Descargar

Herramienta de gestión de redes (página 2)

Enviado por jose espinoza chalco


Partes: 1, 2

Consiste en dos alambres de cobre o a veces de aluminio, aislados con un grosor de 1 mm aproximadamente. Los alambres se trenzan con el propósito de reducir la interferencia eléctrica de pares similares cercanos. Los pares trenzados se agrupan bajo una cubierta común de PVC (Poli cloruro de Vinilo) en cables multipares de pares trenzados (de 2, 4, 8, hasta 300 pares).

Un ejemplo de par trenzado es el sistema de telefonía, ya que la mayoría de aparatos se conectan a la central telefónica por medio de un par trenzado. Actualmente, se han convertido en un estándar en el ámbito de las redes LAN (Local Área Network) como medio de transmisión en las redes de acceso a usuarios (típicamente cables de 2 ó 4 pares trenzados). A pesar que las propiedades de transmisión de cables de par trenzado son inferiores, y en especial la sensibilidad ante perturbaciones extremas, a las del cable coaxial, su gran adopción se debe al costo, su flexibilidad y facilidad de instalación, así como las mejoras tecnológicas constantes introducidas en enlaces de mayor velocidad, longitud, etc.

Estructura del Cable par Trenzado:

El cable está compuesto, por un conductor interno que es de alambre electrolítico recocido, de tipo circular, aislado por una capa de polietileno coloreado.

Debajo de la aislación coloreada existe otra capa de aislación también de polietileno, que contiene en su composición una sustancia antioxidante para evitar la corrosión del cable. El conducto sólo tiene un diámetro de aproximadamente medio milímetro, y más la aislación el diámetro puede superar el milímetro.

Sin embargo es importante aclarar que habitualmente este tipo de cable no se maneja por unidades, sino por pares y grupos de pares, paquete conocido como cable multipar. Todos los cables del multipar están trenzados entre sí con el objeto de mejorar la resistencia de todo el grupo hacia diferentes tipos de interferencia electromagnética externa. Por esta razón surge la necesidad de poder definir colores para los mismos que permitan al final de cada grupo de cables conocer qué cable va con cual otro. Los colores del aislante están normalizados a fin de su manipulación por grandes cantidades. Para Redes Locales los colores estandarizados son:

Naranja / Blanco – Naranja.

Verde / Blanco – Verde.

Blanco / Azul – Azul

Blanco / Marrón – Marrón

Cable de par trenzado apantallado (STP):

En este tipo de cable, cada par va recubierto por una malla conductora que actúa de apantalla frente a interferencias y ruido eléctrico. Su impedancia es de 150 Ohm.

 El nivel de protección del STP ante perturbaciones externas es mayor al ofrecido por UTP. Sin embargo es más costoso y requiere más instalación. La pantalla del STP, para que sea más eficaz, requiere una configuración de interconexión con tierra (dotada de continuidad hasta el terminal), con el STP se suele utilizar conectores RJ49.

Es utilizado generalmente en las instalaciones de procesos de datos por su capacidad y sus buenas características contra las radiaciones electromagnéticas, pero el inconveniente es que es un cable robusto, caro y difícil de instalar.

Cable de par Trenzado con Pantalla Global (FTP):

En este tipo de cable como en el UTP, sus pares no están apantallados, pero sí dispone de una pantalla global para mejorar su nivel de protección ante interferencias externas. Su impedancia característica típica es de 120 OHMIOS y sus propiedades de transmisión son más parecidas a las del UTP. Además, puede utilizar los mismos conectores RJ45. Tiene un precio intermedio entre el UTP y STP.

Cable par Trenzado no Apantallado (UTP):

El cable par trenzado más simple y empleado, sin ningún tipo de pantalla adicional y con una impedancia característica de 100 Ohmios. El conector más frecuente con el UTP es el RJ45, aunque también puede usarse otro (RJ11, DB25, DB11, etc), dependiendo del adaptador de red.

Es sin duda el que hasta ahora ha sido mejor aceptado, por su costo accesibilidad y fácil instalación. Sus dos alambres de cobre torcidos aislados con plástico PVC han demostrado un buen desempeño en las aplicaciones de hoy. Sin embargo, a altas velocidades puede resultar vulnerable a las interferencias electromagnéticas del medio ambiente.

El cable UTP es el más utilizado en telefonía.

Categorías del Cable UTP:

Cada categoría especifica unas características eléctricas para el cable: atenuación, capacidad de la línea e impedancia. Existen actualmente 8 categorías dentro del cable UTP:

 Categoría 1: Este tipo de cable esta especialmente diseñado para redes telefónicas, es el típico cable empleado para teléfonos por las compañías telefónicas. Alcanzan como máximo velocidades de hasta 4 Mbps.

Categoría 2: De características idénticas al cable de categoría 1.

Categoría 3: Es utilizado en redes de ordenadores de hasta 16 Mb ps. De velocidad y con un ancho de banda de hasta 16 MHz

Categoría 4: Esta definido para redes de ordenadores tipo anillo como Token Ring con un ancho de banda de hasta 20 Mhz y con una velocidad de 20 Mbps.

Categoría 5: Es un estándar dentro de las comunicaciones en redes LAN. Es capaz de soportar comunicaciones de hasta 100 Mbps. con un ancho de banda de hasta 100 Mhz. Este tipo de cable es de 8 hilos, es decir cuatro pares trenzados. La atenuación del cable de esta categoría viene dado por esta tabla referida a una distancia estándar de 100 metros:

Categoría 5e: Es una categoría 5 mejorada. Minimiza la atenuación y las interferencias. Esta categoría no tiene estandarizadas las normas aunque si esta diferenciada por los diferentes organismos.

Categoría 6: No esta estandarizada aunque ya se está utilizando. Se definirán sus características para un ancho de banda de 250 Mhz.

Categoría 7: No esta definida y mucho menos estandarizada. Se definirá para un ancho de banda de 600 Mhz. El gran inconveniente de esta categoría es el tipo de conector seleccionado que es un RJ-45 de 1 pines.

El Cable Coaxial.

El cable coaxial tenía una gran utilidad en sus inicios por su propiedad idónea de transmisión de voz, audio y video, además de textos e imágenes.

Se usa normalmente en la conexión de redes con topología de Bus como Ethernet y ArcNet, se llama así porque su construcción es de forma coaxial. La construcción del cable debe de ser firme y uniforme, por que si no es así, no se tiene un funcionamiento adecuado.

Este conexionado está estructurado por los siguientes componentes de adentro hacia fuera de la siguiente manera:

Un núcleo de cobre sólido, o de acero con capa de cobre, o bien de una serie de fibras de alambre de cobre entrelazadas dependiendo del fabricante.

Una capa de aislante que recubre el núcleo o conductor, generalmente de material de polivinilo, este aislante tiene la función de guardar una distancia uniforme del conductor con el exterior.

Una capa de blindaje metálico, generalmente cobre o aleación de aluminio entretejido (a veces solo consta de un papel metálico) cuya función es la de mantenerse lo mas apretado posible para eliminar las interferencias, además de que evita de que el eje común se rompa o se tuerza demasiado, ya que si el eje común no se mantiene en buenas condiciones, trae como consecuencia que la señal se va perdiendo, y esto afectaría la calidad de la señal.

Por último, tiene una capa final de recubrimiento, de color negro en el caso del cable coaxial delgado o amarillo en el caso del cable coaxial grueso, este recubrimiento normalmente suele ser de vinilo, xelón ó polietileno uniforme para mantener la calidad de las señales.

Una breve comparación entre el cable coaxial y el cable par trenzado:

El cable coaxial es más inmune a las interferencias o al ruido que el par trenzado.

El cable coaxial es mucho más rígido que el par trenzado, por lo que al realizar las conexiones entre redes la labor será más dificultosa.

La velocidad de transmisión que podemos alcanzar con el cable coaxial llega solo hasta 10Mbps, en cambio con el par trenzado se consiguen 100Mbps.

Algunos tipos de Cable Coaxial:

El RG-75 se usa principalmente para televisión

Cada cable tiene su uso. Por ejemplo, los cables RG-8, RG-11 y RG-58 se usan para redes de datos con topología de Bus como Ethernet y ArcNet.

Dependiendo del Grosor Tenemos:

Cable coaxial delgado (Thin coaxial):

El RG-58 es un cable coaxial delgado: a este tipo de cable se le denomina delgado porque es menos grueso que el otro tipo de cable coaxial, debido a esto es menos rígido que el otro tipo, y es más fácil de instalar.

Cable Coaxial Grueso (Thick Coaxial):

Los RG8 y RG11 son cables coaxiales gruesos: estos cables coaxiales permiten una transmisión de datos de mucha distancia sin debilitarse la señal, pero el problema es que, un metro de cable coaxial grueso pesa hasta medio kilogramo, y no puede doblarse fácilmente. Un enlace de coaxial grueso puede ser hasta 3 veces mas largo que un coaxial delgado.

Dependiendo de su Banda Tenemos:

Banda Base:

Existen básicamente dos tipos de cable coaxial. El de Banda Base, que es el normalmente empleado en redes de ordenadores, con una resistencia de 50Ohm, por el que fluyen señales digitales.

Banda Ancha:

El cable coaxial de banda ancha normalmente mueve señales analógicas, posibilitando la transmisión de gran cantidad de información por varias frecuencias, y su uso más común es la televisión por cable.

Los factores a tener en cuenta a la hora de elegir un cable coaxial son su ancho de banda, su resistencia o impedancia característica, su capacidad y su velocidad de propagación.

El ancho de banda del cable coaxial está entre los 500Mhz, esto hace que el cable coaxial sea ideal para transmisión de televisión por cable por múltiples canales.

La resistencia o la impedancia característica depende del grosor del conductor central o malla, si varía éste, también varía la impedancia característica.  

Fibra Óptica.

Como características de la fibra podemos destacar que son compactas, ligeras, con bajas pérdidas de señal, amplia capacidad de transmisión y un alto grado de confiabilidad ya que son inmunes a las interferencias electromagnéticas de radio-frecuencia. Las fibras ópticas no conducen señales eléctricas, conducen rayos luminosos, por lo tanto son ideales para incorporarse en cables sin ningún componente conductivo y pueden usarse en condiciones peligrosas de alta tensión

Las fibras ópticas se caracterizan por una pérdidas de transmisión realmente bajas, una capacidad extremadamente elevada de transporte de señales, dimensiones mucho menores que los sistemas convencionales, instalación de repetidores a lo largo de las líneas (gracias a la disminución de las perdidas debidas a la transmisión), una mayor resistencia frente a las interferencias, etc.

La transmisión de las señales a lo largo de los conductores de fibra óptica se verifica gracias a la reflexión total de la luz en el interior de los conductores óticos. Dichos conductores están constituidos por un ánima de fibras delgadas, hechas de vidrios ópticos altamente transparentes con un índice de reflexión adecuado, rodeada por un manto de varias milésimas de espesor, compuesto por otro vidrio con índice de reflexión inferior al del que forma el ánima. La señal que entra por un extremo de dicho conductor se refleja en las paredes interiores hasta llegar al extremo de salida, siguiendo su camino independientemente del hecho de que la fibra esté o no curvada.

 Estos cables son la base de las modernas autopistas de la información, que hacen técnicamente posible una interconectividad a escala planetaria.

Los tipos de Fibra Óptica son:

Fibra Multimodal

En este tipo de fibra viajan varios rayos ópticos reflejándose a diferentes ángulos, los diferentes rayos ópticos recorren diferentes distancias y se desfasan al viajar dentro de la fibra. Por esta razón, la distancia a la que se puede trasmitir está limitada.

Fibra Multimodal con Índice Graduado

En este tipo de fibra óptica el núcleo está hecho de varias capas concéntricas de material óptico con diferentes índices de refracción. En estas fibras el número de rayos ópticos diferentes que viajan es menor y, por lo tanto, sufren menos el severo problema de las multimodales.

Fibra Monomodal:

Esta fibra óptica es la de menor diámetro y solamente permite viajar al rayo óptico central. No sufre del efecto de las otras dos pero es más difícil de construir y manipular. Es también más costosa pero permite distancias de transmisión mayores.

En comparación con el sistema convencional de cables de cobre, donde la atenuación de sus señales es de tal magnitud que requieren de repetidores cada dos kilómetros para regenerar la transmisión, en el sistema de fibra óptica se pueden instalar tramos de hasta 70 Km. sin que haya necesidad de recurrir a repetidores, lo que también hace más económico y de fácil mantenimiento este material.

Con un cable de seis fibras se puede transportar la señal de más de cinco mil canales o líneas principales, mientras que se requiere de 10,000 pares de cable de cobre convencional para brindar servicio a ese mismo número de usuarios, con la desventaja que este último medio ocupa un gran espacio en los canales y requiere de grandes volúmenes de material, lo que también eleva los costes.

Originalmente, la fibra óptica fue propuesta como medio de transmisión debido a su enorme ancho de banda; sin embargo, con el tiempo se ha introducido en un amplio rango de aplicaciones además de la telefonía, automatización industrial, computación, sistemas de televisión por cable y transmisión de información de imágenes astronómicas de alta resolución entre otros.

En un sistema de transmisión por fibra óptica existe un transmisor que se encarga de transformar las ondas electromagnéticas en energía óptica o en luminosa. Por ello se le considera el componente activo de este proceso. Cuando la señal luminosa es transmitida por las pequeñas fibras, en otro extremo del circuito se encuentra un tercer componente al que se le denomina detector óptico o receptor, cuya misión consiste en transformar la señal luminosa en energía electromagnética, similar a la señal original. El sistema básico de transmisión se compone en este orden, de señal de entrada, amplificador, fuente de luz, corrector óptico, línea de fibra óptica (primer tramo ), empalme, línea de fibra óptica (segundo tramo), corrector óptico, receptor, amplificador y señal de salida.

Se puede decir que en este proceso de comunicación, la fibra óptica funciona como medio de transportación de la señal luminosa, generado por el transmisor de LED's (diodos emisores de luz) y láser. Los diodos emisores de luz y los diodos lasers son fuentes adecuadas para la transmisión mediante fibra óptica, debido a que su salida se puede controlar rápidamente por medio de una corriente de polarización. Además su pequeño tamaño, su luminosidad, longitud de onda y el bajo voltaje necesario para manejarlos son características atractivas.

Enlaces inalámbricos.

Servicio que consiste en ofrecer al cliente acceso ilimitado a Internet mediante un enlace inalámbrico por medio de antenas, que le permiten utilizar un ancho de banda desde 64K hasta 2Mbps.

Trabajan por medio de radio frecuencia

Desde 2dB de ganancia hasta 24 dB

Pueden transmitir en un radio inicial de 7° hasta 360°, dependiendo el estilo de la red.

Tecnologías Omnidireccionales y Unidireccionales

Enlazan desde una PC hasta una red entera, creando una intranet.

Tipos

Wireless Personal Area Network

En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.

Wireless Local Area Network

En las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (del inglés, High Performance Radio LAN), un estándar del grupo ETSI, o tecnologías basadas en Wi-Fi, que siguen el estándar IEEE 802.11 con diferentes variantes.

Wireless Metropolitan Area Network

Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).

Wireless Wide Area Network

En estas redes encontramos tecnologías como UMTS (Universal Mobile Telecommunications System), utilizada con los teléfonos móviles de tercera generación (3G) y sucesora de la tecnología GSM (para móviles 2G), o también la tecnología digital para móviles GPRS (General Packet Radio Service).

edu.red

QUE ES RED WIFI

QUE ES BLOOTOO

Red pública

La decisión de cuando instalar una red privada o cuando utilizar los servicios de una red publica depende esencialmente de dos cosas:

  • De las necesidades de la Empresa

  • De los recursos de la Empresa

ENFOQUE

Comunicación fuera de las empresas. Interconexión de redes privadas

SERVICIO

Reductions de los costos de valor agregado. Facilidad Para mantener en la vanguardia tecnológica

SEGURIDAD

el proveedor suele ofrecer por el hecho de ser una red publica el acceso de cualquier persona no autorizada a la red es muy sencillo.

CONTROL el carrier se encarga de la asignacion de los recursos dependiendo de los requerimentos de sus usuarios. Cada cambio cuesta a el usuario

INVERSION los costos de inversion se reducen dramaticamente para el usuario, solo se nesecita inverter en equipo de acceso a la red

CONECTIVIDAD capacidad de transmission a todos los puntos de enlace de la red. Facilita para dar de alta a nuevos usuarios. para un usuario de red publica también significa inversión en equipos de acceso como de medios y de acceso a la red)

OPERACION Y MANTENIMIENTO el proveedor de la red publican se encage de to-dos los costs de operation y mantenimiento

Red privada

ENFOQUE

Intercomunicación y conexión de oficinas de una misma empresa.

SERVICIOS

Cada servicio extra o implementación de nueva tecnología incurre en un costo de Inversión

SEGURIDAD

Se puede detallar de forma específica, el nivel de seguridad que la empresa requiera

CONTROL

Se tiene el control total de los recursos, de la administración (anchos de banda y topología de la red), manipulación y entrega de la información

INVERSIÓN

S e requiere de una inversión fuerte, no solo de equipo sino de diseño, Mtto., Operación y Expansión

CONECTIVIDAD

Restringida a los nodos que forman la red, otros nodos requiere de nuevas inversiones

OPERACIÓN Y MANTENIMIENTO.

Se necesita gente capacitada para mantener la operación eficiente de la red y dar Mtto

SEÑAL ANALOGICA

SEÑAL DIGITAL

SU CONMUTACION DE PAQUETES

La conmutación de paquetes es el envió de datos en una red de computadoras. Un paquete es un grupo de información que consta de dos partes: los datos propiamente dichos y la información de control, en la que está especificado la ruta a seguir a lo largo de la red hasta el destino del paquete. Mil octetos es el límite de longitud superior de los paquetes, y si la longitud es mayor el mensaje se fragmenta en otros paquetes

VENTAJAS

  • Los paquetes forman una cola y se transmiten lo más rápido posible.

  • Permiten la conversión en la velocidad de los datos.

  • La red puede seguir aceptando datos aunque la transmisión se hará lenta.

  • Existe la posibilidad de manejar prioridades (si un grupo de información es más importante que los otros, será transmitido antes que dichos otros).

TECNICAS

Para la utilización de la conmutación de paquetes se han definido dos tipos de técnicas: los datagramas y los circuitos virtuales.

Datagramas

  • Internet es una red de datagramas.

  • En Internet existen 2 tendencias: orientado a conexión y no orientado a conexión.

  • En el caso orientado a conexión, el protocolo utilizado para transporte es TCP.

  • En el caso no orientado a conexión, el protocolo utilizado para transporte es UDP.

  • TCP garantiza que todos los datos lleguen correctamente y en orden.

  • UDP no tiene ninguna garantía.

  • No todos los paquetes siguen una misma ruta.

  • Un paquete se puede destruir en el camino, cuya recuperación es responsabilidad de la estación de origen (esto da a entender que el resto de paquetes están intactos).

Circuitos Virtuales

  • Son los más usados.

  • Su funcionamiento es similar al de redes de conmutación de circuitos.

  • Previo a la transmisión se establece la ruta previa por medio de paquetes de petición de llamada (pide una conexión lógica al destino) y de llamada aceptada (en caso de que la estación destino esté apta para la transmisión envía este tipo de paquete); establecida la transmisión, se da el intercambio de datos, y una vez terminado, se presenta el paquete de petición de liberación (aviso de que la red está disponible, es decir que la transmisión ha llegado a su fin).

  • Cada paquete tiene un identificador de circuito virtual en lugar de la dirección del destino.

  • Los paquetes se recibirán en el mismo orden en que fueron enviados.

Si no existiese una técnica de conmutación en la comunicación entre dos nodos, se tendría que enlazar en forma de malla. Una ventaja adicional de la conmutación de paquetes (además de la seguridad de transmisión de datos) es que como se parte en paquetes el mensaje, éste se está ensamblando de una manera más rápida en el nodo destino, ya que se están usando varios caminos para transmitir el mensaje, produciéndose un fenómeno conocido como transmisión en paralelo.

Además, si un mensaje tuviese un error en un bit de información, y estuviésemos usando la conmutación de mensajes, tendríamos que retransmitir todo el mensaje; mientras que con la conmutación de paquetes solo hay que retransmitir el paquete con el bit afectado, lo cual es mucho menos problemático. Lo único negativo, quizás, en el esquema de la conmutación de paquetes es que su encabezado es más grande.

La conmutación de paquetes se trata del procedimiento mediante el cual, cuando un nodo quiere enviar información a otro lo divide en paquetes, los cuales contienen la dirección del nodo destino. En cada nodo intermedio por el que pasa el paquete se detiene el tiempo necesario para procesarlo.

FUNCIONES

Cada nodo intermedio realiza las siguientes funciones:

  • Almacenamiento y retransmisión (store and forward): hace referencia al proceso de establecer un camino lógico de forma indirecta haciendo "saltar" la información de origen al destino a través de los nodos intermedios.

  • Control de ruta (routing): hace referencia a la selección de un nodo del camino por el que deben retransmitirse los paquetes para hacerlos llegar a su destino.

Los paquetes en fin, toman diversas vías, pero nadie puede garantizar que todos los paquetes vayan a llegar en algún momento determinado. En síntesis, una red de conmutación de paquetes consiste en una "malla" de interconexiones facilitadas por los servicios de telecomunicaciones, a través de la cual los paquetes viajan desde la fuente hasta el destino.

NO COMMUTACION

POR SU EXTENSION

  • LAN: Local Área Network (Redes de área local). Está constituida por un conjunto de ordenadores independientes interconectados entre sí, pueden comunicarse y compartir recursos. Abarcan una zona no demasiado grande, un edificio o un campus.

Topología

Una topología de red hace referencia al diseño de la red, es decir, la forma en que se lleva a cabo la conexión. Las topologías más utilizadas son: en bus (lineal), en estrella, en árbol y en anillo.

5.1. Bus Lineal

Es un diseño sencillo en el que un solo cable, que es conocido como "bus", es compartido por todos los dispositivos de la red. El cable va recorriendo cada uno de los ordenadores y se utiliza una terminación en cada uno de los dos extremos. Los dispositivos se conectan al bus utilizando generalmente un conector en T.

edu.red

Las ventajas de estas redes son su sencillez y economía. El cableado pasa de una estación a otra. El inconveniente es que si el cable falla en cualquier punto, toda la red deja de funcionar. Aunque existen diversos procedimientos de diagnóstico para detectar y solventar tales problemas, en grandes redes puede ser sumamente difícil localizar estas averías.

5.2. Estrella

Los nodos de la red se conectan con cables dedicados a un punto que es una caja de conexiones, llamada HUB o concentradores. En una topología en estrella cada estación de trabajo tiene su propio cable dedicado, por lo que habitualmente se utilizan mayores longitudes de cable.

edu.red

La detección de problemas de cableado en este sistema es muy simple al tener cada estación de trabajo su propio cable. Por la misma razón, la resistencia a fallos es muy alta ya que un problema en un cable afectará sólo a este usuario.

5.3. Árbol

Se denomina también topología en estrella distribuida. Al igual que sucedía en la topología estrella, los dispositivos de la red se conectan a un punto que es una caja de conexiones, llamado HUB.

edu.red

Los HUB"s se conectan a una red en bus, formando así un árbol o pirámide de HUB"s y dispositivos. Esta topología reúne muchas de las ventajas de los sistemas en bus y en estrella.

5.4. Anillo

En esta topología los nodos se conectan formando un círculo cerrado. El anillo es unidireccional, de tal manera que los paquetes que transportan datos circulan por el anillo en un solo sentido. En una red local en anillo simple, un corte del cable afecta a todas las estaciones, por lo que se han desarrollado sistemas en anillo doble.

edu.red

WAN

Es una red de comunicaciones de datos que cubre un área

Geográfica relativamente amplia y que utiliza a menudo las instalaciones de transmisión proporcionadas por los portadores comunes, tales como compañía del teléfono. Las tecnologías WAN funcionan generalmente en las tres capas mas bajas del modelo de referencia OSI: la capa de transmisión de datos, y la capa de red

TIPOS DE WAN

CENTRALIZADO un WAN centralizado consiste en una PC central que este conectada con los terminales nodos y /u otro tipo de dispositivos del terminal.

DISTRIBUIDO un WAN distribuido consiste en dos o mas PC en diversas localizaciones y puede también incluir conexiones a los terminales nodos y a otro tipos de dispositivos del terminal

MAN

Es una red que conecta las redes de un área dos o mas locales juntos pero no extienden mas allá de los limites de la ciudad inmediata, o del área metropolitana. Las rebajadoras múltiples, los interruptores y los cubos están conectados para crear a una MAN

 

 

Autor:

José Espinoza Chalco

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente