Descargar

Erupciones solares y la era de las telecomunicaciones


  1. Resumen
  2. Introducción
  3. Erupciones Solares
  4. Eyecciones de masa coronaria
  5. Tormenta solar de 1859
  6. Erupciones solares y la era de las telecomunicaciones
  7. Conclusión

Resumen

El siguiente trabajo tiene la finalidad de divulgar que son las erupciones solares, cómo se producen, cuáles son sus etapas y cuáles son los efectos que tendría una inyección de masa coronaria de grado X para la población, teniendo en cuenta la tormenta solar de 1859 y las investigaciones posteriores que se han realizado de los posibles efectos devastadores para nuestras sociedades al hacer que fallaran los satélites y por ende se estropeen las telecomunicaciones, posteriormente colapsaran los transformadores dejando aislados a comunidades enteras sin muchos recursos como agua, comida, electricidad, transportes y sin manera alguna de comunicarse.

Objetivos

  • Conocer que son las erupciones solares y como se producen.

  • Determinar de qué forma afectaría al planeta tierra si ocurriera una erupción solar de gran magnitud.

Introducción

Una erupción solar es una violenta explosión en la fotósfera del Sol, calentando plasma a decenas de millones de grados kelvin y acelerando los electrones, protones e iones más pesados resultantes a velocidades cercanas a la de la luz. Sus niveles de energía son A,B,C, M y X, La explosión de radiación proviene de la liberación de la energía magnética asociada a las manchas solares y son el evento más explosivo del sistema solar.

Las erupciones solares se dan en tres etapas y estas tienen diferentes consecuencias en la Tierra. Lo primero en llegar es la luz, que incluye rayos X y ultravioleta. Esto provoca la ionización de la atmósfera superior de la Tierra, interfiriendo en las comunicaciones de radio. Detrás llega la tormenta de radiaciones y se multiplicación de las auroras boreales y australes.

Lo primero que sucedería con una erupción solar de clase X sería que la ionosfera terrestre se calentaría, cambiando su densidad y composición, lo que afectaría a las comunicaciones por radio y a la señal del GPS. Peor aún, puede crear intensas corrientes eléctricas en la ionosfera llamadas electrojets.

La troposfera se cargaría de electricidad de tal manera que hasta el agua de los océanos echaría chispas. Tal cantidad de energía buscaría un camino por donde moverse: de los cables eléctricos a los transformadores, recalentándolos hasta quemarlos.

La sociedad moderna depende de sistemas de alta tecnología, y todas son vulnerables y el gran problema es que no se sabe cuándo será la siguiente tormenta ni su intensidad. Se conoce bien el ciclo solar, se sabe que está a punto de alcanzar su clímax, pero no es posible saber cuándo una erupción solar expulse una eyección de masa coronaria de grado X que pueda cambiar nuestras vidas.

Desarrollo

Erupciones Solares

Una erupción solar es una violenta explosión en la fotósfera del Sol con una energía equivalente a decenas de millones de bombas de hidrógeno, de hasta 6 × 1025 Joule. Las erupciones solares tienen lugar en la corona solar y la cromosfera, calentando plasma a decenas de millones de grados kelvin y acelerando los electrones, protones e iones más pesados resultantes a velocidades cercanas a la de la luz. Producen radiación electromagnética en todas las longitudes de onda del espectro electromagnético, desde largas ondas de radio a los más cortos rayos gamma. La mayoría de las erupciones suceden alrededor de manchas solares, donde emergen intensos campos magnéticos de la superficie del Sol hacia la corona.

Las erupciones solares se observaron por primera vez en el Sol en 1859 y a parir de ahí también se han observado erupciones estelares en otras estrellas.

La frecuencia de estos sucesos varía, de varios al día cuando el Sol está particularmente "activo" a menos de una semanal cuando está "tranquilo". La actividad solar varía en un ciclo de 11 años (el ciclo solar). En la cúspide del ciclo suele haber más manchas en el Sol, y por tanto más erupciones solares.

Las erupciones solares están asociadas a eyecciones de masa coronal, las cuales influyen mucho nuestra meteorología solar local. Producen flujos de partículas muy energéticas en el viento solar y la magnetosfera terrestre que pueden presentar peligros por radiación para naves espaciales y astronautas. El flujo de rayos X de la clase X de erupciones incrementa la ionización de la atmósfera superior, y esto puede interferir con las comunicaciones de radio en onda corta, y aumentar el rozamiento con los satélites en órbita baja, que lleva a decaimiento orbital. La presencia de estas partículas energéticas en la magnetosfera contribuye a la aurora boreal y a la aurora austral.

Las erupciones solares liberan una cascada de partículas de alta energía conocida como tormenta de protones. Los protones pueden atravesar el cuerpo humano, provocando daño bioquímico.

Estas erupciones o ondas que expulsan llegan a la Tierra entre 24 y 36 horas después del suceso, claro esto solamente ocurre si la onda de choque viaja hacia la Tierra. Pero también depende de la presión del viento solar sobre la magnetosfera, el cual aumentará o disminuirá en función de la actividad solar. La presión del viento solar modifica las corrientes eléctricas en la ionosfera.

Eyecciones de masa coronaria

Se denomina eyección de masa coronal o CME (por sus siglas en inglés: Coronal Mass Ejection) a una onda hecha de radiación y viento solar que se desprende del Sol en el periodo llamado Actividad Máxima Solar, que ocurre cada 11 años. Esta onda es muy peligrosa ya que, si llega a la Tierra y su campo magnético está orientado al sur, puede dañar los circuitos eléctricos, los transformadores y los sistemas de comunicación, además de reducir el campo magnético de la Tierra por un período. Cuando esto ocurre, se dice que hay una tormenta solar. 

Las eyecciones de masa coronaria lanzan ingentes cantidades de materia y radiación electromagnética hacia el espacio más allá de la superficie solar. En algunos casos estas eyecciones se quedan en la corona (llamándose entonces prominencias solares) o pueden adentrarse en el sistema Solar o incluso más allá, en el espacio interestelar. El material eyectado es un plasma consistente principalmente de electrones y protones, pero puede contener pequeñas cantidades de partículas más pesadas como helio, oxígeno e incluso hierro. Esto se debe a los enormes cambios y turbulencias producidos en el campo magnético de la corona solar. 

Etapas

  • 1ª etapa Erupción solar: tarda solamente 8 minutos en llegar a la tierra. La radiación electromagnética es capaz de interrumpir las comunicaciones. La erupción solar expande la atmósfera hasta alcanzar las órbitas de los satélites, alterando sus órbitas y provocando su caída a la superficie de la Tierra.

  • 2ª etapa Tormenta de Radiación: un bombardeo de radiación que puede quemar los circuitos eléctricos y dañar a las personas expuestas; aún cuando la atmósfera y la magnetósfera actúan a modo de escudo para evitar este tipo de efectos.

  • 3ª etapa Eyección de Masa Coronal: Esta es la onda más peligrosa ya que, en el caso de estar orientada hacia el sur, daña los satélites, todos los transformadores eléctricos por los que pase electricidad y las comunicaciones en todo el planeta. Si está orientada al norte, rebotará en la magnetosfera.

Tormenta solar de 1859

En el año 1859 se produjo una gran fulguración solar. La tormenta solar de 1859 fue la más potente registrada en la historia. A partir del 28 de agosto, se observaron auroras que llegaban desde el sur hasta el Caribe. El pico de intensidad fue el 1 y 2 de septiembre, y provocó el fallo de los sistemas de telégrafo en toda Europa y América del Norte. Parece que este tipo de situaciones sólo se produce cada 500 años aproximadamente, según los estudios de muestras de hielo. Parece que los primeros indicios de este incidente se detectaron a partir del 28 de agosto de 1859 cuando por toda Norte América se vio auroras boreales.

Fue la interacción más violenta que nunca se ha registrado entre la actividad solar y la Tierra. La acción del viento solar sobre la Tierra el año 1859 fue, con diferencia, la más intensa de la que se tiene constancia. El día 28 de agosto aparecieron numerosas manchas solares, y entre los días 28 de agosto y 2 de septiembre se declararon numerosas áreas con fulguraciones.

El 1 de septiembre el Sol emitió una inmensa llamarada, con un área de fulguración asociada que durante un minuto emitió el doble de energía de la que es habitual. Sólo diecisiete horas y cuarenta minutos después, la eyección llegó a la Tierra con partículas de carga magnética muy intensa. El campo magnético terrestre se deformó completamente y esto permitió la entrada de partículas solares hasta la alta atmósfera, dónde provocaron extensas auroras boreales e interrupciones en las redes de telégrafo, que entonces estaba todavía muy poco desarrollado.

La gran tormenta de 1859 fue precedida de la aparición, en el Sol, de un grupo numeroso de manchas solares cercanas al ecuador solar, casi en el momento de máxima actividad del ciclo solar, de una magnitud tan grande que se podían ver a simple vista, con una protección adecuada. En el momento de la eyección de masa coronal el grupo de manchas estaba frente a la Tierra, aunque no parece que sea necesaria tanta puntería, cuando la materia coronal llega a la órbita terrestre abarca una extensión de 50 millones de kilómetros, miles de veces la dimensión de la Tierra.

La intensa fulguración de 1859 liberó dos eyecciones de materia coronal: la primera tardó entre 40 y 60 horas para llegar a la Tierra (tiempo habitual) mientras la segunda, liberada por el Sol antes de que se llenase el vacío dejado por la primera, solamente tardó unas 17 horas para llegar a la Tierra. La primera eyección iba acompañada de un intenso campo magnético helicoidal, según los datos de los magnetómetros de la época. Esta primera etapa quedó registrada en los magnetómetros de superficie como un inicio brusco de actividad, pero no tuvo otros efectos. Al principio apuntaba al norte, pero después de 15 h en lugar de reforzar el campo terrestre se oponía al campo mencionado. Esta oposición liberó gran cantidad de energía, que comenzó a interrumpir las comunicaciones telegráficas y formar auroras boreales, hasta pasados uno o dos días, en que, una vez que el plasma pasó más allá de la Tierra, dejó que el campo magnético de la Tierra volviese a la normalidad.

Erupciones solares y la era de las telecomunicaciones

El Sol no sólo es luz; también es un gigantesco campo magnético, con líneas magnéticas recorriendo de polo a polo. Su fuerza rotatoria va torciendo estas líneas imaginarias en un ciclo que dura unos 11 años. En el clímax de su torcimiento se crean las manchas solares en la zona ecuatorial de la estrella. En ocasiones, enormes burbujas de gas y magnetismo se liberan y consiguen superar la barrera magnética (corona) que rodea el Sol, provocando una eyección de masa coronal que sale disparada hacia el espacio. Si la Tierra se encuentra en su trayectoria puede pasar lo peor.

La triple oleada tiene diferentes consecuencias en la Tierra. Lo primero en llegar es la luz, que incluye rayos X y ultravioleta. Esto provoca la ionización de la atmósfera superior de la Tierra, interfiriendo en las comunicaciones de radio. Detrás llega la tormenta de radiaciones. Los astronautas están obligados a protegerse tras un aviso de su llegada. La tercera en venir es la nube de partículas de alta energía. Sus partículas cargadas eléctricamente interactúan con la magnetosfera terrestre provocando fluctuaciones hasta desencadenar una tormenta magnética.

Si se llegase a producir más llamaradas, algunas de gran intensidad. Toda la que alcance la categoría X podría dejar fuera de combate las comunicaciones por radio, alteraría la fiabilidad del GPS, provocaría apagones eléctricos generalizados y hasta radiación en los pasajeros de los vuelos de gran altitud.

Según un estudio de la National Academies de EEUU de 2008, una erupción solar como la de 1859 desencadenaría hoy una tormenta geomagnética que afectaría críticamente a las infraestructuras modernas. Entonces, la llamarada provocó tal nube de partículas que aplastó la magnetosfera. Este círculo invisible de magnetismo protege a la Tierra de los vientos solares y la mayor parte de la radiación cósmica. Su alcance es de unos 60.000 kilómetros pero en 1859 se contrajo hasta los 7.000 kilómetros por la presión invisible que procedía del Sol.

Lo primero que sucedería con una erupción solar de clase X sería que la ionosfera terrestre se calentaría, cambiando su densidad y composición, lo que afectaría a las comunicaciones por radio y a la señal del GPS. Peor aún, puede crear intensas corrientes eléctricas en la ionosfera llamadas electrojets. Estas corrientes provocan un fenómeno eléctrico denominado "centelleo" que cambia la amplitud, fase, polarización y el ángulo de llegada de las señales. Según un informe del Departamento de Seguridad Interior de EEUU, la señal del GPS no sólo llegaría degradada sino que la tormenta geomagnética podría impedir que la Tierra recibiera la señal emitida por los 30 satélites de la constelación GPS.

En tierra, las cosas no serían mejores. La troposfera se cargaría de electricidad de tal manera que hasta el agua de los océanos echaría chispas. Tal cantidad de energía buscaría un camino por donde moverse: de los cables eléctricos a los transformadores, recalentándolos hasta quemarlos. Durante la tormenta de marzo de 1989, la zona occidental de Canadá se quedó a oscuras.

"Una tormenta similar en la actualidad nos podría dejar asombrados" Lika Guhathakurta.

El gran problema es que no se sabe cuándo será la siguiente tormenta ni su intensidad. Se conoce bien el ciclo solar, se sabe que está a punto de alcanzar su clímax, pero nada más. La NASA y la agencia espacial europea han sembrado los alrededores del Sol de una red de sensores. La mayoría están diseñados para labores de investigación, pero los más recientes, como el Solar Dynamics Observatory, tienen entre sus misiones vigilar la aparición de nuevas erupciones. Son ellos los que pueden avisar con entre 15 o 30 minutos de antelación. Con la información recibida, el Centro de Predicción del Tiempo Espacial de la NOAA (agencia de EEUU) elabora partes diarios para un millar de empresas e instituciones de todo el mundo.

Aunque se está trabajando en modelos informáticos para anticiparse al Sol, lo más realista hoy es prepararse para minimizar su impacto. A finales de 2010, EEUU puso en marcha el programa Escudo Solar. Su primer objetivo es modelar en tres dimensiones la eyección de masa coronal camino de la Tierra. Esta tercera oleada tarda varias horas y hasta un día en llegar. Con el modelo se puede anticipar dónde y con qué intensidad golpeará. En ese tiempo, los responsables de las infraestructuras deberán suspender los elementos clave para evitar que, como en 1859, los telégrafos ardan.

Una tormenta solar de esta magnitud tendría graves consecuencias para la civilización actual. Los rayos cósmicos erosionan los paneles solares de los satélites artificiales y reducen su capacidad para generar electricidad. Muchos satélites de comunicaciones, por ejemplo la ANIK E1 y la E2 en 1994 y Telstar 401 de 1997 han resultado dañados por este motivo. Un caso un poco diferente se debe a la expansión de la atmósfera por los rayos X que produjo daños al Asko japonés el 14 de julio de 2000.

Los satélites artificiales han sido diseñados específicamente para evitar las calamidades del clima espacial, pero las redes eléctricas son incluso más frágiles. Los grandes transformadores están conectados a tierra y, por tanto, pueden ser susceptibles de ser dañados por las corrientes continuas inducidas por las perturbaciones geomagnéticas y aunque los transformadores evitasen la destrucción de los núcleos magnéticos se podrían cargar durante la mitad del ciclo de corriente alterna, lo que distorsionaría la forma de las ondas de 50 o 60 Hertz.

En el año 1859, el invento del telégrafo se había producido 15 años atrás y la infraestructura eléctrica estaba realmente en su infancia. La tormenta solar de 1994 causó errores en dos satélites de comunicaciones, afectando a los periódicos, las redes de televisión y el servicio de radio en Canadá. Otras tormentas han afectado sistemas desde servicios móviles y señales de TV hasta sistemas GPS y redes de electricidad. En marzo de 1989, una tormenta solar mucho menos intensa que la perfecta tormenta espacial de 1859, provocó que la planta hidroeléctrica de Quebec (Canadá) se detuviera durante más de nueve horas; los daños y la pérdida de ingresos resultante se estiman en cientos de millones de dólares.

Si la tormenta de Carrington no tuvo consecuencias brutales fue debido a que nuestra civilización tecnológica todavía estaba en sus inicios: si se diese hoy los satélites artificiales dejarían de funcionar, las comunicaciones de radio se interrumpirían y los apagones eléctricos tendrían proporciones continentales y los servicios quedarían interrumpidos durante semanas. Según los registros obtenidos de las muestras de hielo una fulguración solar de esta magnitud no se ha producido en los últimos 500 años, aunque se producen tormentas solares relativamente fuertes cada cincuenta años.

Conclusión

El mundo en el cuál vivimos actualmente, esta dependiente de tanta tecnología que todo es controlado de forma satelital, y no se han tomado las previsiones necesarias para poder enfrentar una catástrofe de tal magnitud si ocurriera en nuestra época una eyección de masa coronaria de grado X, el caos reinaría en todo el planeta, pero aun así estamos a tiempo de poder evitar estas consecuencias si es divulgada la información sobre las erupciones solares y mejorando los satélites geoestacionarios que se encargan de enviarnos toda la información necesaria para prevenir y evitar grandes secuelas.

 

 

Autor:

Carmen Gabriela Sánchez