Los aspectos térmicos (III) Pruebas medioambientales en cámaras de termovacío (TVC). Se somete el equipo a una serie de ciclados.
Los problemas electromagnéticos Plataforma formada por múltiples instrumentos Aparecen interferencias electromagnética (EMI): Emisiones conducidas Emisiones radiadas Susceptibilidad conducida Susceptibilidad radiada Diseño de equipos para ser compatibles entre ellos (EMC)
Los problemas electromagnéticos (II) La supresión de las EMI a varios niveles: Circuito impreso Filtrado y aislamiento Apantallamientos La puesta a Tierra, denominada grounding.
Los circuitos impresos Selección de componentes, más o menos inmunes a las EMI. Trazado y características de las pistas. Posicionamiento de componentes. Planos de tierra y capas de alimentaciones.
Filtrado y aislamiento Previenen o mitigan la susceptibilidades y emisiones conducidas. Utilización de ferritas, condensadores, bobinas. Uso de condensadores pasamuros y de tres polos. Aislamiento con transformadores y optoacopladores.
El apantallamiento Equivalentes a los filtros pero para las emisiones y susceptibilidades radiadas. Apantallamientos de sistemas o partes de circuitos impresos. Apantallamientos de cables.
Grounding Literalmente consiste en la puesta a tierra (plataforma en este caso) Los más comunes utilizados en espacio son: Punto único en estrella Punto múltiple Punto múltiple con referencia única Flotante Punto encadenado
Basura espacial
Basura espacial: curiosidades El resto más antiguo aún en órbita es el segundo satélite estadounidense, el Vanguard I, lanzado el 17 de marzo de 1958 y que funcionó sólo durante 6 años. En 1965, durante el primer paseo espacial de un estadounidense, el astronauta del Géminis 4, Edward White perdió un guante. Durante un mes el guante estuvo en órbita a una velocidad de 28.000 km / h, convirtiéndose en la prenda de vestir más peligrosa de la historia. Más de 200 objetos, la mayoría bolsas de basura, salieron a la deriva de la estación espacial Mir durante sus primeros 10 años de vida. La mayor cantidad de basura espacial creada por la destrucción de una sola nave se debió a la etapa superior de un cohete Pegasus lanzado en 1994. Su explosión en 1996 creó una nube de unos 300.000 fragmentos de más de 4 mm, 700 de los cuales eran lo suficientemente grandes como para ser catalogados. Esta explosión, por si sola, duplicó el riesgo de colisión del Hubble.
Rayos cósmicos galácticos Partículas atrapadas Protones solares & Iones pesados La radiación en el espacio
Elementos sensible a la radiación CMOS, circuitos bipolares, µProcesadores. LEDs y diodos láser. Optoacopladores, enlaces de fibra óptica. Sensores (Si, GaAs, células solares) Cableado y aislantes. Materiales ópticos. Detectores (Irm R-X, R-gamma) Criogenia
Efectos de la radiación Dosis total de ionización (TID) Efecto provocado por la exposición durante largo tiempo a la radiación. Daños por desplazamiento o NIEL (Non-Ionizing Energy Loss). Desplazamiento de átomos en la red cristalina debido al impacto de partículas. Efectos de eventos individuales (SEE) Interacciones individuales que producen daños temporales o permantentes.
Dosis Total de Ionización (TID) Se mide en Krad(SiO2). 1 Krad equivale a 100 erg/g Esta relacionada con la generación de pares huecos en los dispositivos MOS. Produce variación en los voltajes de umbral, formándose o corrientes de fugas o conmutación off-on a 0 V
Los efectos de eventos individuales (SEE) La transferencia de energía lineal (LET): Cantidad de carga en por unidad de longitud Se mide en MeV.cm2/mg El umbral de LET nos indica la inmunidad a los eventos individuales Pueden ser destructivos o no destructivos
SEE (II): efectos no destructivos Efectos individuales de cambio de estado SEU. Efectos múltiples de cambio de estado MBU. Efecto individual de interrupción funcional. Suceso individual de transitorio, SET. Se da en circuitos analógicos Suceso individual de perturbación, SED.
SEE (III): efectos destructivos Suceso simple de latchup, SEL. Muy peligroso Suceso simple de quemado, SEB. Suceso simple de snapback, SESB. Suceso simple de ruptura de puerta, SEGR.
Mitigación de los efectos de la radiación en el Espacio Impedir los problemas: Utilización de escudos protectores Colocación adecuada de los instrumentos Uso de componentes endurecidos a radiación. Diseño de sistemas tolerantes a fallos: redundancias Circuitos tolerantes a SEU
Las redundancias Dos categorías principales: Activas No requieren de elementos externos de detección de fallo. Toman de manera autónoma de conmutar el elemento erróneo. Stand-by Necesitan elementos externos de detección de fallos. La conmutación del elemento erróneo es inducida de manera remota.
Correctores de SEU El SEU es característico de Flip-Flops y memorias (bit-flip). Se utilizan detectores y/o correctores: Detección de paridad Chequeo de redundancia cíclica (CRC) Codificación Hamming El EDAC: Error Detector And Corrector es uno de los más usados. En Giada se implementó en una FPGA.
Tecnología espacial
Proyecto Instrumento Espacial CONTROL CALIDAD (Gp:) I.P. (Gp:) P.Manager (Gp:) Óptica (Gp:) Mecánica (Gp:) Electrónica (Gp:) SW (Gp:) AIV (Gp:) Comité Científico (Gp:) Térmica (Gp:) EGSE (Gp:) Test Ambientales (Gp:) Calibración (Gp:) Transporte etc. (Gp:) Fuentes (Gp:) DPU (Gp:) Adquisición (Gp:) Mecanismos Actuadores (Gp:) Electrónica Proximidad (Gp:) Detectores (Gp:) TC/TM (Gp:) Cables y Conectores
Consorcio Proyecto Espacial Los proyectos espaciales se suelen realizar con consorcios (internacionales) Cada grupo de trabajo tiene su IP y su PM Actividades AIV: Cada paquete de trabajo ha de hacer su integración (si procede), pruebas ambientales y calibraciones (funciones de transferencia) independientemente
Relación con Empresas Control de Calidad (INTA sí puede) Montaje Almacenaje de materiales y componentes Adquisición de materiales y componentes (cuando se puede CPP) TECNOLOGICA
Se puede hacer todo el proyecto en la empresa
Diferencias en Espacio I Cualificación de los componentes Análisis y prevención de fallos y estudio de soluciones Radiación (fundamental en lógica) Masa Temperaturas Vacío Evacuación del calor Choque y vibraciones Control de Calidad PAPELES 40-50% del tiempo Costes
Diferencias en Espacio II Redundancias Los interfaces entre los distintos subsistemas deben fijarse claramente. Especial mención: Fuentes y TC/TM por ser con el S/C Software: Una documentación férrea Es lo único modificable en vuelo Parcheable Un modo SEGURO Gestión de contingencias Siempre bajo configuración Plazos temporales muy estrictos, muchas veces solo hay una ventana.
Cosas a tener en cuenta Redundancias Sistemas de detección y corrección de errores Ej. EDAC Traza exterior Ej. Watch dog & after watch dog register Puerto de test El hw que no lo rompa el sw El sw que no lo rompa el hw Planetary Protection (los que aterrizan)
Filosofía de Modelos Prototipos funcionales no representativos Modelo de Ingeniería (EM) Modelo Térmico y Estructural (STM) Modelo de Calificación (QM) Modelo de Vuelo (FM o PFM) Modelo de Repuesto (FS)
GIADA-2: PSU/CPU
Diagrama PSU
Soft_Start
Soft_Charger
FPGA Actel Xilinx Atmel Permiten el diseño en paralelo Reducción de masa, volumen y consumo Diseñar pensando en pulsos espurios Muchas de las ventajas de usar FPGAs en usos comerciales se convierten a menudo en un problema al aplicar estos dispositivos a usos en el espacio. Parece que las FPGAs se pueden modificar y corregir fácilmente, más tarde en el proceso del desarrollo FABRICANTES:
Tipos FPGA Actel
TMR Actel Design Techn RH
TMR Actel Design Techn RH
Flip-flops combinacionales DF1_CC DF1A_CC DF1B_CC DF1C_CC DFC1_CC DFC1A_CC DFC1B_CC DFC1D_CC DFE_CC DFE1B_CC DFE1C_CC DFEA_CC DFM_CC DFMA_CC DFM1B_CC DFM1C_CC DFP1_CC DFP1A_CC DFP1B_CC DFP1D_CC DFPC_CC DFPCA_CC
Commercial to Radiation-Hardened Design Migration (Actel)
Commercial to Radiation-Hardened Design Migration (Actel)
Vida del SW
Maestro Rafa I Todas las fases/documentación del SW deben cumplir con los estándares de ESA/NASA Pensar a largo plazo: en la construcción de los requerimientos del SW hay que pensar en como validarlos Resolver los requerimientos con pocos recursos de computación El diseño del SW ha de realizarse para poder parchearlo en vuelo Intensa/frustrante interacción en la fase de integración con el HW Fase de validación agotadoras y estrictas
Maestro Rafa II Mantenimiento de documentación consume muchos recursos Documentación desde el primer paso y en TODOS lo pasos Control de configuración a bajo nivel tanto en SW como en documentación Pocas veces hay soluciones ya existentes. Construcción de herramientas a medida para resolver problemas puntuales Viajes/teleconferencias/reuniones/mails constantes interrumpiendo el trabajo Exámenes periódicos por parte de ESA/NASA
Recomendaciones En la fase preliminar de los proyectos, debe haber una gran interacción entre los diseñadores de SW y HW para optimizar los requisitos para ambos. Prestar mucha atención a las diferencias de prestaciones, e incluso pinout, entre las versiones comerciales y espaciales de los componentes. No se deben reducir las prestaciones de las fuentes de alimentación por reducir masa, al final tienes problemas. El ruido debe filtrarse lo más cerca posible de la fuente donde se genera. Diseñar, sobre todo las FPGAs, como un paranoico, es la forma de que falle menos.
Más Recomendaciones Debe de haber una gran interacción entre los equipos de trabajo, con modelos intermedios, para comprobar funcionalidades y prestaciones. Como la integración y caracterización se hace al final, aunque se planifica al principio, siempre falta tiempo y no se hace de la forma óptima. Las interfaces entre los distintos equipos deben de fijarse y quedar claramente definidas. No solo lo que hay que hacer si no también lo que NO se debe hacer.
Aunque las FPGAs son flexibles no son de goma, en cualquier caso se requieren simulaciones exhaustivas
Tendencias en Espacio Eliminación de cables y conectores Bajar consumos Mayor potencia de cálculo embarcado en base a DSP FPGAs para todo Nanotecnología, mayor integración SOC, (System On Chip) CPU integradas en FPGA Reconfiguración Dispositivos analógicos programables
DSP
¿Por qué DSP? Cada vez queremos obtener más datos Los formatos de los detectores son cada vez más grandes Los anchos de banda son iguales
Conclusión: comprimir más y mejor. Procesado abordo.
Telemetría Rosetta: Directamente a Tierra: entre 10 bps hasta 22 kbps. 12 h al día. Mass Memory de 25 Gbits. Exomars Orbital Relay: 256 kbps unos minutos 2 veces al día Directamente a Tierra: 100 kbps solo comunicaciones de emergencia
ESCC Microprocesadores
DSP Todo por 430 mA Max
SPARC
Otras soluciones Utilizar core de Leon-2 de ESA compatible con Sparc-V8 (hay una versión de ATMEL) Diseñar o adquirir cores, de funciones DSP necesarias para nuestra aplicación y empotrarlas en una FPGA.
Página anterior | Volver al principio del trabajo | Página siguiente |