Descargar

Tópicos de electricidad

Enviado por carlos saul perea


Partes: 1, 2

  1. Qué es la electrostática
  2. Qué es la fuerza electromotriz (FEM)
  3. Qué es el voltaje, tensión o diferencia de potencial
  4. Qué es la inducción magnética
  5. Qué es la inducción electromagnética
  6. Qué es la corriente eléctrica

QUÉ ES LA ELECTROSTÁTICA

Desde la antigüedad ya los griegos habían observado que cuando frotaban enérgicamente un trozo de ámbar, podía atraer objetos pequeños.

Posiblemente el primero en realizar una observación científica de ese fenómeno fue el sabio y matemático griego Thales de Mileto, allá por el año 600 A.C., cuando se percató que al frotar el ámbar se adherían a éste partículas del pasto seco, aunque no supo explicar la razón por la cual ocurría ese fenómeno.

edu.red

Trozo de ámbar

No fue hasta 1660 que el médico y físico inglés William Gilbert, estudiando el efecto que se producía al frotar el ámbar con un paño, descubrió que el fenómeno de atracción se debía a la interacción que se ejercía entre dos cargas eléctricas estáticas o carente de movimiento de diferentes signos, es decir, una positiva (+) y la otra negativa (–). A ese fenómeno físico Gilbert lo llamó "electricidad", por analogía con "elektron", nombre que en griego significa ámbar.

En realidad lo que ocurre es que al frotar con un paño el ámbar, este último se electriza debido a que una parte de los electrones de los átomos que forman sus moléculas pasan a integrarse a los átomos del paño con el cual se frota. De esa forma los átomos del ámbar se convierten en iones positivos (o cationes), con defecto de electrones y los del paño en iones negativos (o aniones), con exceso de electrones.

edu.red

A.- Trozo de ámbar y trozo de paño con las cargas eléctricas de sus átomos equilibradas.

B.- Trozo de ámbar electrizado con carga estática positiva, después de haberlo frotado con el paño. Los electrones del ámbar han pasado al paño, que con esa acción éste adquiere carga negativa

Para que los átomos del cuerpo frotado puedan restablecer su equilibrio atómico, deben captar de nuevo los electrones perdidos. Para eso es necesario que atraigan otros cuerpos u objetos que le cedan esos electrones. En electrostática, al igual que ocurre con los polos de un imán, las cargas de signo diferente se atraen y las del mismo signo se repelen.

edu.red

A.- Montoncitos de papeles recortados.

B.- Peine cargado electrostáticamente con defecto de electrones después de habernos peinado con el mismo.

C.- Los papelitos son atraídos por el peine restableciéndose, de esa forma, el equilibrio electrónico de los átomos que lo componen (los papeles le ceden a éste los electrones que perdieron al pasárnoslo por el pelo).

Una manifestación de carga estática la tenemos en las nubes cuando se generan tormentas eléctricas con rayos. Cuando una nube se encuentra completamente ionizada o cargada positivamente, se establece un canal o conducto natural que es capaz de atraer iones cargados negativamente desde la Tierra hasta la nube. Cuando los iones negativos procedentes de la Tierra hacen contacto con la nube, se produce el rayo al liberar ésta la enorme carga de corriente eléctrica estática acumulada.

Otro ejemplo lo tenemos en los vehículos, que al desplazarse a través de la masa de aire que lo rodea, adquieren carga estática. Cuando eso ocurre podemos llegar a sentir una descarga o calambrazo eléctrico en el cuerpo al tocar alguna de las partes metálicas del vehículo.

edu.red

Tormenta eléctrica

Las máquinas fotocopiadoras e impresoras láser hacen uso práctico de la carga eléctrica estática. Su principio de funcionamiento se basa en que un rayo de luz ilumina la imagen o texto por medio de un proceso de escaneo y la transfieren a un tambor fotosensible como carga estática. El polvo de impresión o toner, que posee características magnéticas, al pasar al tambor se adhiere a las partes sensibilizadas por el rayo de luz. A continuación cuando el papel pasa por el tambor fotosensible, el polvo del toner se desprende y se adhiere a su superficie, transfiriendo así todo el contenido del tambor. Para que el polvo del toner no se desprenda del papel antes de salir de la fotocopiadora o impresora, se hace pasar por un rodillo caliente que se encarga de fijarlo de forma permanente.

QUÉ ES LA FUERZA ELECTROMOTRIZ (FEM)

Se denomina fuerza electromotriz (FEM) a la energía proveniente de cualquier fuente, medio o dispositivo que suministre corriente eléctrica. Para ello se necesita la existencia de una diferencia de potencial entre dos puntos o polos (uno negativo y el otro positivo) de dicha fuente, que sea capaz de bombear o impulsar las cargas eléctricas a través de un circuito cerrado.

edu.red

  • Circuito eléctrico abierto (sin carga o resistencia). Por tanto, no se establece la circulación de la corriente eléctrica desde la fuente de FEM (la batería en este caso). B. Circuito eléctrico cerrado, con una carga o resistencia acoplada, a través de la cual se establece la circulación de un flujo de corriente eléctrica desde el polo negativo hacia el polo positivo de la fuente de FEM o batería.

Existen diferentes dispositivos capaces de suministrar energía eléctrica, entre los que podemos citar:

Pilas o baterías. Son las fuentes de FEM más conocidas del gran público. Generan energía eléctrica por medios químicos. Las más comunes y corrientes son las de carbón- zinc y las alcalinas, que cuando se agotan no admiten recarga. Las hay también de níquel-cadmio (NiCd), de níquel e hidruro metálico (Ni-MH) y de ión de litio (Li-ion), recargables. En los automóviles se utilizan baterías de plomo-ácido, que emplean como electrodos placas de plomo y como electrolito ácido sulfúrico mezclado con agua destilada.

edu.red

Máquinas electromagnéticas. Generan energía eléctrica utilizando medios magnéticos y mecánicos. Es el caso de las dinamos y generadores pequeños utilizados en vehículos automotores, plantas eléctricas portátiles y otros usos diversos, así como los de gran tamaño empleado en las centrales hidráulicas, térmicas y atómicas, que suministran energía eléctrica a industrias y ciudades.

edu.red

Pequeño aerogenerador

Celdas fotovoltaicas o fotoeléctricas. Llamadas también celdas solares, transforman en energía eléctrica la luz natural del Sol o la de una fuente de luz artificial que incida sobre éstas. Su principal componente es el silicio (Si). Uno de los empleos más generalizados en todo el mundo de las celdas voltaicas es en el encendido automático de las luces del alumbrado público en las ciudades.

edu.red

También se utilizan en el suministro de pequeñas cantidades de energía eléctrica para satisfacer diferentes necesidades en zonas apartadas hasta donde no llegan las redes del tendido de las grandes plantas generadoras. Las celdas fotovoltaicas se emplean también como fuente principal de abastecimiento de energía eléctrica en los satélites y módulos espaciales. Las hay desde el tamaño de una moneda hasta las del tamaño aproximado de un plato. Para obtener una tensión o voltaje más alto que el que proporciona una sola celda, se unen varias para formar un panel.

Termopares. Se componen de dos alambres de diferentes metales unidos por uno de sus extremos. Cuando reciben calor en el punto donde se unen los dos alambres, se genera una pequeña tensión o voltaje en sus dos extremos libres.

edu.red

Termopar de hierro-constantán (Fe-CuNi)

Entre algunas de las combinaciones de metales utilizadas para la fabricación de termopares podemos encontrar las siguientes: chromel-alumel (NiCr-NiAl), hierro-constantán (Fe-CuNi), chromel-constantán (NiCr-CuNi), cobre-constantán (Cu-CuNi), platino-rodio (Pt-Rh), etc.

Los termopares se utilizan mucho como sensores en diferentes equipos destinados a medir, fundamentalmente, temperaturas muy altas, donde se hace imposible utilizar termómetros comunes no aptos para soportar temperaturas que alcanzan los miles de grados.

Efecto piezoeléctrico. Propiedad de algunos materiales como el cristal de cuarzo de generar una pequeña diferencia de potencial cuando se ejerce presión sobre ellos.

Una de las aplicaciones prácticas de esa propiedad es captar el sonido grabado en los antiguos discos de vinilo por medio de una aguja de zafiro, que al deslizarse por los surcos del disco en movimiento convierten sus variaciones de vaivén en corriente eléctrica de audiofrecuencia de muy baja tensión o voltaje, que se puede amplificar y oír a un nivel mucho más alto.

edu.red

Cápsula piezoeléctrica de tocadiscos con aguja de zafiro.

Existe también un tipo de micrófono de cerámica, que igualmente convierte las variaciones de los sonidos que capta en corrientes de audiofrecuencia que pueden ser amplificadas, transmitidas o grabadas.

El efecto piezoeléctico del cristal de cuarzo, por ejemplo, tiene también una función inversa, que es la de vibrar cuando en lugar de presionarlo le aplicamos una pequeña tensión o voltaje. En este caso la frecuencia de la vibración dependerá del valor de la tensión aplicada y del área que tenga el cristal sobre el cual se aplica.

El uso práctico más conocido de esta variante del efecto piezoeléctrico está en los relojes de cuarzo, fijar la frecuencia de trabajo del microprocesador en los ordenadores, fijar las frecuencias de transmisión de las estaciones de radio, etc.

El valor de la fuerza electromotriz (FEM) o diferencia de potencial, coincide con la tensión o voltaje que se manifiesta en un circuito eléctrico abierto, es decir, cuando no tiene carga conectada y no existe, por tanto, circulación de corriente.

La fuerza electromotriz se representa con la letra (E) y su unidad de medida es el volt (V). En algunos textos la tensión o voltaje puede aparecer representada también con la letra (U).

QUÉ ES EL VOLTAJE, TENSIÓN o DIFERENCIA DE POTENCIAL

Voltaje, tensión o diferencia de potencial

El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.

A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.

edu.red

Las cargas eléctricas en un circuito cerrado fluyen del polo negativo al polo positivo de la propia fuente de fuerza electromotriz.

La diferencia de potencial entre dos puntos de una fuente de FEM se manifiesta como la acumulación de cargas eléctricas negativas (iones negativos o aniones), con exceso de electrones en el polo negativo (–) y la acumulación de cargas eléctricas positivas (iones positivos o cationes), con defecto de electrones en el polo positivo (+) de la propia fuente de FEM.

edu.red

A la izquierda podemos apreciar la estructura completa de un átomo de cobre (Cu) en estado "neutro", con un solo electrón girando en su última órbita y a la derecha un "ión" cobre, después que el átomo ha perdido el único electrón que posee en su órbita más externa. Debido a que en esas condiciones la carga positiva de los protones supera a las cargas negativas de los electrones que aún continúan girando en el resto de las órbitas, el ión se denomina en este caso "catión", por tener carga positiva.

En otras palabras, el voltaje, tensión o diferencia de potencial es el impulso que necesita una carga eléctrica para que pueda fluir por el conductor de un circuito eléctrico cerrado. Este

movimiento de las cargas eléctricas por el circuito se establece a partir del polo negativo de la fuente de FEM hasta el polo positivo de la propia fuente.

Fuentes de fuerza electromotriz

Como fuente de fuerza electromotriz se entiende cualquier dispositivo capaz de suministrar energía eléctrica dinámica, ya sea utilizando medios químicos, como las baterías, o electromecánicos, como ocurre con los generadores de corriente eléctrica.

edu.red

Batería como las comúnmente utilizadas en coches y vehículos motorizados.

edu.red

Generador sincrónico empleado para producir corriente alterna en centrales termoeléctricas de pequeño tamaño.

Existen también otros tipos de dispositivos como, por ejemplo, las fotoceldas o celdas solares, que convierten la luz en electricidad; los termopares, cuyos alambres transforman la alta temperatura que reciben en el punto de unión de dos de sus extremos en voltajes muy bajos, y los dispositivos piezoeléctricos, que también producen voltajes muy bajos cuando se ejerce una presión sobre ellos.

Mediante el uso de celdas solares se puede suministrar energía eléctrica a viviendas situadas en lugares muy apartados donde es imposible o poco rentable transmitirla por cables desde una central eléctrica.

Los termopares se utilizan como sensores en instrumentos electrónicos de precisión, como los destinados a medir, por ejemplo, temperatura en hornos y calderas. Los dispositivos piezoeléctricos constituyen, por su parte, la pieza fundamental para convertir las vibraciones

mecánicas que capta dicho dispositivo en pulsaciones eléctricas, como ocurre en algunos tipos de micrófonos y en las cápsulas de tocadiscos o giradiscos.

Analogía hidráulica con referencia a un circuito eléctrico

edu.red

Analogía hidráulica con respecto a la tensión o voltaje. En la figura aparecen tres recipientes llenos de líquido, cuyos tubos de salida se encuentran todos al mismo nivel. Por la tubería del recipiente "B", el líquido saldrá con mayor presión que por la tubería del recipiente "A", por encontrarse el "B" a mayor altura. Lo mismo ocurre con el recipiente "C", que, aunque se encuentra al mismo nivel que el recipiente "A", cuando se ejerce presión con un émbolo sobre la superficie del líquido, éste saldrá también a mayor presión por el tubo.

De forma parecida a esta analogía hidráulica actúa la fuente de fuerza electromotriz (FEM) para mover las cargas eléctricas por un conductor. A mayor presión que ejerza la fuente de FEM sobre las cargas eléctricas o electrones, mayor será también el voltaje, tensión o diferencia de potencial que estará presente en un determinado circuito eléctrico.

Si comparamos el circuito eléctrico con un sistema hidráulico, el voltaje sería algo similar a la presión que se ejerce sobre el líquido en una tubería para su bombeo. Si la presión del sistema hidráulico aumenta, la fuerza de la corriente del líquido que fluye por la tubería también aumenta. De igual forma, cuando se incrementa el voltaje, la intensidad de la corriente de electrones que fluye por el circuito eléctrico también aumenta, siempre que el valor de la resistencia se mantenga constante.

Medición de la tensión o voltaje

Para medir tensión o voltaje existente en una fuente de fuerza electromotriz (FEM) o e un circuito eléctrico, es necesario disponer de un instrumento de medición llamado voltímetro, que puede ser tanto del del tipo analógico como digital.

El voltímetro se instala de forma paralela en relación con la fuente de suministro de energía eléctrica. Mediante un multímetro o "tester" que mida voltaje podemos realizar también esa medición. Los voltajes bajos o de baja tensión se miden en volt y se representa por la letra (V), mientras que los voltajes medios y altos (alta tensión) se miden en kilovolt, y se representan por las iniciales (kV).

edu.red

  • Voltímetro analógico. 2. Voltímetro digital. 3. Miliamperímetro analógico. 4. Amperímetro digital. El voltímetro siempre se conecta en paralelo con la fuente de suministro de fuerza electromotriz, mientras que el amperímetro y el miliamperímetro se colocan en serie.

Diferencias entre la alta, baja y media tensión

Alta tensión. Se emplea para transportar altas tensiones a grandes distancias, desde las centrales generadoras hasta las subestaciones de transformadores. Su transportación se efectúa utilizando gruesos cables que cuelgan de grandes aisladores sujetos a altas torres metálicas. Las altas tensiones son aquellas que superan los 25 kV (kilovolt).

Media tensión. Son tensiones mayores de 1 kV y menores de 25 kV. Se emplea para transportar tensiones medias desde las subestaciones hasta las subestaciones o bancos de transformadores de baja tensión, a partir de los cuales se suministra la corriente eléctrica a las ciudades. Los cables de media tensión pueden ir colgados en torres metálicas, soportados en postes de madera o cemento, o encontrarse soterrados, como ocurre en la mayoría de las grandes ciudades.

Baja tensión. Tensiones inferiores a 1 kV que se reducen todavía más para que se puedan emplear en la industria, el alumbrado público y el hogar. Las tensiones más utilizadas en la industria son 220, 380 y 440 volt de corriente alterna y en los hogares entre 110 y 120 volt para la mayoría de los países de América y 220 volt para Europa.

Hay que destacar que las tensiones que se utilizan en la industria y la que llega a nuestras casas son alterna (C.A.), cuya frecuencia en América es de 60 ciclos o hertz (Hz), y en Europa de 50 ciclos o hertz.

OTROS DATOS

Aunque desde hace años el Sistema Internacional de Medidas (SI) estableció oficialmente como "volt" el nombre para designar la unidad de medida del voltaje, tensión eléctrica o diferencia de potencial, en algunos países de habla hispana se le continúa llamando "voltio".

El volt recibe ese nombre en honor al físico italiano Alessandro Volta (1745 – 1827), inventor de la pila eléctrica conocida como "pila de Volta", elemento precursor de las actuales pilas y baterías eléctricas.

QUÉ ES LA INDUCCIÓN MAGNÉTICA

Cuando movemos un imán permanente por el interior de una bobina solenoide formada por un enrollado de alambre de cobre con núcleo de aire, el campo magnético del imán provoca en las espiras del alambre la aparición de una fuerza electromotriz (FEM) o flujo de corriente de electrones. Este fenómeno se conoce como "inducción magnética". La existencia de ese flujo de electrones o corriente eléctrica circulando por las espiras del alambre se puede comprobar instalando un galvanómetro (G) en el circuito de la bobina solenoide, tal como se muestra a continuación.

edu.red

Cuando movemos un imán permanente por el interior de las espiras de alambre de cobre de una bobina solenoide, se induce una fuerza electromotriz (FEM) o flujo de corriente eléctrica producida por el campo magnético que movemos manualmente. Por medio de un instrumento denominado galvanómetro (G) conectado al circuito de la bobina solenoide, se puede comprobar la existencia de esa fuerza electromotriz o corriente eléctrica circulando por las espiras del alambre de cobre. El galvanómetro constituye un instrumento destinado a medir corrientes eléctricas de muy poca tensión e intensidad.

En la ilustración de la izquierda se puede apreciar que al introducir un imán permanente por el interior de la bobina solenoide (A), con el polo norte (N) hacia abajo, la aguja del galvanómetro

  • se desvía hacía la derecha. Pero si invertimos la polaridad del imán e introducimos su polo sur dentro de las espiras de la bobina, tal como se puede observar en la parte derecha de la misma ilustración, veremos que la aguja se desvía hacia el lado contrario, debido a que el sentido del movimiento del flujo de electrones por el alambre de cobre cambia al invertirse la polaridad del imán.

Si dejamos de mover el imán no se producirá inducción magnética alguna y la aguja del galvanómetro se detiene en "0", indicando que tampoco hay flujo de corriente. Eso demuestra que para que exista inducción magnética y se genere una fuerza electromotriz (FEM) o corriente eléctrica en el enrollado de una bobina, no sólo se precisa la existencia de un campo magnético, sino que éste se encuentre en movimiento, para lo cual será necesario que el imán se desplace continuamente por el interior del enrollado de la bobina.

Si a continuación sustituimos el galvanómetro en el circuito de la bobina (A) e instalamos en su lugar otra bobina solenoide (B) y movemos de nuevo el imán por el interior de (A), se creará un campo "electromagnético" en (B), provocado por la corriente eléctrica que fluye ahora por las espiras de esa segunda bobina.

La generación de la corriente eléctrica o fuerza electromotriz que se produce por "inducción magnética" cuando movemos un imán por el interior de la bobina solenoide (A), provoca la circulación de corriente eléctrica por la bobina (B) y la aparición a su alrededor de un "campo electromagnético" durante todo el tiempo que mantengamos moviendo el imán por el interior de la bobina (A).

edu.red

QUÉ ES LA INDUCCIÓN ELECTROMAGNÉTICA

Cuando movemos un imán permanente por el interior de las espiras de una bobina solenoide (A), formada por espiras de alambre de cobre, se genera de inmediato una fuerza electromotriz (FEM), es decir, aparece una corriente eléctrica fluyendo por las espiras de la bobina, producida por la "inducción magnética" del imán en movimiento.

Si al circuito de esa bobina (A) le conectamos una segunda bobina (B) a modo de carga eléctrica, la corriente al circular por esta otra bobina crea a su alrededor un "campo electromagnético", capaz de inducir, a su vez, corriente eléctrica en una tercera bobina.

Por ejemplo, si colocamos una tercera bobina solenoide (C) junto a la bobina (B), sin que exista entre ambas ningún tipo de conexión ni física, ni eléctrica y conectemos al circuito de esta última un galvanómetro (G), observaremos que cuando movemos el imán por el interior de (A), la aguja del galvanómetro se moverá indicando que por las espiras de (C), fluye corriente eléctrica provocada, en este caso, por la "inducción electromagnética" que produce la bobina (B). Es decir, que el "campo magnético" del imán en movimiento produce "inducción magnética" en el enrollado de la bobina (B), mientras que el "campo electromagnético" que crea la corriente eléctrica que fluye por el enrollado de esa segunda bobina produce "inducción electromagnética" en una tercera bobina que se coloque a su lado.

edu.red

El campo magnético del imán en movimiento dentro de la bobina solenoide (A), provoca que, por "inducción magnética", se genere una corriente eléctrica o fuerza electromotriz (FEM) en esa bobina. Si instalamos al circuito de (A) una segunda bobina (B), la corriente eléctrica que comenzará a circular por sus espiras, creará un "campo electromagnético" a su alrededor, capaz de inducir, a su vez, pero ahora por "inducción electromagnética", una corriente eléctrica o fuerza electromotriz en otra bobina (C). La existencia de la corriente eléctrica que circulará por esa tercera bobina se podrá comprobar con la ayuda de un galvanómetro (G) conectado al circuito de esa última bobina.

Conectemos ahora una pila al circuito de una bobina solenoide (S1) y un galvanómetro al circuito de una segunda bobina solenoide (S2). El circuito que forman la pila y la bobina solenoide S1 se encuentra cerrado por medio de un interruptor, por lo que la corriente que suministra la pila, al fluir por las espiras del alambre de cobre de la bobina, crea un campo magnético constante fijo a su alrededor, que no induce corriente alguna en la bobina S2, tal como se puede observar en la aguja del galvanómetro, que se mantiene en "0".

Pero si ahora moviéramos la bobina S1 hacia arriba y hacia abajo, manteniendo fija en su sitio a la bobina S2, el campo electromagnético de la bobina S1, ahora en movimiento, inducirá una corriente eléctrica en la bobina S2, cuyo flujo o existencia registrará la aguja del galvanómetro.

edu.red

También, si en lugar de mover la bobina S1 abrimos y cerramos ininterrumpidamente el interruptor del circuito de la pila, la fuerza contraelectromotriz que se crea cada vez que se abre el circuito interrumpiendo la formación del campo electromagnético, inducirá también una corriente eléctrica en la bobina S2, que registrará el movimiento de la aguja del galvanómetro.

edu.red

Sin embargo, como se comprenderá para provocar la inducción magnética o la electromagnética no resulta nada práctico mantener un imán en movimiento por dentro de una bobina de forma manual, ni mover una bobina de igual forma, ni tampoco abrir y cerrar manualmente un interruptor para hacer que se induzca corriente eléctrica en otra bobina.

En la práctica, la solución tecnológica más utilizada es conectar una de las bobinas a una fuente de corriente alterna, para que el cambio constante de polaridad, propio de este tipo de corriente, provoque la formación de un campo electromagnético variable capaz de inducir por sí mismo corriente eléctrica, igualmente alterna, en otra bobina colocada a su lado.

edu.red

La corriente eléctrica alterna circulando por una bobina (S1) crea a su alrededor un campo electromagnético variable, capaz de inducir por sí mismo corriente alterna en otra bobina (S2) colocada a su lado.

Normalmente la bobina S1 se denomina "enrollado primario", mientras que la bobina S2 recibe el nombre de "enrollado secundario" y ambas constituyen la base del funcionamiento de los transformadores eléctricos. En ocasiones se pueden encontrar ambos enrollados colocados uno encima de otro formando una bobina de un solo cuerpo. Por otra parte, si en lugar tener la bobina el interior hueco (núcleo de aire) se enrolla sobre un núcleo de hierro, las líneas de fuerza electromagnéticas se intensifican, convirtiéndose en u electroimán, capaz de atraer cuerpos metálicos.

El fenómeno de la inducción electromagnética fue descubierto en 1831 por el físico inglés Michael Faraday (Newington, Inglaterra, 1791 – Londres, 1867).

QUÉ ES LA CORRIENTE ELÉCTRICA

LA CORRIENTE ELÉCTRICA

Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado, que se mueven siempre del polo negativo al polo positivo de la fuente de suministro de fuerza electromotriz (FEM).

edu.red

En un circuito eléctrico cerrado la corriente circula siempre del polo negativo al polo positivo de la fuente de fuerza electromotriz (FEM),

Quizás hayamos oído hablar o leído en algún texto que el sentido convencional de circulación de la corriente eléctrica por un circuito es a la inversa, o sea, del polo positivo al negativo de la fuente de FEM. Ese planteamiento tiene su origen en razones históricas y no a cuestiones de la física y se debió a que en la época en que se formuló la teoría que trataba de explicar cómo fluía la corriente eléctrica por los metales, los físicos desconocían la existencia de los electrones o cargas negativas.

Al descubrirse los electrones como parte integrante de los átomos y principal componente de las cargas eléctricas, se descubrió también que las cargas eléctricas que proporciona una fuente de FEM (Fuerza Electromotriz), se mueven del signo negativo (–) hacia el positivo (+), de acuerdo con la ley física de que "cargas distintas se atraen y cargas iguales se rechazan". Debido al desconocimiento en aquellos momentos de la existencia de los electrones, la comunidad científica acordó que, convencionalmente, la corriente eléctrica se movía del polo positivo al negativo, de la misma forma que hubieran podido acordar lo contrario, como realmente ocurre. No obstante en la práctica, ese "error histórico" no influye para nada en lo que al estudio de la corriente eléctrica se refiere.

REQUISITOS PARA QUE CIRCULE LA CORRIENTE ELÉCTRICA

Para que una corriente eléctrica circule por un circuito es necesario que se disponga de tres factores fundamentales:

edu.red

  • Fuente de fuerza electromotriz (FEM). 2. Conductor. 3. Carga o resistencia conectada al circuito. 4. Sentido de circulación de la corriente eléctrica.

  • Una fuente de fuerza electromotriz (FEM) como, por ejemplo, una batería, un generador o cualquier otro dispositivo capaz de bombear o poner en movimiento las cargas eléctricas negativas cuando se cierre el circuito eléctrico.

  • Un camino que permita a los electrones fluir, ininterrumpidamente, desde el polo negativo de la fuente de suministro de energía eléctrica hasta el polo positivo de la propia fuente. En la práctica ese camino lo constituye el conductor o cable metálico, generalmente de cobre.

  • Una carga o consumidor conectada al circuito que ofrezca resistencia al paso de la corriente eléctrica. Se entiende como carga cualquier dispositivo que para funcionar consuma energía eléctrica como, por ejemplo, una bombilla o lámpara para alumbrado, el motor de cualquier equipo, una resistencia que produzca calor (calefacción, cocina, secador de pelo, etc.), un televisor o cualquier otro equipo electrodoméstico o industrial que funcione con corriente eléctrica.

Cuando las cargas eléctricas circulan normalmente por un circuito, sin encontrar en su camino nada que interrumpa el libre flujo de los electrones, decimos que estamos ante un "circuito eléctrico cerrado". Si, por el contrario, la circulación de la corriente de electrones se interrumpe por cualquier motivo y la carga conectada deja de recibir corriente, estaremos ante un "circuito eléctrico abierto". Por norma general todos los circuitos eléctricos se pueden abrir o cerrar a voluntad utilizando un interruptor que se instala en el camino de la corriente eléctrica en el propio circuito con la finalidad de impedir su paso cuando se acciona manual, eléctrica o electrónicamente.

INTENSIDAD DE LA CORRIENTE ELÉCTRICA

La intensidad del flujo de los electrones de una corriente eléctrica que circula por un circuito cerrado depende fundamentalmente de la tensión o voltaje (V) que se aplique y de la resistencia (R) en ohm que ofrezca al paso de esa corriente la carga o consumidor conectado al circuito. Si una carga ofrece poca resistencia al paso de la corriente, la cantidad de electrones que circulen por el circuito será mayor en comparación con otra carga que ofrezca mayor resistencia y obstaculice más el paso de los electrones.

edu.red

Analogía hidráulica. El tubo del depósito "A", al tener un diámetro reducido, ofrece más resistencia a la salida del líquido que el tubo del tanque "B", que tiene mayor diámetro. Por tanto, el caudal o cantidad de agua que sale por el tubo "B" será mayor que la que sale por el tubo "A".

Mediante la representación de una analogía hidráulica se puede entender mejor este concepto. Si tenemos dos depósitos de líquido de igual capacidad, situados a una misma altura, el caudal de salida de líquido del depósito que tiene el tubo de salida de menos diámetro será menor que el caudal que proporciona otro depósito con un tubo de salida de más ancho o diámetro, pues este último ofrece menos resistencia a la salida del líquido.

De la misma forma, una carga o consumidor que posea una resistencia de un valor alto en ohm,

provocará que la circulación de los electrones se dificulte igual que lo hace el tubo de menor diámetro en la analogía hidráulica, mientras que otro consumidor con menor resistencia (caso del tubo de mayor diámetro) dejará pasar mayor cantidad de electrones. La diferencia en la cantidad de líquido que sale por los tubos de los dos tanques del ejemplo, se asemeja a la mayor o menor cantidad de electrones que pueden circular por un circuito eléctrico cuando se encuentra con la resistencia que ofrece la carga o consumidor.

La intensidad de la corriente eléctrica se designa con la letra ( I ) y su unidad de medida en el Sistema Internacional ( SI ) es el ampere (llamado también "amperio"), que se identifica con la letra ( A ).

Mediante la representación de una analogía hidráulica se puede entender mejor este concepto. Si tenemos dos depósitos de líquido de igual capacidad, situados a una misma altura, el caudal de salida de líquido del depósito que tiene el tubo de salida de menos diámetro será menor que el caudal que proporciona otro depósito con un tubo de salida de más ancho o diámetro, pues este último ofrece menos resistencia a la salida del líquido.

De la misma forma, una carga o consumidor que posea una resistencia de un valor alto en ohm, provocará que la circulación de los electrones se dificulte igual que lo hace el tubo de menor diámetro en la analogía hidráulica, mientras que otro consumidor con menor resistencia (caso del tubo de mayor diámetro) dejará pasar mayor cantidad de electrones. La diferencia en la cantidad de líquido que sale por los tubos de los dos tanques del ejemplo, se asemeja a la mayor o menor cantidad de electrones que pueden circular por un circuito eléctrico cuando se encuentra con la resistencia que ofrece la carga o consumidor.

La intensidad de la corriente eléctrica se designa con la letra ( I ) y su unidad de medida en el Sistema Internacional ( SI ) es el ampere (llamado también "amperio"), que se identifica con la letra ( A ).

EL AMPERE

De acuerdo con la Ley de Ohm, la corriente eléctrica en ampere ( A ) que circula por un circuito está estrechamente relacionada con el voltaje o tensión ( V ) y la resistencia en ohm edu.redde la carga o consumidor conectado al circuito.

Definición del ampere

Un ampere ( 1 A ) se define como la corriente que produce una tensión de un volt ( 1 V ), cuando se aplica a una resistencia de un ohm ( edu.red).

Un ampere equivale una carga eléctrica de un coulomb por segundo (1C/seg.) circulando por un circuito eléctrico, o lo que es igual, 6 300 000 000 000 000 000 = (6,3 · 1018 ) (seis mil trescientos billones) de electrones por segundo fluyendo por el conductor de dicho circuito. Por tanto, la intensidad ( I ) de una corriente eléctrica equivale a la cantidad de carga eléctrica ( Q ) en coulomb que fluye por un circuito cerrado en una unidad de tiempo.

Partes: 1, 2
Página siguiente