Descargar

Radiaciones electromagnéticas


Partes: 1, 2

    1. Radiación Electromagnética
    2. Rayos X
    3. Producción de Rayos X
    4. Propiedades de los Rayos X
    5. Interacción Con La Materia
    6. Aplicaciones de los Rayos X
    7. Rayos Ultravioletas
    8. Rayos Infrarrojos
    9. Microondas
    10. Resonancia Magnética Nuclear o Rmn
    11. Conclusiones
    12. Referencias Bibliográficas

    INTRODUCCIÓN

    Por ser la radiación electromagnética una herramienta fundamental en el campo de la medicina y también por estar presente en toda sala de radiodiagnóstico, el técnico debe conocer como se producen estas radiaciones, que efectos causan a nivel celular y somático así como la manera de protegerse él y los pacientes.

    La presente tiene como objetivo darnos a entender que son las radiaciones electromagnéticas, como se originan, los tipos de radiaciones que existen en el universo y como se diferencian unas de las otras en cuanto a su poder de ionización al interactuar con la materia.

    No pretendemos con este que se formen como expertos en radiaciones electromagnéticas pero si conocer con que trabajamos, como sacar el mayor provecho de estas ondas y que medidas tomar en beneficio de nuestra seguridad integral y de los pacientes.

    RADIACIÓN ELECTROMAGNÉTICA

    Ondas producidas por la oscilación o la aceleración de una carga eléctrica. Las ondas electromagnéticas tienen componentes eléctricos y magnéticos. La radiación electromagnética puede ordenarse en un espectro que se extiende desde ondas de frecuencias muy elevadas (longitudes de onda pequeñas) hasta frecuencias muy bajas (longitudes de onda altas).

    Espectro

    Serie de colores semejante a un arco iris (por este orden: violeta, azul, verde, amarillo, anaranjado y rojo) que se produce al dividir una luz compuesta como la luz blanca en sus colores constituyentes. El arco iris es un espectro natural producido por fenómenos meteorológicos. Puede lograrse un efecto similar haciendo pasar luz solar a través de un prisma de vidrio.

    Cuando un rayo de luz pasa de un medio transparente como el aire a otro medio transparente, por ejemplo vidrio o agua, el rayo se desvía; al volver a salir al aire vuelve a desviarse. Esta desviación se denomina refracción; la magnitud de la refracción depende de la longitud de onda de la luz. La luz violeta, por ejemplo, se desvía más que la luz roja al pasar del aire al vidrio o del vidrio al aire. Así, una mezcla de luces roja y violeta se dispersa al pasar por un prisma en forma de cuña y se divide en dos colores. Se diferencian en su frecuencia y longitud de onda. Dos rayos de luz con la misma longitud de onda tienen la misma frecuencia y el mismo color. La longitud de onda de la luz es tan corta que suele expresarse en nanómetros (nm).

    Los científicos descubrieron que más allá del extremo violeta del espectro podía detectarse una radiación invisible para el ojo humano pero con una marcada acción fotoquímica; se la denominó radiación ultravioleta. Igualmente, más allá del extremo rojo del espectro se detectó radiación infrarroja que aunque era invisible transmitía energía, como demostraba su capacidad para hacer subir un termómetro. Como consecuencia, se redefinió el término espectro para que abarcara esas radiaciones invisibles, y desde entonces se ha ampliado para incluir las ondas de radio más allá del infrarrojo y los rayos X y rayos gamma más allá del ultravioleta.

    Por orden decreciente de frecuencias (o creciente de longitudes de onda), el espectro electromagnético está compuesto por rayos gamma, rayos X duros y blandos, radiación ultravioleta, luz visible, rayos infrarrojos, microondas y ondas de radio. Los rayos gamma y los rayos X duros tienen una longitud de onda de entre 0,005 y 0,5 nanómetros (un nanometro, o nm, es una millonésima de milímetro). Los rayos X blandos se solapan con la radiación ultravioleta en longitudes de onda próximas a los 50 nm. No existen límites definidos entre las diferentes longitudes de onda, pero puede considerarse que la radiación ultravioleta va desde los 350 nm hasta los 10 nm. El ultravioleta, a su vez, da paso a la luz visible, que va aproximadamente desde 400 hasta 800 nm. La longitud de onda de la luz violeta varía entre unos 400 y 450 nm, y la de la luz roja entre unos 620 y 760 nm. Los rayos infrarrojos o "radiación de calor" se solapan con las frecuencias de radio de microondas, entre los 100.000 y 400.000 nm. Desde esta longitud de onda hasta unos 15.000 metros, el espectro está ocupado por las diferentes ondas de radio; más allá de la zona de radio, el espectro entra en las bajas frecuencias, cuyas longitudes de onda llegan a medirse en decenas de miles de kilómetros.

     

    Partes: 1, 2
    Página siguiente