [-] nl no retorna el carro hasta el principio (se anula con ^J).

    stty [-] echo no se ven las pulsaciones en pantalla. Se anula añadiendo el signo – al comando.

    sort file muestra en pantalla el archivo ordenado por la 1ª columna (para indicar la segunda columna añadir +1 y así sucesivamente).

    sort file –u muestra en pantalla el archivo ordenado por la 1ª columna sin las líneas duplicadas.

    sort file –b muestra en pantalla el archivo ordenado por la 1ª columna ignorando espacios en blanco.

    sort file –f muestra en pantalla el archivo ordenado por la 1ª columna distinguiendo entre minúsculas y mayúsculas.

    sort file –r muestra en pantalla el archivo ordenado por la 1ª columna en orden inverso.

    sort file –c comprueba si el archivo ya esta ordenado.

    grep palabra file busca unos caracteres determinados en un fichero. grep –v palabra file busca las líneas que no contienen dicha palabra. grep –c palabra file muestra el número de líneas que contienen la palabra. grep –y palabra file busca la palabra en el fichero sin distinguir entre

    minúsculas y mayúsculas.

    grep –n palabra file busca la palabra y muestra su línea con el número de

    esta.

    uniq file muestra el archivo sin las líneas que estén repetidas.

    wc file muestra el número de líneas, palabras y caracteres (en este orden) del archivo.

    wc –l file muestra el número de líneas del archivo.

    wc –w muestra el número de palabras del archivo.

    wc –c muestra el número de caracteres del archivo.

    cal [nº mes] nº año imprime un calendario del mes y/o año indicado. Mes: 1-12, año 1-9999.

    newgrp grupo cambia de grupo.

    sum file suma las palabras de un archivo.

    expr nº + nº suma +, resta -, multiplica *, divide /,… una expresión.

    wall mensaje manda un mensaje a todos los usuarios. (Solo lo recibirán los usuarios que tengan su sistema configurado para poder recibir estos mensajes)

    id muestra nuestro UserId y el GroupId.

    chmod nºnºnº file cambia los permisos de un archivo. 1: Permiso de ejecución (x), 2: Permiso de escritura (w), 3: Permiso de lectura ( r). Se deben sumar para poner más de uno. El primer número corresponde al creador del archivo, el segundo al grupo del creador, y el tercero al resto de usuarios. Ej. 666 : todo el mundo tiene permiso de todo.

    chown nombre file cambia el propietario de un archivo.

    chgrp grupo file cambia el grupo del propietario de un archivo.

    umask muestra los permisos por defecto de los archivos creados. Ej. 022 entonces 666-022=644, es decir usuario permiso de w, r, grupo permiso de r y lo otros permiso de r.

    umask nº cambia los permisos por defecto de los archivos creados. Ej. umask 000: todo el mundo tiene todos los permisos al ser creado un archivo.

    Archivos especiales:

    /etc/passwd Contiene todos los logins y passwords

    /etc/motd Mensaje del día

    /etc/profile Se ejecuta al introducir al entrar en el sistema

    Versiones

    El desarrollo inicial Linux ya aprovechaba las características de conmutación de tareas en modo protegido del 386, y se escribió todo en ensamblador.

    Linus nunca anunció la versión 0.01 de Linux (agosto 1991), esta versión no era ni siquiera ejecutable, solamente incluía los principios del núcleo del sistema, estaba escrita en lenguaje ensamblador y asumía que uno tenia acceso a un sistema Minix para su compilación.

    El 5 de octubre de 1991, Linus anunció la primera versión "Oficial" de Linux, – versión 0.02. Con esta versión Linus pudo ejecutar Bash (GNU Bourne Again Shell) y gcc (El compilador GNU de C) pero no mucho mas funcionaba. En este estado de desarrollo ni se pensaba en los términos soporte, documentación, distribución.

    Después de la versión 0.03, Linus salto en la numeración hasta la 0.10, más y más programadores a lo largo y ancho de internet empezaron a trabajar en el proyecto y después de sucesivas revisiones, Linus incremento el numero de versión hasta la 0.95 (Marzo 1992). Mas de un año después (diciembre 1993) el núcleo del sistema estaba en la versión 0.99 y la versión 1.0 no llego hasta el 14 de marzo de 1994.

    La versión actual del núcleo es la 2.2 y sigue avanzando día a día con la meta de perfeccionar y mejorar el sistema.

    La ultima versión estable es la versión 2.2, que soporta muchos más periféricos, desde procesadores hasta joysticks, sintonizadores de televisión, CD ROMs no ATAPI y reconoce buena cantidad de tarjetas de sonido. Incluye también soporte para tipos de archivos para Macintosh HFS, Unix UFS y en modo de lectura, HPFS de OS/2 y NTFS, de NT.

    Otras Versiones:

    Linux 2.0

    Linux 2.2

    Linux 2.3

    Comparación

    Se señala las diferencias de Linux con el DOS y no con otro S.O. porque la mayoría provienen del DOS.

    • No existe el concepto de unidad de disco. Todas las unidades en Linux se 'montan' como si fueran un subdirectorio más.
    • No existe el concepto de extensión del nombre de un fichero. Los ficheros pueden tener nombres de hasta 256 caracteres. Los puntos están permitidos en el nombre de un fichero. Así, un fichero se podrá llamar:

    DOSEMU-HOWTO.español.tar.gz

    por poner un ejemplo.

    • Los subdirectorios no se separan con el carácter '', como en DOS, sino con el carácter '/'. Ejemplo:

    /usr/src/linux-1.2.13/Makefile

    • Existe diferencia entre mayúsculas y minúsculas. Por ejemplo, no es lo mismo 'dir' que 'DIR' que 'Dir'…
    • Adiós a los atributos de los ficheros, tal y como los conoce el DOS. Cada fichero tendrá ahora 10 'atributos'.
    • Entre un comando y sus parámetros deberemos dejar obligatoriamente un espacio en blanco. Por ejemplo 'cd..' no funcionará mientras que 'cd ..' sí.
    • IMPORTANTE: Un sistema Linux NUNCA se puede apagar por las buenas. Antes le hemos de advertir al S.O. de que vamos a apagarlo (o reiniciarlo). La razón de que esto deba ser así es para que al sistema le dé tiempo de escribir en disco todos los datos que tuviera pendientes de escribir, salir ordenadamente de todas las aplicaciones que tuviera arrancadas y desmontar todas las unidades que tuviera montadas.

    Existen muchas otras diferencias (gestión de memoria plana, …), pero las mencionadas son las que más nos pueden influir en la forma de trabajar, al menos en principio.

    ¿Qué es el kernel?

    El kernel o núcleo de linux se podría definir como el corazón de este sistema operativo. Es el encargado de que el software y el hardware de tu ordenador puedan trabajar juntos.

    Las funciones mas importantes del mismo, aunque no las únicas, son:

    • Administración de la memoria, para todos los programas en ejecución.
    • Administración del tiempo de procesador, que estos programas en ejecución utilizan.
    • Es el encargado de que podamos acceder a los periféricos/elementos de nuestro ordenador de una manera cómoda.

    Existen dos versiones del Linux kernel:

    Versión de producción: La versión de producción, es la versión estable hasta el momento. Esta versión es el resultado final de las versiones de desarrollo o experimentales.

    Cuando el equipo de desarrollo del kernel experimental, decide que ha conseguido un kernel estable y con la suficiente calidad, se lanza una nueva versión de producción o estable. Esta versión es la que se debería utilizar para un uso normal del sistema, ya que son las versiones consideradas mas estables y libres de fallos en el momento de su lanzamiento.

    Versión de desarrollo: Esta versión es experimental y es la que utilizan los desarrolladores para programar, comprobar y verificar nuevas características, correcciones, etc. Estos núcleos suelen ser inestables y no se deberían usar, a no ser que sepas lo que haces.

    Como interpretar los números de las versiones:

    • Las versiones del kernel se numeran con 3 números, de la siguiente forma: XX.YY.ZZ
    • XX: Indica la serie principal del kernel. Hasta el momento solo existen la 1 y 2. Este numero cambia cuando la manera de funcionamiento del kernel ha sufrido un cambio muy importante.
    • YY: Indica si la versión es de desarrollo o de producción. Un numero impar, significa que es de desarrollo, uno par, que es de producción. ZZ: Indica nuevas versiones dentro de una versión, en las que lo único que se ha modificado, son fallos de programación /bugs.

    Unos ejemplos nos ayudaran a entenderlo mejor:

    • ej1: versión del kernel 2.0.0: Kernel de la serie 2 (XX=2), versión de producción 0 (YY=0 par), primera versión de 2.0 (ZZ=0)
    • ej2: versión del kernel 2.0.1: Kernel de la serie 2, versión 0, en el que se han corregido errores de programación presentes en la versión 2.0.0 (ZZ=1)
    • ej3: versión del kernel 2.1.100: versión 100 del kernel de desarrollo 2.1.

    Sistemas de Archivos

    Sistema de ficheros linux (I)

    Bueno como sabrás el DOS funciona con FAT, File Allocation Table, o sea una tabla a principio del disco duro donde se almacena, la información de cada bloque del disco, de manera que tenemos una lista enlazada para cada fichero.

    ——— | 2| 0 FICHERO A bloques 0 2 6 ——— | 3| 1 FICHERO B bloques 1 3 4 ——— | 6| 2 ——— | 4| 3 ——— | fin| 4 ——— | | 5 ——— | fin| 6 ———

    Para leer un fichero A leemos en la fat el bloque 0, vemos donde continua y leemos la fat en el bloque 2, leemos el bloque del disco, y volvemos a leer el bloque de la fat donde esta el bloque 6. Esto parece rápido, y lo es i la FAT esta en memoria, pero si calculamos lo que puede ocupar una FAT de un disco duro de 1Giga donde el disco esta dividido en bloques de pongamos 4024Kb y pongamos 20 bytes por descriptor, tenemos una FAT de 5 megas, (no recuerdo de cuanto era el tamaño de bloque/descriptor en MSDOS), lo cual no se puede tener en memoria y si hay que leer cada vez de disco es muy lento. Cuando MSDOS funcionaba en disquete no era demasiado problema tener en memoria unos Ks de FAT, pero con los disco de ahora de Giga ya es un problema.

    ¿Como lo hace UNIX? ¿Y por supuesto ext2 de Linux? Con otra estructura de datos llamada i-nodes, que para cada fichero tiene un array, con las posiciones del disco donde se encuentra este. De esta manera cuando queremos leer un fichero, leemos solo un trozo de disco contiguo, donde encontramos todas las referencias a ése y no toda la FAT que puede ser de mas de un mega. Con los nodos-i (o inodes) no ahorramos espacio de disco (con respecto a FAT), la información de en que bloques esta cada fichero la tenemos igual pero mejor organizada.

    Las tablas de i-nodes tienen un tamaño limitado, pero en caso de que se llenen con indirecciones se accede a otras tablas de i-nodes, con lo que el limite del tamaño de los ficheros es grande. (bueno esto lo he explicado un poco por encima se podría explicar extensamente).

    IN> Me imagino que el ext2 es mejor que el msdos, pero realmente que IN> diferencias hay entre ellos (menos lo de los permisos y la lon- IN> gitud del nombre de los ficheros).

    Pues como has visto es mas rapido y eficiente, aparte de no tener las limitaciones de usuario, permisos, nombres largos, etc.

    El tamaño de bloque de disco, en MS DOS es fijo en función del tamaño de la partición, en linux en el momento en que formateas la partición con mkfs (o mk2efs no recuerdo) puedes elegir el tamaño del bloque según vayas a tener mas ficheros pequeños, o mas ficheros grandes.

    Sistema de ficheros linux (II)

    El ext2 tiene un tamaño de i-nodo fijo entre 1 y 4K, independientemente del tamaño de la partición. El tamaño del i-nodo se selecciona al crear el sistema de archivos y es seleccionable por el usuario.

    El ext2 tiene una unidad similar al cluster, llamada bloque, y que es, por lo general de 1K, especificable por el usuario e independiente del tamaño de la partición, lo cual asegura un buen aprovechamiento del espacio libre con archivos pequeños.

    El ext2 no usa una FAT, sino una tabla de i-nodos distribuidos en un número determinable de grupos a través de la superficie, lo cual permite balancear la distribución de los bloques de archivos en la superficie a través de dichos grupos para asegurar la mínima fragmentación.

    El ext2 tiene un límite máximo de 4GB de archivo, pero no limita el tamaño máximo de la partición a 4GB, como es el caso de la FAT.

    El ext2 tiene soporte para detección de un sistema de archivos desmontado incorrectamente cuando el sistema se apaga de forma errónea, y capacidad para autorecuperarlo en caso de fallo accidental.

    El ext2 mantiene información de la última vez que se montó y se accedió al volumen (sistema de archivos), así como del número de veces que se ha montado dicho volumen desde la última comprobación automática, así como la fecha en la que se comprobó su integridad por última vez.

    El ext2 permite asignar un porcentaje del disco duro que se reserva para el uso de usuarios con un "uid" y "gid" específicos.

    El ext2 es un sistema de archivos mucho más avanzado que el MS-DOS, con soporte de corrección y detección de errores, compresión de archivos (todavía por implementar), mayor tolerancia a la fragmentación de archivos y con unos tiempos de respuesta muy superiores, aunque a un coste superior de utilización de memoria.

    ¿Qué es la Swap?

    La swap es un espacio reservado en tu disco duro para poder usarse como una extensión de memoria virtual de tu sistema. Es una técnica utilizada desde hace tiempo para hacer creer a los programas que existe mas memoria RAM de la que en realidad existe. Es el propio sistema operativo el que se encarga de pasar datos a la swap cuando necesita mas espacio libre en la RAM y viceversa.

    En Linux, la memoria total disponible por el sistema estará formada por la cantidad de memoria RAM instalada + la swap disponible. El acceso a la swap (disco duro) es mas lento que el acceso a la memoria RAM, por lo que si nuestro ordenador esta muy cargado de trabajo y hace un uso intensivo de la swap, la velocidad del sistema disminuirá. Un uso muy intensivo y continuado de la swap es un indicativo de que necesitamos mas memoria en nuestro sistema para que funcione desahogado con el uso que le estamos dando.

    En linux generalmente se usa como mínimo una partición dedicada a swap (aunque también se puede tener un fichero swap).

    ¿Cuanta Swap necesito?

    Esta es otra pregunta que es difícil de contestar: Todo dependerá del uso que se le vaya a dar al sistema y del espacio libre que tengamos.

    Si vas a utilizar muchos programas a la vez y tienes poca memoria RAM, necesitaras mas swap, si tienes mucha RAM, no necesitaras tanta swap. Hay que recordar que un uso no intensivo de la swap es normal y no afectara mucho a la velocidad del sistema, pero como hemos dicho antes, un uso muy intensivo y continuado es un indicativo de que necesitamos mas memoria RAM.

    No existe una formula mágica para saber cuanto espacio deberíamos reservar para swap. Hay que recordar que la memoria total disponible en Linux es RAM + Swap. Como datos orientativos podríamos decir que como mínimo, esta combinación debería ser de 32MB para sistemas que se utilicen en modo texto y de 64MB en adelante para sistemas que se utilicen en modo gráfico.

    Aquí tienes una serie de consejos sobre la swap:

    • Es recomendable el tener siempre algo de swap configurada, incluso en sistemas con mucha memoria.
    • En linux no se puede tener mas de 128MB en una partición swap, si necesitas mas de 128MB de swap, puedes tener mas de una partición dedicada a swap, por ejemplo, dos de 128MB
    • Si tienes mas de un disco, instala la swap en el que trabaje mas rápido.
    • Si tienes mas de un disco que se puedan acceder simultáneamente (por ej. dos SCSI, o dos IDE en diferentes canales IDE), se puede ganar algo de velocidad teniendo una particion swap en cada uno de estos discos.

    Para un uso privado "normal-alto" del sistema, aquí tienes unos ejemplos orientativos de la cantidad de swap recomendable:

    • 16MB RAM + 64MB Swap
    • 32MB RAM + 96MB Swap
    • 64MB RAM + 64MB Swap
    • 128MB RAM + 128MB Swap
    • 256MB RAM + 128MB Swap

    Como dato anecdótico, decir que existen servidores, en donde la cantidad de swap llega a ser de 256MB y hasta 512MB aunque yo tengo ordenadores con 16MB de RAM y 16MB de Swap como servidores de impresión que funcionan sin ningún problema.

    En fin, cada uno debe de saber el uso que le va a dar a su sistema y analizar la cantidad de memoria necesaria, aunque si tienes espacio de sobra en el disco, mas vale tener mas Swap disponible que la necesaria, por lo que pueda ocurrir en un futuro, como dice el dicho, mas vale que sobre que no que falte.

    Manejo de memoria

    ¿Qué es una partición? ¿Cómo creo una partición?

    Particionar el disco duro es una manera de dividir el disco físico en varios discos lógicos. O lo que es lo mismo, al particionar un disco, dividimos el disco en varias particiones independientes unas de otras, creando la ilusión de que tenemos diferentes discos, cuando en realidad lo que tenemos es un solo disco físico dividido en partes. Una partición es una de estas partes (divisiones) del disco.

    Existen dos clases de particiones: primarias y extendidas. En un disco solo podrás tener como máximo 4 particiones primaria y 1 extendida. En la partición extendida se podrán definir todas (bueno también existe un limite, pero es alto) las unidades lógicas que queramos. Con este sistema podemos tener una gran cantidad de particiones en nuestro disco.

    Cualquier disco que tengamos en nuestro ordenador tiene al menos una partición primaria, que en la mayoría de los casos tiene un tamaño equivalente al total del disco.

    Unos ejemplos aclararan las cosas:

    • Un disco de 1Gb con una sola partición, tendrá una partición primaria de 1Gb (total del disco).
    • Ese mismo disco podría tener 4 particiones primarias de 0.25Gb cada una, dando la ilusión de que tenemos 4 discos duros de 0.25Gb en vez de un solo disco de 1Gb.
    • Otra combinación posible podría ser 4 particiones primarias de 0.10Gb y 1 extendida con 6 unidades lógicas de 0.10Gb, en este caso parecería que tenemos 10 discos duros de 0.10Gb cada uno.

    Las combinaciones son múltiples y variadas y dependerán de nuestros gustos y de lo que necesitemos.

    Casi todos los sistemas operativos traen un programa con el que podemos crear, modificar, borrar las particiones de nuestro disco. En Ms-Dos/Windows de llama FDISK, este programa solo puede trabajar con particiones de Ms-Dos/Windows. En Linux también se llama FDISK (/sbin/fdisk), pero es un programa mas potente, capaz de trabajar y crear particiones tanto para Linux como otros sistemas operativos. Si vas a trabajar con Linux, es recomendable el uso del FDISK que viene con tu distribución, para evitar problemas.

    Al contrario que Ms-Dos, Windows, OS/2, las diferentes particiones en linux no se denominan C:, D:, E:, …., etc, existe una denominación propia:

    Si los discos son IDE:

    • /dev/hda: Disco duro IDE como master en el canal IDE 1.
    • /dev/hda1: Partición primaria 1 en /dev/hda
    • /dev/hda2: Partición primaria 2 en /dev/hda
    • /dev/hda3: Partición primaria 3 en /dev/hda
    • /dev/hda4: Partición primaria 4 en /dev/hda
    • /dev/hda5: Partición extendida 1 en /dev/hda
    • /dev/hda6: Partición extendida 2 en /dev/hda
    • …..
    • …..
    • /dev/hda16: Partición extendida 16 en /dev/hda
    • /dev/hdb: Disco duro IDE como esclavo en el canal IDE 1.
    • /dev/hdb1: Partición primaria 1 en /dev/hdb
    • ……..
    • ……..
    • /dev/hdc: Disco duro IDE como master en el canal IDE 2.
    • /dev/hdc1: Partición primaria 1 en /dev/hdc
    • ……..
    • ……..
    • /dev/hdd: Disco duro IDE como esclavo en el canal IDE 2.
    • /dev/hdd1: Partición primaria 1 en /dev/hdd
    • ……..
    • ……..

    Si los discos son SCSI:

    • /dev/sda: Disco duro SCSI nr.1.
    • /dev/sda1: Partición primaria 1 en /dev/sda
    • ……..
    • ……..
    • /dev/sdb: Disco duro SCSI nr.2.
    • /dev/sdb1: Partición primaria 1 en /dev/sdb
    • ……..
    • ……..

    IMPORTANTE: Es muy importante saber lo que se esta haciendo cuando trabajas con programas que modifican la tabla de particiones de un disco. Al cambiar la tabla de particiones de vuestro disco, se pierden los datos contenidos en las particiones afectadas. Realizar copias de seguridad de los datos que quieras mantener antes de usar FDISK.

    Particiones de disco

    Con el fin de instalar Linux, debes tener espacio disponible para el. Este espacio de disco necesita estar separado del espacio de disco usado por otros sistemas operativos que puedas tener instalados en tu ordenador, tal que Windows, OS/2, o incluso una versión diferente de Linux.

    Un disco puede dividirse en diferentes particiones. Se puede acceder cada partición como si fuera un disco separado. Además cada partición tiene un tipo que se usa para indicar como esta almacenada la información en la partición. Por ejemplo, hay distintos tipos de particiones usados por DOS, OS/2, y Linux.

    Aun si vas a instalar Linux en su propio disco duro, o en un ordenador que no contiene ningún otro sistema operativo, seguirás necesitando crear particiones para que las use Linux. En este caso es muy sencillo, ya que no hay otras particiones en el disco duro de las que preocuparse.

    Por otra parte, puede querer instalar Linux en un disco que ya contiene software o datos de un sistema operativo diferente. Las cosas pueden ser algo mas delicadas en esta situación, ya que un error puede destruir tus particiones actuales, por no mencionar los datos que contengan.

    Durante el proceso de instalación, tendrás la oportunidad de crear particiones para Linux. Llegado este punto, tu mayor preocupación será estar seguro de tener suficiente espacio disponible para las particiones Linux. Déjame repasar las diferentes formas de liberar espacio para las particiones Linux.

    Estrategias para cambiar particiones

    Hay tres posibles escenarios a los que puedes hacer frente cuando intentas cambiar las particiones de tu disco duro:

    • Hay espacio libre disponible y no particionado.
    • Hay una partición no usado disponible.
    • Hay espacio libre disponible en una partición usada actualmente.

    Veamos cada escenario en orden.

    Usando espacio libre no particionado

    Todo el espacio no forma parte de ninguna partición definida.

    En este caso, puedes crear simplemente las particiones necesarias a partir del espacio libre.

    Usando una partición no usada

    El año pasado reemplazaste tu pequeño disco duro de 105MB en tu sistema Windows por un mounstro de 1.2GB. Lo particionaste en dos partes iguales, pensando en que usarías el “dispositivo'' C: (en realidad la primera partición del dispositivo) para Windows, y el “dispositivo'' D: (en realidad ls segunda partición del dispositivo) para tu colección de programa de libre distribución que copiaste de Internet. Bien, has estado tan acostumbrado a usar C: que nunca has puesto nada importante en D:.

    Si te encuentras en esta situación, puedes usar el espacio asignado a la partición en desuso. Tendrás que borra la partición, y crear las apropiadas particiones Linux en su lugar.

    Usando espacio libre de una partición activa

    Esta es la situación mas común. Es además, desafortunadamente, la mas difícil de tratar. El principal problema es que tenemos el espacio suficiente, pero esta actualmente asignada a una partición en uso. Si compras un ordenador con software preinstalado, el disco duro tendrá seguramente una gran partición conteniendo el sistema operativo y los datos.

    Además de añadir un nuevo disco duro en tu sistema, tienes otras dos opciones:

    Cambio de particiones destructivo — Básicamente, borras la única partición grande, y creas varias mas pequeñas. Como puedes imaginar, cualquier dato que tengas en esta partición será destruido. Esto quiere decir que es necesario hacer una copia de seguridad completa. Por tu propio interés, haz dos copias de seguridad, usa la verificación (si esta disponible en tu software de backup), e intenta leer los datos de la copia de seguridad antes de borrar la partición. Ten también en cuenta que si hay un sistema operativo de algún tipo instalado en la partición, será necesario instalarlo de nuevo también.

    Después de crear una partición mas pequeña para tu software actual, puedes instalar de nuevo cualquier software, restaurar tus datos, y continuar con la instalación de Linux. Cambio de particiones no destructivo — En este caso, ejecutas un programa que hace lo que parece imposible; hace una partición grande mas pequeña sin perder ninguno de los ficheros almacenados en la partición. Mucha gente ha encontrado este método seguro y libre de problemas; sin embargo, recomendamos que hagas una copia de seguridad de la partición a la que vayamos a cambiar el tamaño, por si acaso.

    Hardware requerido

    El Linux funciona correctamente en un 386 SX con 4 Mb de memoria. Pero se deberá tener en cuenta que aquellas aplicaciones con fuerte requerimiento de memoria y carga de la CPU (por ejemplo, las X Windows) irán sumamente lentas.

    Una configuración mucho más 'usable' sería la siguiente: 486 DX 33 MHz o superior, con 8 Mb de memoria RAM y con tarjeta de video VGA o superior.

    Unidad de CD-ROM es altamente recomendable. Casi mejor habría que decir que imprescindible, dado que las distribuciones vienen en ese formato. En la actualidad, la mayoría de ellas están soportadas por el Linux. Asimismo tiene soporte para módem y tarjeta de sonido.

    De todas formas, los propietarios de máquinas inferiores a la descrita (¿todavía queda alguno? };-) que no se desanimen. Simplemente deberán tener más paciencia. Y es mi obligación puntualizar que muchas veces se obtienen mejores resultados con más memoria que con más potencia de CPU.

    Debo puntualizar que en 286 no funcionará el Linux. El kernel está hecho para 386. Hay, sin embargo, un grupo de gente que está trabajando en una versión de Linux para procesadores 8086, pero aún está en fase de proyecto.

    En cuanto al espacio en disco duro, dependerá en gran medida de lo que se pretenda hacer desde Linux. Según el 'Linux installation and getting started', con 10 Mb de partición se puede hacer una instalación mínima pero usable (personalmente me parece bastante optimista). Yo creo que alrededor de 100 Mb resulta espacio suficiente para un Linux completo, incluidas las X Windows. A partir de ahí, lo que cada uno considere…

    Al hacer cálculos del espacio en disco duro necesario, deberemos tener en cuenta que se necesita hacer una partición de swap. El tamaño de la misma dependerá de la cantidad de memoria RAM disponible: a más memoria, menos swap necesitaremos.

    ¿Dónde instalo Linux?

    Linux se puede instalar en cualquier disco que tengas en tu sistema y en cualquier particion del disco duro (Primaria o extendida).

    No podrás tener Linux en una partición compartida con otro sistema operativo, Linux necesita su propia particion/es para funcionar.

    ¿Cuantas particiones necesito para Linux?

    La respuesta rápida y fácil es: recomendable al menos dos, una para el sistema/datos y otra para Swap. Usualmente se suelen tener tres, una para el sistema/programas (/), otra para los datos (/home) y otra para swap.

    La respuesta larga y no tan fácil es mas complicada de explicar: Todo dependerá muchisimo del uso que se le vaya a dar al sistema.

    Para sistemas que se utilicen de forma particular y por uno o pocos usuarios bastara con las dos/tres particiones antes mencionadas, esto evitara los problemas de saber que cantidad de espacio necesitan las diferentes particiones y el quedarnos sin espacio en alguna particion vital, mientras que nos sobra en otras.

    Para sistemas servidores, con gran cantidad de servicios y usuarios es muy recomendable tener varias particiones/discos. Existe un documento (HOWTO: Multi Disk System Tuning) muy bueno y quizás complicado para el principiante que explica cuantas particiones y discos y que tamaño deberían tener en función del uso que se le vaya a dar al sistema, o en cualquier servidor con documentación Howto.

    ¿Porque necesito diferentes particiones?

    El particionar el disco, es simplemente una manera de organizar tu disco duro. Podrás organizarlo con una sola partición o en varias. Es el usuario el que deberá decidir cuantas particiones tendrá su disco, y el tamaño de las mismas, hay que recordar, que al menos hay que tener una partición primaria.

    Desventajas de tener vuestro disco dividido en diferentes particiones.

    • Ninguna

    Ventajas en tener vuestro disco particionado en varias particiones:

    • Si tienes un error/problema en una de ellas, las demás no se verán afectadas.
    • Poder tener diferentes sistemas operativos en vuestra maquina, totalmente independientes unos de otros.
    • Poder tener vuestros archivos de datos en particiones totalmente independientes.
    • Poder borrar/cambiar el contenido de una partición, sin que esto afecte a las demás.

    ANEXO

    CONCLUSIÓN

    Una de las más importantes es que Linux es una excelente elección para trabajar con UNIX a nivel personal. Linux permite desarrollar y probar el software UNIX en su PC, incluyendo aplicaciones de bases de datos y X Windows. Con Linux, se puede correr un sistema UNIX y adaptarlo a las necesidades. La instalación y uso de Linux es también una excelente manera de aprender UNIX si no se tiene acceso a otras máquinas UNIX.

    Linux no es solo para los usuarios personales de UNIX. Es robusto y suficientemente completo para manejar grandes tareas, así como necesidades de cómputo distribuidas. Muchos negocios especialmente los pequeños se están cambiando a Linux en lugar de otros entornos de estación de trabajo basados en UNIX. Grandes vendedores de software comercial se están dando cuenta de las oportunidades que puede brindar un sistema operativo gratuito.

    Linux es, propiamente, el núcleo de un sistema operativo. Es decir, el conjunto de programas que controla los aspectos más básicos del funcionamiento de un ordenador. Su desarrollo lo inició en 1991 Linus Tovalds, entonces estudiante en la Universidad de Helsinki, en Finlandia, y se completó con miles de aportaciones a través de Internet.

    BIBLIOGRAFÍA

     

     

    Autor: