Title: Cálculo Matricial – Wavelets Body: El análisis de wavelet ha probado ser potente en facilitar ciertos tipos de problemas computacionales. El álgebra matricial es uno de estos casos. Variadas integrales y ecuaciones diferenciales, cuando son expresadas en forma digitalizada para un ordenador, pueden ser resueltas usando el álgebra matricial. Desafortunadamente, la velocidad de estas operaciones matriciales es baja, típicamente del orden de n2 ciclos de CPU para una matriz de n x n elementos. En 1990, la idea brillante de ver las matrices como imágenes se le ocurrió a Gregory Beylkin. Cuando la "imagen" de la matriz se manda a la transformada de wavelet, es necesariamente comprimida debido al esparcimiento de la transformada. Operaciones simples, como multiplicación de matrices, se convierten en un trabajo rápido en el "dominio wavelet" porque las operaciones pueden ser hechas directamente en los coeficientes wavelet. La transformada inversa es entonces aplicada para retornar al dominio del problema original, dando una solución aproximada a la ecuación diferencial o integral. Esta solución aproximada notablemente buena requiere sólo una fracción del esfuerzo computacional necesario para la solución exacta (Bruce, 1996).
Title: Limpiado de Señal – Wavelets Body: Dejar a las señales e imágenes sin ruido es a menudo mucho más fácil en el dominio de wavelet que en el dominio original. Con wavelets, el ruido puede ser eliminado de un gran número de tipos de señal, incluyendo aquellas con saltos, picos y otras ocurrencias no demasiado suaves. La eliminación de ruido por wavelets es superior a las técnicas tradicionales, que eliminan el ruido por medio de filtrados paso bajo, emborronando las zonas abruptas de la señal. El procedimiento trabaja tomando la transformada de wavelet de la señal, poniendo a cero los coeficientes por debajo de un cierto límite e invirtiendo la transformada para reconstruir la señal original menos sin el ruido. El proceso de filtrar los coeficientes es bastante parecido a mantener sólo los coeficientes más importantes en los algoritmos de compresión de datos
Title: Referencias Body: Procesamiento digital de señales acústicas usando wavelets, Pablo Faundez Técnicas de compresión de la Información digital, Martín Nieves Baena Wavelets: ver el bosque y los árboles, Dana Mackenzie
Página anterior | Volver al principio del trabajo | Página siguiente |