Descargar

Los Lubricantes (página 2)

Enviado por Ezequiel Cometto


Partes: 1, 2

 

5. La Teoría De La Lubricación.

La lubricación es básica y necesaria para la operación de casi todas las maquinarias. Sin lubricación, casi todas las maquinarias no funcionan, o si funcionan lo hacen por poco tiempo antes de arruinarse. Varios estudios hechos en EEUU concluyeron que si la tecnología actual de lubricación fuera accesible a toda la población, se mejoraría el producto bruto interno un 7%. La industria de lubricantes constantemente mejora y cambia sus productos a medida que los requerimientos de las maquinarias nuevas cambian y nuevos procesos químicos y de destilación son descubiertos. Un conocimiento básico de la tecnología de lubricación te ayudará a elegir los mejores lubricantes para cada necesidad.

Tipos de Lubricación El tipo de lubricación que cada sistema necesita se basa en la relación de los componentes en movimiento. Hay tres tipos básicos de lubricación: por capa límite, hidrodinámica, y mezclada. Para saber qué tipo de lubricación ocurre en cada caso, necesitamos saber la presión entre los componentes a ser lubricados, la velocidad relativa entre los componentes, la viscosidad del lubricante y otros factores. La lubricación límite ocurre a baja velocidad relativa entre los componentes y cuando no hay una capa completa de lubricante cubriendo las piezas. Durante lubricación limítrofe, hay contacto físico entre las superficies y hay desgaste. La cantidad de desgaste y fricción entre las superficies depende de un número de variables: la calidad de las superficies en contacto, la distancia entre las superficies, la viscosidad del lubricante, la cantidad de lubricante presente, la presión, el esfuerzo impartido a las superficies, y la velocidad de movimiento. Todo esto afecta la lubricación por capa límite. En algún momento de velocidad crítica la lubricación limítrofe desaparece y da lugar a la Lubricación Hidrodinámica. Esto sucede cuando las superficies están completamente cubiertas con una película de lubricante. Esta condición existe una vez que una película de lubricante se mantiene entre los componentes y la presión del lubricante crea una "ola" de lubricante delante de la película que impide el contacto entre superficies. Bajo condiciones hidrodinámicas, no hay contacto físico entre los componentes y no hay desgaste. Si los motores pudieran funcionar bajo condiciones hidrodinámicas todo el tiempo, no habría necesidad de utilizar ingredientes antidesgaste y de alta presión en las fórmulas de lubricantes. Y el desgaste sería mínimo. La propiedad que más afecta lubricación hidrodinámica es la viscosidad. La viscosidad debe ser lo suficientemente alta para brindar lubricación (limítrofe) durante el inicio del ciclo de funcionamiento del mecanismo con el mínimo de desgaste, pero la viscosidad también debe ser lo suficientemente baja para reducir al mínimo la "fricción viscosa" del aceite a medida que es bombeada entre los metales (cojinetes) y las bancadas, una vez que llega a convertirse en lubricación hidrodinámica. Una de las reglas básicas de lubricación es que la menor cantidad de fricción innecesaria va a ocurrir con el lubricante de menor viscosidad posible para cada función específica. Esto es que cuanto más baja la viscosidad, menos energía se desperdicia bombeando el lubricante.

Clasificación SAE (Sociedad de Ingenieros Automotores) Clasificación de Viscosidad utilizando como unidad de medida el Centistoke (cSt) a100°C. Este sistema se utiliza para clasificar los lubricantes empleados en la lubricación de motores de combustión interna y los aceites para lubricación de engranajes en automotores. De acuerdo al grado SAE de viscosidad los aceites se clasifican en:

  1. Aceites Unígrados
  2. Se caracterizan porque tienen solo un grado de viscosidad. Cuando vienen acompañados de la letra W (Winter) indica que el aceite permite un fácil arranque del motor en tiempo frío (temperatura por debajo de 0°C). Acorde con la temperatura del medio ambiente por debajo de 0°C, se selecciona el grado SAE que acompaña a la letra W, ya que cada uno de estos grados está en función de dicha temperatura. Los otros grados SAE que no traen la letra W se emplean para operaciones en clima cálido y bajo condiciones severas de funcionamiento.

  3. Aceites Multígrados

Estos aceites tienen más de un grado de viscosidad SAE. Ej. 15W40. Poseen un alto índice de viscosidad lo cual les da un comportamiento uniforme a diferentes temperaturas, tanto en clima frío con en clima cálido. Una de las ventajas más importantes de los aceites multigrados con respecto a los unígrados, es el ahorro de combustible debido a la disminución de la fricción en las diferentes partes del motor, principalmente en la parte superior del pistón. Los números SAE. Los números SAE de viscosidad constituyen clasificaciones de aceites lubricantes en términos de viscosidad solamente. Los valores oficiales de 0ºF y 210ºF son los especificados en la clasificación. Los grados Centistokes representan la viscosidad cinemática y los centispoises la dinámica. La siguiente tabla muestra como se determinan los Números SAE.

6. Determinación de las propiedades de los aceites lubricantes

Ensayo De Viscosidad La máquina para ensayos de viscosidad con la que cuenta el laboratorio de nuestra universidad (fig. 1), consta de un cilindro de vidrio transparente lleno de vaselina medicinal líquida iluminado desde el fondo por una luz, en el cual se colocan 2 pipetas (unos tubos de vidrio normalizados que contienen al aceite y sirven para efectuar la medición de viscosidad). El objetivo del baño de vaselina es alcanzar la temperatura de ensayo (40ºC y 100ºC) y homogeneizar esta en toda la superficie del tubo que contiene el aceite. Esto se consigue mediante una resistencia eléctrica, un agitador, y un sistema electrónico de termostato que censa y regula la temperatura. Todo el dispositivo se encuentra encerrado en una caja transparente para evitar el intercambio de calor entre el cilindro y el medio. Este es un sistema de medición indirecto de la viscosidad. Para realizar el ensayo se procede como sigue:

  1. Mediante una propipeta o pera se bombea aire desde el extremo 1 del tubo para que el aceite llegue a llenar el bulbo de la pipeta hasta la marca a de la parte calibrada del tubo.
  2. Se quita la presión del aire y se toma el tiempo que el aceite tarda en vaciar el bulbo de la marca a hasta la b pasando por un tubo calibrado.
  3. Con el tiempo registrado se ingresa a una tabla de equivalencias, a la cual se afecta también con la constante del tubo, obteniendo así el valor de la viscosidad a la temperatura de ensayo.

Ensayo De Cuatro Bolas La máquina para realizar este ensayo consta de 3 bolillas calibradas de acero que sirven de asiento para la cuarta bolilla. Estas 4 bolillas están en contacto entre sí sumergidas en un baño del aceite a ensayar y las tres inferiores están conectadas a un torquímetro de zafe censado por un sistema electrónico. La bola superior, que gira con una velocidad normalizada, es cargada normalmente de modo que ejerza presión sobre las 3 bolillas fijas. Esta presión se incrementa gradualmente hasta que se empiezan a producir pequeñas soldaduras entre las bolillas debido a la ruptura de la capa lubricante que las protege, quedando en contacto directo unas con otras. Estas soldaduras ocasionan una transferencia de torque desde la bolilla superior a las 3 inferiores, transferencia de movimiento que antes no existía por la presencia de una capa del lubricante. Esta transferencia es detectada por el torquímetro y mediante un sistema informático se elabora un gráfico del ensayo. El ensayo se repite varias veces para corroborar los resultados. Cabe aclarar que las bolillas se inutilizan luego de cada ensayo. El resultado de este ensayo nos indica a que presión se rompe la capa efectiva de protección del lubricante. Como resultado mas importante de este ensayo, podemos destacar que nos indica hasta que presión puede trabajar el lubricante sin perder sus propiedades características. Además, este ensayo es aplicable también para las grasas.

7. Grasas lubricantes

Las grasas son usadas en aplicaciones donde los lubricantes líquidos no pueden proveer la protección requerida. Es fácil aplicarlas y requieren poco mantenimiento. Están básicamente constituidas por aceite (mineral o sintético) y un jabón espesante que es el "transporte " del aceite, siendo este último el que tiene las propiedades lubricantes, no así el jabón. Las principales propiedades de las grasas son que se quedan adheridas en el lugar de aplicación, provee un sellamiento y un espesor laminar extra. La lubricación por grasa posee ciertas ventajas en relación con la lubricación por aceite:

  • La construcción y el diseño son menos complejos.
  • A menudo menor mantenimiento, al ser posible la lubricación de por vida.
  • Menor riesgo de fugas y juntas de estanqueidad más sencillas.
  • Eficaz obturación gracias a la salida de la grasa usada, es decir, la "formación de cuellos de grasa".
  • Con grasas para altas velocidades, cantidades de grasa dosificadas y un proceso de rodaje pueden obtenerse bajas temperaturas del cojinete a elevado número de revoluciones.

Pero también posee desventajas como ser:

  • No es posible la evacuación de calor.
  • La película de grasas absorbe las impurezas y no las expulsa, sobre todo en el caso de lubricación con cantidades mínimas de grasa.
  • Según el nivel actual de conocimientos, menores números límites de revoluciones o bien factores de velocidad admisibles en comparación con la lubricación por inyección de aceite y la lubricación por pulverización.

Clasificación De Las Grasas Lubricantes La clasificación de las grasas lubricantes no está regulada de forma clara. A causa de las múltiples aplicaciones y de las diferentes composiciones, las grasas se clasifican principalmente según su aceite base o su espesante.

Aceite base: El aceite contenido en una grasa se denomina aceite base. Su porcentaje varía según el tipo y la cantidad de espesante, así como según la aplicación prevista de la grasa lubricante. El porcentaje de aceite base se sitúa en la mayoría de las grasas entre 85 y 97%. El tipo de aceite base aporta a la grasa alguna de sus propiedades típicas.

Espesantes: Los espesantes se dividen en dos grupos: los organometálicos (jabón) y los no organometálicos, y confieren a las grasas lubricantes su comportamiento típico. Las grasas lubricantes de jabón se dividen en grasas lubricantes de jabón complejo y normal, tomando su denominación según el catión básico del jabón (p. ej. grasas lubricantes de jabón de litio, sodio, calcio, bario, aluminio). Estos jabones se elaboran a partir de ácidos grasos, que son productos obtenidos de aceites y grasas animales y vegetales. En una unión de estos ácidos con los hidróxidos metálicos correspondientes se produce la formación de jabones utilizados como espesantes para la fabricación de grasas lubricantes. Esta subdivisión según cationes de jabón es especialmente significativa. Los cationes aportan importantes características específicas del producto, por ejemplo, el punto de goteo de las grasas de jabón de calcio asciende a < 130°C, mientras que el de las grasas de jabón de litio alcanza unos 180°C. Si se combinan dos o más cationes, se habla de tipos de grasas lubricantes de base mixta. El porcentaje de espesantes en las grasas lubricantes se sitúa, por término medio, entre 3 y 15%, siendo algunas veces mayor. El porcentaje de espesante depende de la composición de la grasa, de su consistencia, así como del tipo de espesante y del procedimiento de fabricación correspondiente. Sustancias activas:

Aditivos en las grasas Los aditivos pueden alterar el comportamiento de las grasas lubricantes. Los factores que influencian la selección de aditivos son:

  • Requerimientos de desempeño (aplicación del producto) · Compatibilidad (reacciones)
  • Consideraciones ambientales (aplicación del producto, olor, biodegradabilidad, disposición)
  • Color
  • Costo

Muchos de los aditivos son químicamente activos, esto es, ellos producen su efecto a través de reacciones químicas ya sea con el medio, o con la superficie metálica. Algunos aditivos activos químicamente son:

  • Inhibidores de oxidación.
  • Anticorrosivos.
  • Agentes de extrema presión y antirrecubrimiento.

Los aditivos que afectan las propiedades de la grasa, como la estructura, tolerancia al agua, son:

  • Modificadores de viscosidad
  • Depresantes de punto de congelación
  • Agentes antiespumantes
  • Emulsificadores
  • Demulsificadores.

Sustancias activas sólidas: El grafito, el disulfuro de molibdeno, el sulfuro de cinc, talco, politetrafluoroetileno, etc. se incorporan en las grasas en forma de polvo o pigmentos. Actúan en la zona de fricción límite y mixta. Las sustancias activas sólidas mejoran el proceso de rodaje y el comportamiento de lubricación de emergencia.

Sustancias activas polares: Las sustancias polares son moléculas de hidrocarburo que, como consecuencia de su estructura molecular, es decir, mediante la absorción de otros elementos como oxígeno, azufre y cloro, dejan de ser eléctricamente neutros y, en combinación con superficies metálicas, permanecen retenidas como con un imán. El contenido de sustancias polares aumenta el efecto de adherencia de la película lubricante; los hidrocarburos puros son "no polares".

Sustancias activas polímeras: La interdependencia entre la temperatura y la viscosidad de los aceites minerales puede reducirse mediante las sustancias activas. Por regla general los polímeros mejoran la protección contra el desgaste de los lubricante. Los poliisobutilenos y los polímeros de olefina, entre otros, son aditivos mejoradores de la adherencia para las grasas lubricantes.

Ensayos De Grasas Lubricantes Debe distinguirse entre ensayos químico-físicos y mecánico-dinámicos. Sirven para establecer los datos característicos tribotécnicos de las grasas. Estas pruebas también son de especial importancia para el control de calidad durante la fabricación. La orientación se efectúa según los valores teóricos y las tolerancias admisibles/fijadas en la fórmula o en la norma de taller. En ocasiones, estos valores vienen indicados previamente como especificaciones de producto, por ejemplo, por parte de los fabricantes de automóviles. En muchos casos existe un acuerdo individual sobre determinados valores y controles de aceptación entre los usuarios y los fabricantes de grasas. Los ensayos normalizados según DIN, IP, ASTM, FTMS, SAE, etc. ofrecen múltiples bases de ensayo, que son complementadas a nivel individual mediante tests especiales. Los resultados de los ensayos y tests de funcionamiento realizados en condiciones similares a las reales, p. ej. en bancos de pruebas para grasas de rodamientos, ofrecen conocimientos de gran utilidad, si bien nunca podrán sustituir a los ensayos reales y a las experiencias resultantes de los mismos.

Ensayo De Penetración

Este ensayo se hace para determinar el grado de resistencia a la penetración (grado N.L.G.I.) que tienen las grasas, de forma similar a la que se mide la dureza de los materiales. La diferencia entre un grado de penetración o "dureza" de una grasa y otra, es muy importante a la hora de elegir una grasa para una determinada aplicación. Por ejemplo, una grasa muy dura no sería adecuada para la lubricac0ión de un rodamiento que gire a elevadas velocidades, porque al ofrecer mayor resistencia, se calentaría demasiado, con los inconvenientes que esto apareja. El aparato para realizar este ensayo consiste en un bastidor con una base donde está ubicada la muestra de grasa. Por encima de la muestra esta el cono penetrador (de peso, forma y material normalizados), conectado a un reloj comparador que mide en décimas de mm. Una vez posicionada la muestra en la base, se deja por gravedad caer el cono sobre la superficie rasada de la muestra de la grasa, y el reloj medirá la profundidad que penetró el cono en la grasa. De esta manera, se determina la "dureza" o grado de penetración de las grasas. Depende la profundidad de penetración se clasifican las grasas en fluidas, blandas y semiduras, sólidas y duras. Un aspecto a tener en cuenta antes de hacer este ensayo, es trabajar la grasa para homogeneizar su masa y además darle una cierta temperatura, similar a la de trabajo.

NLGI

PENETRACION

ESTRUCTURA

000

445/475

Fluida

00

400/430

Casi fluida

0

355/385

Extremadamente blanda

1

318/340

Muy blanda

2

265/295

Blanda

3

220/250

Media

4

175/205

Sólida

5

130/160

Muy sólida

6

85/115

Extremadamente sólida

Determinación Del Punto De Goteo El aparato para realizar este ensayo consta de un envase cilíndrico de vidrio pyrex que contiene un aceite siliconado. Dentro de este envase se sumerge un tubo de vidrio especial, similar a un tubo de ensayo, dentro del cual se coloca un dispositivo que contiene una pequeña muestra de grasa y tiene un pequeño orificio en la parte inferior. En contacto con la muestra se coloca un termómetro (para medir la temperatura de la grasa), y otro en el baño de aceite para determinar la temperatura de este. Una resistencia eléctrica calienta el aceite siliconado hasta que del dispositivo que contiene a la grasa cae la primer gota de aceite que se separa de la grasa por efecto de la temperatura. En ese momento se registra la temperatura de la grasa con el termómetro y esta se denomina temperatura del punto de goteo, propiedad particular de cada grasa. Este punto es la temperatura máxima a la que puede operar una grasa antes de que el aceite se separe del jabón.

8. Bibliografía

Aceites y lubricantes industriales – Su tecnología y aplicación – YPF Lubricación para motores de combustión interna (Material enviado por ELF ARGENTINA) Guía para mecánicos – División lubricantes YPF- Revista "Notitécnico Nro 12" de Shell Revista AC+H (Aire comprimido e hidráulica) Apuntes de Ingeniería Mecánica III – UTN Córdoba –

Investigación en Internet: www.firm.utp.ac.pa/biblioteca/cursos/aditivos –Universidad Tecnológica de Panamá – www.idpaparatos.com – Equipos y aparatos para el control de calidad de lubricantes y derivados del petróleo. www.patagonia4x4.com.ar/profe/entendiendo.htm –Artículo "Entendiendo la lubricación y los lubricantes" Prof. Daniel Starc – Ing. Julio A. Rubio Lopez www.shell.com/ar-es/directory/0,4583,28216,00.htm – Descripción de los lubricantes y sus aplicaciones

Agradecimientos Al Ing. Sara por su tiempo y por cedernos los laboratorios de la universidad. A Edelmar Bonino por facilitarnos las muestras de aceite y catálogos. A Claudio Cabrera, Nicolás Imvinkelried, Lucas Imvinkelried, Paulo Paravano, Mario Mierke y Rodolfo Otaño por el material cedido y su colaboración. A Melina Busso y Carolina Attallah por facilitarnos los scanners. AUTORES: Ariel Argento – Bruno Bonino – Pablo Brusco – Ezequiel Cometto – Gonzalo García – Hernán Solaro Estudiantes de 2do año de Ingeniería Industrial UTN Facultad Regional Rafaela Este trabajo esta originalmente ilustrado con imágenes y gráficos, así como también se profundizan un poco mas algunos temas. Dichas imágenes no fueron incluidas en el presente informe por una cuestión de capacidad (el archivo original tiene 3mb). Si están interesados, contáctese vía e-mail y les mandaremos los archivos restantes.

 

 

 

 

Autor:

Ezequiel Cometto

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente