Ranking de proyectos y casos especiales de evaluación (página 2)
Enviado por Diego Pocohuanca Paredes
Cuadro VII.2
VAN DE LOS PROYECTOS A Y B DIFERENTES TASAS DE DESCUENTO
Tasa de descuento | 5% | 10% | 11.72% | 15% | ||
VAN A VAN B | 1,743 1,235 | 897 781 | 637 637 | 180 378 |
En el cuadro anterior podemos observar que existen dos tramos diferentes, pautados por la tasa de interés, que nos llevarían a elegir diferentes proyectos. Así, para tasas inferiores a 11.72% el proyecto A es el que realiza, mientras que para tasas mayores el proyecto B es el mejor. Cabe resaltar que con un COK de 11.72 ambos proyectos tendrían la misma rentabilidad.
Cuadro VII.3.
RANGOS DE COK
Rango de COK | Proyecto elegido |
COK ( 11.72% COK = 11.72% COK ( 11.72% | A A o B B |
Proyectos complementarios
Son aquellos proyectos cuya rentabilidad conjunta es mayor que la suma de las rentabilidades individuales . Si la ejecución del proyecto B genera un aumento en los beneficios netos de otro proyecto (A) o ambos proyectos generan benéficos adicionales mutuamente, se dice que son complementarios. Lo importante en estos casos es identificar con exactitud el beneficio que la realización de un proyecto provoca sobre la rentabilidad potencial del otro. Luego se hace esto se procede a elegir.
Analicemos el caso de dos proyectos: el cultivo de flores (proyecto A) y la crianza de abejas (proyecto B). La crianza de abejas genera un aumento en la polinización de las flores, lo que produce un aumento en los beneficios del proyecto A y, consiguientemente, un incremento en su Van. Luego, se debe determinar ue proyecto se realiza: A, B o ambos a la vez. Para definirlo, podemos identificar dos situaciones posibles cuando el Van de A es positivo y cuando es negativo.
1.3.1. El VAN de A es mayor que cero
En este caso es obvio que el proyecto A se debe realizar independientemente de si se decide realizar o no el proyecto B. Para analizar si B debe llevarse a cabo, se debe de considerar entre sus beneficios aquellos que genera el proyecto A, dado que tales beneficios, al ser producidos por B, corresponden a dicho proyecto.
Ejemplo VII.2
Imaginemos que el Van de A es S/. 40 pero que se incrementa a S/. 54 si se hace B. Así el beneficio adicional efectivo que genera la realización del proyecto B en el proyecto A es de S/. 14 . En todo caso , ya sabemos que A se llevara a cabo independientemente del resultado de B, lo interesante es preguntarnos ahora en que casos deberíamos llevar a cabo B y en que casos no.
La respuesta dependerá del nivel de rentabilidad que genera B:
Si el Van de B + 14 = 0 Se hace ambos proyectos
Si el Van de B + 14 < 0 Solo se hace A
La idea detrás de lo anterior es que si el Van de B mas los beneficios adicionales que genera B en A es mayor que cero, el proyecto B deberá ejecutarse. En otras palabras, siempre que Van sea mayor que –14, el proyecto deberá llevarse a cabo. Por ejemplo, si VAN fuera S/. –10, aun cuando B no sea rentable por si mismo, convendrá llevarlo acabo por que genera S/. 14 en A, por lo que, en neto, genera S/. 4 de ganancia.
La decisión también se pu4ede plantear de otra forma, se halla el VAN conjunto A+B , el cual es la suma de los Van individuales mas que la externalidad positiva que un proyecto genera al otro, Siguiendo con el mismo ejemplo anterior y considerando a demás que el Van de B es S/. –10, el VAN conjunto de A + B seria S/. 44 (40 – 10 + 14). En consecuencia, conviene realizar ambos proyectos ya que el VAN conjunto es mayor que el Van individual de cada uno de ellos. Este procedimiento es muy útil cuando se realizan ejercicios con muchas alternativas de la inversión. Note que, en este caso, los proyectos A, B, A + B son mutuamente excluyentes.
1.3.2. El VAN de A es menor que cero
Solo en el supuesto caso en que el proyecto A ya estuviera en marcha , los S/. 5 si conformarían un beneficio efectivo Se puede presentar dos situaciones:
a) Al llevar a cabo el proyecto B aumentan los beneficios netos de A en una cantidad insuficiente para tornarlo en rentable.
Por ejemplo, consideremos que el Van de A S/. –10 y se incrementa a S/. –5 cuando se hace el proyecto B. La variación del Van de A es S/. 5. Nótese que no podemos considerar este beneficio como efectivo dado que de ninguna manera se llevaría a cabo el proyecto A. Por ello, a diferencia del caso anterior, los S/. 5 no incrementan el Van de B.
adicional de B, puesto que la implementación de este ultimo disminuirá efectivamente las perdidas de A en S/. 5.
Cabe mencionar que podría darse el caso en que se este recomendado la realización de un proyecto cuyo VAN individual sea negativo, aunque su Van final, incluido los beneficios que le genera l otro proyecto, sea positivo.
b). Al realizar el proyecto B aumenta los beneficios netos de A de tal forma que se vuelve rentable.
Por ejemplo, consideremos que el VAN de A es S/. –10 y aumenta a S/. 5 cuando se hace el proyecto B. La variación del Van de A es S/. 15. Sin embargo, el beneficio efectivo adicional que genera B en A es de S/. 5 ya que solo se contabiliza la rentabilidad efectiva a partir de que A se torne rentable. De esta forma:
Si el VAN de B +5 > 0 Se hace ambos proyectos
Si el VAN de B +5 < 0 No se hace ningún proyecto
Es decir , si la suma del Van de B y los beneficios efectivos adicionales que genera en A es mayor que cero, ejecutaran ambos proyectos. En caso contrario, no se ejecutara ninguno, ya que individualmente ambos tendrían una rentabilidad negativa.
En el caso que el proyecto A ya estuviera en marcha, los S/. 15 serian los beneficios efectivos. ¿Cuál seria la nueva forma de elección? Lo dejamos al lector.
Proyectos sustitutos
Son aquellos proyectos cuyo rendimiento conjunto es menor a la suma de sus rentabilidades individuales. Es decir, cuando la ejecución del proyecto B reduce los beneficios netos del proyecto A, o la ejecución de ambos proyectos genera una reducción de los beneficios individuales de cada proyecto..
Supongamos ahora que tenemos dos proyectos sustitutos: una clínica (proyecto A) y b una procesadora de cartones que genera una gran cantidad de ruidos molestos (proyecto B). Si B se lleva acabo al lado de a genera una disminución del numero de pacientes que se atenderán en la clínica y/o una recuperación mas lenta de los que se atiendan. Nuevamente, puede darse dos casos que desarrollaremos a continuación.
1.4.1. El VAN es mayor que cero
Se puede presentar dos situaciones:
a) A pesar de la reducción de beneficios, el Van de A sigue siendo positivo.
Por ejemplo, si el VAN de A es S/. 40,000 y se reduce a S/. 20,000 si se realiza el proyecto B, la reducción del VAN de A por realizar B es de S/. 20,000 esta es una perdida efectiva de beneficios que podrían haber sido generados por el proyecto A. Por ello, se debe cargar dicha perdida a B. Así, la regla de decisión seria:
Si VAN de B – 20,000 > 0 Se hacen ambos proyectos
Si VAN de B – 20,000 < 0 Solo se hace el proyecto A
b) La reducción de beneficios hace negativo el VAN de A
Por ejemplo, si el VAN de A es S/. 15,000 y se reduce a S/. –5,000 si se realiza el proyecto B, la reducción del Van de A se realiza B es de S/. 20,000. Sin embargo, la perdida efectiva seria S/. 15,000, dado que A aun no esta operando y no se decidirá llevarlo a cabo si su VAN cayera por debajo de cero, por lo que este es el punto de partida para el análisis. Por lo tanto, solo se carga a B estos S/. 15,000 bajo la consideración de que es lo máximo que pudo haber rendido el proyecto A si se hubiera realizado. Así, la regla de decisión seria:
Si VAN de B – 15,000 > 0 Se hace solo B
Si VAN de B – 15,000 < 0 Se hace solo A
En este caso, nunca se realizaran ambos proyectos a la vez ¿por qué? En el primer caso, solo se hace el proyecto B pues este seria el único proyecto con VAN positivo ya que se puesta en marcha hace que el VAN de A se torne negativo. En cambio, si el VAN de B fuese menor a S/. 15,000, entonces no cubrirá los costos de la caída y en VAN total de (VAN de b – 15,000) seria negativo por lo que no convendría realizarlo.
Cabe destacar que si el proyecto A ya estuviese en marcha los S/. 20,000 seria perdida efectiva y se deberán cargar como costo al proyecto B para realizar el análisis.
1.4.2. El VAN de A es menor a cero
En este caso, el proyecto A no se ejecutara de ninguna manera, puesto que siempre es negativo y la ejecución de B solo llevaría a empeorar su situación . Por ejemplo, supongamos que el Van de A es S/. 20,000 y se reduce a S/. –30,000 si se hace el proyecto B. Entonces, la reducción del Van de A si se realiza B es de S/. 10,000 pero esta perdida no es efectiva puesto de que cualquier forma no se va a realizar el proyecto A. Por lo tanto, la decisión de realizar B dependerá exclusivamente de su propio VAN.
En caso de que el proyecto A ya estuviera en marcha, los S/. 10,000 si representarían una perdida efectiva, por que aumentarían aquellas que ya esta generando el proyecto A en marcha. Por ello, se deberían considerar como un costo atribuible a B e inclusive en el momento de decidir su ejecución.
Ejemplo VII.3
La empresa Chang S.A. es una gran compañía asiática que viene a invertir en Perú. Los fondos con los que cuenta son suficientes para llevar a acabo todos los proyectos de inversión ofrecidos. Así tiene siete posibles alternativas de inversión que presentan diferentes interrelaciones. Es necesario analizar dichos proyectos y sus relaciones antes de tomar una decisión definitiva. Se le pide a usted que lleve a cabo este análisis a partir de los siguientes datos.
Cuadro VII.4
ALTERNATIVAS DE INVERSIÓN
Proyecto | E | F | G | H | I | J | K | |||
VAN (millones de S/.) | 500 | 650 | (45) | 260 | 150 | 480 | 250 |
Los proyectos E, F y J son mutuamente excluyentes
Si el proyecto G se lleva a cabo, el VAN del Proyecto K aumenta en S/. 60.
Si el proyecto I se lleva a cabo, el Van del proyecto H disminuye en S/. 160
El costo de oportunidad del capital de la empresa asciende a 8%
Un método permite incorporar las relaciones entre los proyectos es considerar el valor de los VAN conjuntos en los casos de los proyectos relacionados. Es decir, G + K y H + I pero teniendo cuidado de seguir todas las pautas señaladas anteriormente ( esto es, que representaran proyectos mutuamente excluyentes con respecto a los proyectos individuales) y diferenciando las variaciones del Van de las ganancias efectivas.
Cuadro VII. 5
ALTERNATIVAS DE INVERSIÓN
Proyecto | VAN ((8%) | VAN conjunto |
E F J G K G + K H I H + I | 500 650 480 -45 250 265 260 150 250 | 250 – 45 + 60 260 + 150 – 160 |
De esta forma , se tiene tres grupos de proyectos mutuamente excluyentes (E, F y J; G, K y G + K; H, I y H + I) y debemos elegir un solo proyecto en cada uno de estos grupos. Para tomar esta decisión, debemos optar por el proyecto con mayor VAN en cada grupo: F, G + K y H, respectivamente. Sobre esta base,, podemos decir que los proyectos que deberían llevarse a cabo son F, G, K y H.
Con racionamiento de capital
En este caso, el inversionista tiene recursos limitados por lo que no puede ejecutar todos los proyectos que tengan un VAN positivo. Por ello, se ve obligado a establecer un orden de prioridades para el conjunto de proyectos . Es decir, se busca encontrar el conjunto de proyectos que hagan máximo el VAN total, sin quebrantar la restricción presupuestaria.
A fin de ordenar las alternativas de inversión que cumplan con estas condiciones se utiliza un nuevo indicador: índice de rentabilidad.
2.1. Índice de rentabilidad (IR)
Según Brealey y Myers " cuando los fondos son limitados, necesitamos centrarnos en lo que proporciona el mejor resultado para nuestro bolsillo. En otras palabras, tenemos que realizar los proyectos que ofrecen la mayor relación entre el valor actual y desembolso inicial. Esta razón es simplemente el índice de rentabilidad…" Este índice puede definirse de cualquiera de las siguientes formas:
VAN
IR = ———–
Inversión
O
VA Flujos VAN + Inv
IR = ———– = ————-
Inversión Inversión
En los ejemplos de esta sección utilizaremos la primera definición
Ejemplo VII.4.
Se tiene tres proyectos independientes que presentan un VAN positivo, pero solo se cuenta con S/. 3,000 para invertir ¿Qué proyectos se debe ejecutar?
Cuadro VII.6
ALTERNATIVAS DE INVERSIÓN
Proyectos | Inversión | FC1 | FC2 | VAN(10%)1/ | IR2/ |
A B C | (3,000) (1,500) (1,500) | 1,000 1,000 1,500 | 15,000 7,000 7,500 | 10,306 5,194 6,062 | 3.44 3.46 4.04 |
FC1 FC2
1/ VAN = Inversión + ———– + ———-
(1.1) (1.1)2
VAN
IR = ———-
Inversión
Con los S/. 3,000 podemos invertir en A o en B y C. Según el IR los proyectos que debemos elegir son, en primer lugar el C y en segundo lugar el B. Además, en conjunto, generan un mayor VAN que el proyecto A, por el mismo monto de inversión.
Este sencillo método de clasificación también tiene sus limitaciones:
Solo sirve para clasificar proyectos independientes. La existencia de relaciones entre los proyectos independientes. La existencia de relaciones entre los proyectos impone restricciones adicionales a las de capital que deben ser analizadas por su cuenta.
Cuando lso recursos de capital están limitados para cada uno de los periodos se incorpora restricciones adicionales.
Debe agotarse totalmente el capital disponible. De lo contrario, es posible que la relación de los proyectos por medio del IR no genera un resultado optimo.
2.2. El capital no se agota totalmente
Veamos este ultimo capitulo problema a través de un ejemplo
Ejemplo VII.5.
Se tiene dos proyectos de inversión, E y F . La restricción presupuestaria es de S/. 2,000 ¿qué proyectos se deben realizar?
Cuadro VII.7
ALTERNATIVAS DE INVERSIÓN
Proyecto | Inversión | VAN(8%) | IR |
E F | 1,700 2,000 | 3,000 3,400 | 1.76 1.70 |
De acuerdo al procedimiento utilizado hasta ahora, se debería escoger el proyecto de mayor IR, esto es, el proyecto E. Sin embargo, al hacerlo sobrarían S/. 300 que podrían invertir en otras alternativas. Es mas, en este ejemplo en particular, seria mejor invertirlos en el proyecto F que en E, por que le primero genera un mayor VAN.
En este caso, existen dos posibilidades:
Si los proyectos fueran divisibles, deberíamos invertir S/. 1,700 en proyecto E y los S/. 300 restantes en el en el proyecto F.
Si los proyectos no son divisibles, deberíamos descartar el IR y analizar los planes de negocio.
El criterio de los planes de negocio que debe considerar es aquel que indica que ante la existencia de restricciones de capital, lo que se busca es encontrar un proyecto que otorgue el mayor Van total sin quebrantar la restricción presupuestaria con la que se cuenta.
Siguiendo este criterio para el ejemplo anterior, debemos escoger el proyecto F, que genera un mayor Van que el proyecto E, a pesar de tener un menor IR. Ahora bien ¿cómo podemos comprobar que esta decisión es correcta?
Notemos que el proyecto E no invertimos todo el capital que tenemos, sino solamente S/. 1,700 Los S/. 300 restantes se invertirán al costo de oportunidad (8%) con un Van igual a cero.
La pregunta que surge ahora es: ¿Qué es mejor, invertir los S/. 2,000 en una alternativa con un menor rendimiento(como la F, con un IR de 1.7) o invertir solo S/. 1,700 al máximo rendimiento (IR de 1.76)? Para responder esta pregunta nótese que el IR del proyecto conjunto "E y el resto al costo de oportunidad de (% es igual a:
3,000 + 0
————- = 1.5
2,000
Y por lo tanto menor IR del proyecto F
2.3. Relaciones entre proyectos
A continuación se presentan una serie de ejemplos a través de los cuales se proponen procedimientos tentativos para elegir los mejores proyectos cuando, además de existir restricciones, se presentan relaciones entre los proyectos analizados.
2.3.1. Proyectos mutuamente excluyentes
Ejemplo VII.6.
Se tiene cuatro proyectos de inversión A, B, C y D. Los proyectos A y B son mutuamente excluyentes. La restricción presupuestaria es de S/. 2,000 ¿ Que proyectos se deben de realizar?
Cuadro VII.8
VAN E IR DE OS PROYECTOS A, B, C Y D
Proyectos | Inversión | VAN(10%) | IR1/ |
A B C D | (800) (1,000) (1,200) (1,000) | 2,080 2,800 3,240 3,200 | 2.60 2.80 2.70 3.20 |
VAN
1/ IR = ———-
Inversión
Como los proyectos A y B son mutuamente excluyentes debo escoger primero uno de ellos: el que genere mayor rentabilidad dado el capital invertido en él ( es decir, aquel con mayor Ir). Luego, se elabora un ranking entre proyecto elegido y los restantes.
En el ejemplo, como el proyecto B tiene mayor IR que A, elimino este ultimo y determino un ranking con el IR para los proyectos B, C y D.
Cuadro VII.9
INDICE DE RENTABILIDAD PARA LOS PROYECTOS B, C Y D
Proyecto | Inversión | VAN(10%) | IR1/ | No. De orden |
B C D | (1,000) (1,200) (1,000) | 2,800 3,240 3,200 | 2.8 2.7 3.2 | 2 3 1 |
VAN
1/ IR = ———-
Inversión
Luego , elaboramos un cuadro ordenado los proyectos según su rentabilidad e indicando, en una columna, el volumen de inversión acumulada al agregar un proyecto. Así, esta columna nos indicara cuando se cumple la restricción presupuestaria.
Cuadro VII.10
INVERSIÓN E INVERSIÓN ACUMULADA DE LOS PROYECTOS B, C Y D
Proyecto | No de orden | Inversión | Inversión acumulada |
D B C | 1 2 3 | (1,000) (1,000) (1,200) | (1,000) (2,000) (3,200) |
A partir del cuadro anterior, los proyectos que se deben ejecutar sin el D y el B.
2.3.2. Proyectos complementarios
Ejemplo VII.7.
Se tiene Cuatro proyectos de inversión A, B, C y D. Los proyectos A y B son complementarios: si se lleva a cabo B, el VAN de A aumenta S/. 600. La restricción Presupuestaria es de S/. 3,000 ¿Qué proyectos se deben realizar?
Cuadro VII.11
VAN E IR DE PROYECTOS COMPLEMENTARIOS
Proyecto | Inversión | VAN(10%) | IR/1 |
A B C D | (1,000) (1,000) (1,000) (1,000) | 2,600 2,800 2,900 3,200 | 2.60 2.80 2.90 3.20 |
VAN
IR = ———
Inversión
La forma mas simple para elegir entre estos proyectos es incluir uno adicional, el proyecto A + B, en el cual tendría una inversión de S/. 2,000 (S/.1,000 de A + S/. 1,000 de B) y un Van conjunto de S/. 6,000 (S/. 2,800 de B + S/. 2,600 de A + S/. 600 de beneficio adicional efectivo que genera B en A)
Al indicar el proyecto A + B lo que esta haciendo es transformar el problema de proyectos complementarios a uno de proyectos mutuamente excluyentes. Por lo tanto, se produce igual que en el caso de proyectos mutuamente excluyentes. De esta manera, el primer paso es decidir cual de los proyectos mutuamente excluyentes ejecutar: A, B o A + B. Luego, se ordenan los proyectos y se eligen aquellos que se llevaran a cabo.
Cuadro VII.12
INCLUYENDO EL PROYECTO A + B
Proyecto | Inversión | VAN(10%) | IR1/ |
A B A + B C D | (1,000) (1,000) (2,000) (1,000) (1,000) | 2,600 2,800 6,000 2,900 3,200 | 2.60 2.80 3.00 2.90 3.20 |
VAN
1/ IR = ———-
Inversión
De acuerdo al IR se debe escoger el proyecto A + B . Ahora, resta elegir cual de los proyectos independientes deberían llevarse a cabo
Cuadro VII.13
ALTERNATIVAS RESTANTES INDEPENDIENTES
Proyecto | Inversión | VAN(10%) | IR1/ | No de orden |
A + B C D | (2,000) (1,000) (1,000) | 6,000 2,900 3,200 | 3.0 2.9 3.2 | 2 3 1 |
VAN
1/ VAN = ———-
Inversión
Cuadro VII.14.
INVERSIÓN ACUMULADA DE LOS PROYECTOS A + B, C Y D
Proyecto | No de orden | Inversión | Inversión acumulada |
D A + B C | 1 2 3 | (1,000) (2,000) (1,000) | (1,000) (3,000) (4,000) |
Según el cuadro anterior, se deben ejecutar los proyectos D, A y B los cuales agotan exactamente el capital existente.
2.3.3. Proyectos sustitutos
Se tienen cuatro proyectos de inversión A , B, C y D. Los proyectos A y B son sustitutos: si B se realiza, el Van de A disminuye en S/. 400.
Los demás proyectos son independientes y la restricción presupuestaria es de S/. 3,000 ¿ Que proyectos se deben realizar?
Cuadro VII.15
VAN E IR PROYECTOS SUSTITUTOS
Proyecto | Inversión | VAN(10%) | IR1/ |
A B C D | (1,000) (1,000) (1,000) (1,000) | 3,600 2,800 4,000 3,300 | 3.60 2.80 4.00 3.30 |
VAN
1/ IR = ———-
Inversión
El procedimiento para elegir los proyectos es similar al planteado para proyectos complementarios: se incluye un proyecto adicional (A+B), con lo cual se forman tres alternativas mutuamente excluyentes, de las cuales se elige la de mayor IR, Finalmente, se obtienen proyectos independientes entre los que se eligen los de mayor IR hasta tener una inversión acumulada igual a la restricción presupuestaria. En el ejemplo anterior, los proyectos elegidos serian C, A y D
2.4. Los recursos de capital están limitados para cada uno de los periodos
Hasta el momento, hemos analizado proyectos donde la restricción de capital se presentaba en el periodo cero, momento en el que se decida que proyectos realizar. En la presente sección analizaremos que sucede cuando disponemos de alternativas de inversión para los próximos periodos que conocemos de antemano, y las complicaciones que traen las nuevas restricciones de presupuestos de la empresa durante los mismos.
Existen casos en los que la empresa puede conocer de antemano las alternativas de inversión a las que tendrá acceso en el siguiente periodo, pero dado que tiene recursos limitados tanto en el presente como en los periodos próximos, debe respetar un determinado presupuesto, en estos casos la empresa debe de maximizar el VAN total(de todos los proyectos, incluyendo las relaciones que puedan haber entre los mismos) dado su presupuesto para cada periodo.
Analicemos el caso de cuatro proyectos independientes: K, L, M y N. El proyecto N empieza en el año 1, mientras que demás los proyectos empiezan en el 0. Existe una restricción de capital de S/. 2,000 para el año 0 y de S/. 1,000 para el año 1. ¿ Que proyectos se deben de realizar?
Cuadro VII.16
FLUJO DE CAJA DE CUATRO PROYECTOS INDEPENDIENTES
Proyecto | Ano 0 | Año 1 | Año 2 | VAN(10%) | IR |
K L M N | (2,000) (1,000) (1,000) | 4,000 1,000 1,000 (5,000) | 25,000 15,000 18,000 35,000 | 22,298 12,305 14,785 24,380 | 11.15 12.30 14.80 5.36 |
Año 1 Año 2
1/ VAN = Inversión + ———– + ———-
(1.1) (1.1)2
VAN
1/ IR = ———-
Inversión
Una posible estrategia seria aceptar los proyectos L y M , que tienen mayor índice de rentabilidad y que cumplen las restricciones para el año =. Pero si hacemos esto, excluiríamos la posibilidad de aceptar el proyecto N en el año 1, ya que se requeriría invertir mas de lo que dispondremos en ese año.
En cambio , si hacemos el proyecto K, en al año 1 recibiremos un flujo de S/. 4,000 los cuales, sumamos a nuestro capital para ese año,, alcanzan los S/. 5,000 necesarios para ejecutar el proyecto N.
Nos enfrentamos entonces a dos alternativas mutuamente excluyentes: llevar a cabo los proyectos L y M o los proyectos K y N. Es importante resaltar que estos proyectos no son mutuamente excluyentes por si mismo, sino por la restricción de capital que limita nuestras posibilidades de decisión y las hace excluyentes.
La diferencia entre ambas alternativa es que en los proyectos K y N se gasta todo el presupuesto de capital para los dos años: S/. 2,000 en el año 0 y S/. 1,000 en el año 1. En cambio en los proyecto L y M solo se gasta el presupuesto del año 0 y el correspondiente al año 1 no se invierte. Asi pues, estamos en un caso en donde no se invierte toda la restricción presupuestaria, por lo que se debe analizar el plan de negocios.
Nuevamente la pregunta relevante: ¿qué es mejor, invertir S/. 2,000 en los proyectos mas rentables, dejando S/. 1,000 para invertirlos en la alternativa que rinde el COK, o invertir los S/. 3,000 en proyectos no tan rentables? La respuesta dependerá del Van total de ambos planes.
Si comparamos el Van conjunto de K y N con el de L y M tendremos lo siguiente:
VAN (K+N) = 46,678
VAN (L+M)= 27,0907 VAN (K+N) VAN(L+M)
A partir de esta información vemos que el VAN de K+N es mayor que el VAN (L+M) en S/. 19,588. Por lo tanto, es mas conveniente realizar los proyectos K y N.
Ejemplo VII.7.
La empresa Fontana S.A. esta considerando invertir en los siguientes proyectos:
Cuadro VII.17.
ALTERNATIVAS DE INVERSON DE LA EMPRESA FONTANA
Proyecto | Inversión | VAN(10%) | IR1/ |
A B C D E | (600) (700) (500) (500) (500) | 840 1,120 800 600 850 | 1.4 1.6 1.6 1.2 1.7 |
VAN
1/ IR = ———-
Inversión
El VAN que obtienen los proyectos en el cuadro anterior ocurre no solo si se realizan individualmente. De lo contrario, los proyectos presentan las siguientes interrelaciones:
a) Si A y B se llevan a cabo, el Van de A aumentara en S/. 360 y la inversión conjunta disminuirá en S/. 100.
b) Si C y D son realizados, el Van de D se reduce en S/. 100.
c) El proyecto E es independiente de los demás.
Sobre la base de esta información ¿qué proyectos debe realizar la empresa Fontana S.A. si solo dispone de S/. 1,700?
Se incluyen los proyectos A + B y el C+ D ya qué están relacionados.
Entre los proyectos A, b y A+B debemos escoger uno, ya que son mutuamente excluyentes. Los mismo sucede entre C y D y C + D. Escogemos aquellos que tiene una mayor IR: A+B y C.
Cuadro VII.18.
ANTERNATIVAS DE INVERSIÓN
Proyecto | Inversión | VAN(10%) | IR1/ |
A B A+B C D C+D E | (600) (700) (1,200) (500) (500) (1,000) (500) | 840 1,120 2,320 800 600 1,300 850 | 1.4 1.6 1.93 1.6 1.2 1.3 1.7 |
VAN
1/ IR = ———-
Inversión
Luego , elaboramos un ranking con los proyectos restantes e invertimos hasta completar los S/. 1,700
Cuadro VII.19.
ALTERNATIVAS ESCOGIDAS
Proyecto | No de orden | Inversión | Inversión acumulada |
A + B E C | 1 2 3 | (1,200) (500) (500) | (1,200) (1,700) (2,200) |
Por lo tanto, invertimos en los proyectos A+B y E.
Si hubiera otro proyecto F se requiriera de una inversión de S/. 800, generara un Van de S/. 900 y el capital aumentase a S/. 2,000?Cambiaria su decisión anterior?
En este caso tendríamos lo siguiente:
Cuadro VIII.20
INCLUYENDO PROYECTO F
Proyecto | Inversión | VAN(10%) | IR1/ |
A+B E C F | (1,200) (500) (500) (800) | 2,320 850 800 900 | 1.93 1.7 1.6 1.13 |
VAN
1/ IR = ———-
Inversion
A partir de esta información, podemos decir que tendremos dos casos:
Si los proyectos son divisibles de debe invertir, de acuerdo con el orden del IR, en el proyecto A+B, el proyecto E y solo S/. 300 en el proyecto C.
Si los proyectos no son divisibles, es necesario relaizar un plan de negocios ¿Cuál es la combinación de proyectos que brindan un Van total mayor dada la restricción presupuestaria? En este caso nos convendría mas ejecutar el proyecto A + B y el proyecto F, ya que genera un mayor VAN que las otras alternativas.
Resumen
Un inversionista se enfrenta a la disyuntiva de tener que elegir entre distintos proyectos, posiblemente rentables en forma individual.
Esta necesidad de elegir puede ser originada tanto por problemas de racionamiento de capital, como por posibles relaciones entre dichos proyectos que generan un resultado diferente del que se obtendrá si se llevaran a cabo de forma individual.
Cuando la empresa no tiene racionamiento de capital, se puede endeudar ilimitadamente y la elección entre varios proyectos dependerá de las interrelaciones que existen entre ellos. Así si los proyectos son independientes se eligieran todos aquellos que tienen un VAN positivo. Si los proyectos son mutuamente excluyentes, la elección de alguno de ellos dependerá de la tasa don la que se descuenten los flujos. De esta forma, sera posible que la decisión final sobre cual llevar a cabo varié en función del valor del COK. La ejecución del proyectos complementarios, o que se benefician entre si, dependerá del Van de cada uno y del efecto final (positivo) que cualquiera de ellos produzca sobre el otro. Asi, se presentaran situaciones en los que será recomendable llevar un proyecto con VAN negativo pero que tiene importantes efectos positivos sobre otro. En el caso de proyectos sustitutos, lo importante es determinar la perdida que uno le genere al otro e imputarlo como un costo del primero. De esta manera, el proyecto que genera los efectos negativos puede ser dejado de lado aun cuando individualmente tenga un Van positivo.
Cuando existe racionamiento de capital, el inversionista no podrá realizar todos los proyectos con VAN positivo, por lo que se vera obligado a establecer un orden de prioridades para el conjunto de proyectos, buscando maximizar el VAN total sin quebrantar la restricción presupuestaria. Para hacer el Ramking de proyectos se utilizara el índice de rentabilidad (IR), que relaciona el VAN con el nivel de inversión. Así, se escogerán aquellos con mayor índice o , dicho de otra forma, aquellos que rindan mas por sol invertido. Sin embargo, el IR es un indicador que presenta limitaciones, especialmente en el caso de proyectos no divisibles. En esta situación, el evaluador deberá de descartar el IR y centrarse en el análisis de los planes de negocio.
Ejercicios
1 Se tiene una cartera de proyectos de inversión, de los cuales se debe escoger solo un dado que son mutuamente excluyentes. El siguiente cuadro muestra los flujos netos de cada uno:
Proyecto | 0 | 1 | 2 | 3 | 4 | 5 |
A B C | -1,000 -800 -1,500 | 300 500 200 | 250 300 200 | 250 200 200 | 200 200 | 200 |
Si no se conoce el COK determine cual de los tres proyectos es el mejor
2 La empresa Revisa posee la siguiente información( en miles de soles) sobre una serie de proyectos de inversión:
Proyecto | Inversión | FN1 | FN2 | FN3 | FN4 |
A B C D E F | 300 175 430 280 350 250 | 75 75 25 100 | 75 100 150 30 100 | 75 200 35 100 | 25 100 50 40 500 100 |
Si no existe limitación en el capital disponible y el COK de Revisa es de 10% determine cuales son los proyectos que debe realizar.
3. Suponga ahora que, luego de un análisis mas detallado, se tiene la siguiente información sobre ciertas relaciones entre los proyectos de la pregunta anterior.
Los proyectos A y C son complementarios, aumentando los flujos del primero 30% si se hace C.
Los proyectos B y D son también complementarios, Aumentando los flujos del segundo en 50% si se hace B.
Los proyectos C y F son sustituidos, disminuyendo los flujos del segundo en 40% si se hace C.
¿Cómo cambia la decisión tomada en la pregunta anterior?
4. El alcalde de cierta localidad ha obtenido un financiamiento por S/. 500,000 y tiene que evaluar en que proyecto(s) invertir dicho monto. Un análisis de mercado le dice que tiene cinco alternativas de inversión. El siguiente cuadro muestra cada opcion con su respectivo monto de inversión y VAN calculado:
Proyecto | Inversión | VAN | ||
Reparación de calles Reconstrucción de la Plaza de Armas Construcción de un colegio Mejoramiento de la infraestructura municipal Construcción de zonas deportivas | 300,000 420,000 150,000 380,000 250,000 | 120,000 70,000 90,000 70,000 115,000 |
Con esta información se le pide determinar en que debería invertir el alcalde de la localidad si se sabe que todos los proyectos son independientes.
5 Considere ahora que en el problema anterior se conocen las siguientes relaciones entre los proyectos:
La reparación de las calles y la reconstrucción de la plaza de armas son complementarios . El primer proyecto incrementa el Van del segundo en S/. 100,000.
La construcción del colegio ocuparía parte del terreno que destinaría a las zonas deportivas, por lo que son proyectos sustitutos. El segundo disminuye el VAN del primero en S/.40,000
¿Cuáles son los proyectos que debería ejecutar?
6. Se tiene los proyectos A, B, C, D, E Y F la inversión y el Van de cada uno se presentan a continuación.
Miles de soles | A | B | C | D | E | F | ||
Inversión VAN | 100 55 | 75 40 | 90 35 | 150 70 | 110 35 | 80 90 |
Se sabe que los proyectos B y E son mutuamente excluyentes. Además, los proyectos de A y B son complementarios, aumentando el VAN del primero en S/. 20,000 si se hace B. Los proyectos C y D son también complementarios, Produciéndose un incremento en el VAN del primero de S/. 25,000 si D se hace. Finalmente, los proyectos F y E son sustitutos, disminuyendo el VAN de F en S/. 30,000 si E se lleva a cabo. Determine en que proyectos invertir si se cuenta con un capital máximo de S/. 350,000.
7. En una empresa minera necesita tener un sistema propio de generación eléctrica. Para esto tiene dos posibilidades; utilizar la tecnología A o la B. Ambas tecnologías producen los mismos beneficios, pero enfrentan costos distintos tanto en inversión como en mantenimiento. Estos últimos se presentan a continuación:
Miles de soles | 0 | 1 | 2 |
Tecnología A Tecnología B | (200) (150) | (20) (15) | (20) (15) |
Si al vida útil de ambas alternativas es infinita, determine cual de los dos escogería y bajo que condiciones. Ayúdese de un grafico para dar la respuesta.
8. El gobierno piensa construir una carretera que una dos localidades de la sierra peruana y tiene que decidir si Será asfaltada o afirmada. La carretera afirmada. La carretera afirmada requiere de una inversión de S/. 200 millones y tiene una duración de 10 años, después de los cuales tendrá que realizar una inversión de la misma cuantía para mantenerla operativa. Por otro lado, la carretera asfaltada requiere de una inversión de S/. 350 millones, pero tiene una duración de 20 años, por lo que será necesario reinvertir terminado dicho periodo de tiempo. Determine cual de las siguientes tres alternativas es la mejor, considerando solo un horizonte de análisis de 40 años:
Alternativa A : Carretera afirmada
Alternativa B : Carretera asfaltada
Alternativa C : Carretera afirmada por 20 años y luego asfaltada.
9. Determine la relación entre los dos proyecto (A y B) para cada caso e indique cuales son las condiciones que se deben de cumplir para que se lleve a cabo.
El proyecto A tiene VAN de S/. –10 y este se incrementa a 0 si se ejecuta B.
El Proyecto A tiene un VAN de S/. 10 y si se ejecuta B, este se incrementa a S/.25.
El VAN de A, que ya esta funcionando, es de S/. 40 y si se ejecuta B este disminuye a S/. –100.
El proyecto A, que ya esta funcionando, tiene un Van de S/. –50 y si B se ejecuta, se reduce a S/. –51.
10. El grupo económico Chávez & Chávez tiene un capital de s/. 420,000 que desea invertir en diversos sectores productivos. El costo de oportunidad del grupo para proyectos poco riesgosos es de 14% debiendo añadir un adicional de acuerdo al riesgo de cada alternativa de inversión. El siguiente cuadro muestra este adicional, los beneficios anuales y la vida útil de cada proyecto:
Proyecto | Riesgo | Beneficios (miles de soles) | Inversión (miles de soles) | Vida útil |
Educación Salud Minería Agricultura Construcción Pesca | 1% 2% 3% 2% 2% 3% | 35 25 35 30 25 40 | 115 95 145 130 100 140 | 20 25 30 20 25 25 |
El grupo le pide a usted que le diga cuales son los sectores en los que se debe invertir su dinero. Considere que los beneficios anuales son constantes a los largo de toda vida útil.
11. Luego de dar la respuesta a la pregunta anterior, se le informa que los proyectos de los sectores educación y salud son mutuamente excluyentes. Por otro lado, los proyectos de los sectores de educación ya agricultura son complementarios, aumentando los beneficios del segundo en un 20 % cuando se hace el primero.
Lo mismo sucede con los proyectos de salud y construcción, aumentando los benéficos del segundo en 50% cuando se lleva a cabo el de salud. ¿cuáles son los sectores en los que el grupo debe invertir ahora?
ANALISIS OPTIMIZANTE DEL PROYECTO
La regla de decisión basada en el método del valor actual neto se sustenta en que la riqueza de la empresa aumenta con cada proyecto aceptado que tenga un van positivo. Sin embargo, un van mayor que cero no es condición suficiente para recomendar la aprobación de la inversión, por cuanto podrían existir, en el mismo proyecto, otras oportunidades que posibilitarían maximizar la rentabilidad, ya sea porque existan tamaños más convenientes de planta o momentos de tiempo mejores que el actual para implementar la decisión de hacer el proyecto.
En este capítulo se analizan los criterios de optimización de proyectos para los casos más comunes y generalmente, los más complejos: momentos óptimos, tamaño óptimo y combinatorio óptimo de proyectos en presencia de restricciones de capital
Estimación de momentos óptimos1
Existen dos situaciones donde la sensibilización del resultado de adelantar o postergar una decisión puede mostrar cambios significativos en la rentabilidad calculada de un proyecto, pudiendo, por ello, encontrarse una solución mejor si se modifica el momento de hacerlo el momento de hacer la inversión y el de liquidarla. La primera de ellas presenta una particularidad especial cuando se trata de determinar el momento óptimo de reemplazar un activo.
El momento óptimo de invertir
Para determinar el momento óptimo de hacer la inversión se puede recurrir a distintos criterios, dependiendo de las características específicas que presente el proyecto. El instrumento más recurrente para definir cuándo hacer la inversión se denomina rentabilidad inmediata, la cual mide la rentabilidad del primer año de operación respecto de la inversión realizada y se calcula aplicando la siguiente ecuación:
(1)
donde Rl es el índice de rentabilidad inmediata, F, el flujo de caja esperado para el primer año de funcionamiento e lo la inversión realizada en el momento cero.
La rentabilidad inmediata se fundamenta en que puede haber un proyecto con flujos de caja tan altos en los años futuros que compensaría a flujos que pudieran ser muy bajos en los años iniciales, mostrando un van positivo para el total del proyecto.
La regla de decisión señala que el proyecto se debe implementar cuando el primer flujo de caja sobre la inversión dé, como resultado. un índice igual o superior a la tasa de retorno exigida por el inversionista. Si el flujo del primer año fuese inferior a ella, la inversión deberá posponerse, por cuanto esos recursos debieran ser capaces de rentar dicha tasa en otro proyecto optativo de inversión para la misma empresa.
Esto supone que los flujos futuros de caja son independientes de cuándo se realiza el proyecto.
La regla de decisión se explica porque al ser los beneficios independientes de cuándo se ejecuta el proyecto, los flujos de caja entre invertir hoy en el proyecto o hacerlo en un año más, serían siempre los que se muestran en la sgte tabla
Tabla 11.1
Flujo de caja incremental al no postergar la inversión
0 -1.000 | 1 | 2 | 3 | 4 | 5 90 90 | —- | n | ||
Iniciar hoy Posponer un año | 30 -1.000 | 90 90 | 90 90 | 90 90 | 90 90 | 9090 | |||
Incremental | -1.000 | 1.030 | 0 | 0 | 0 | 0 | 0 | 0 |
El flujo incremental indica qué pasa si se hace hoy la inversión en vez de posponerla un año. Si no se posterga, la empresa tendría que asumir ahora el costo de invertir a cambio de "ahorrarse" la inversión en un año más y de obtener el beneficio de generar el flujo de caja de $30 el próximo año. Desde el año 2 los beneficios son idénticos cualquiera sea el momento de iniciar la inversión y, por lo tanto, son irrelevantes para el análisis.
Si todo se expresa en moneda del momento cero y si la tasa de descuento fuese el 10%, se tendría:
(2)
VAN incremental2
Es decir
2. Dado que un VAN Incremental igual o mayor que cero hace conveniente la postergación de la inversión y que se supone que, en moneda de igual valor la inversión no cambia, por lo que lo= lo(de aquí en adelante i), esta ecuación se puede expresar como sigue para exponer la condición de aceptabilidad de la postergación:
de lo que se deduce:
es lo mismo que
Luego
Entonces
Y
Resultando
O sea, si la rentabilidad del primer año es inferior a la tasa de retorno exigida a la inversión, se cumple la condición de aceptabilidad de la postergación.
Al aplicar el concepto de rentabilidad inmediata a los datos de la tabla 11.1, se observa que recién en el momento 3 se obtiene un resultado superior a 10%, lo que indica que la inversión debe hacerse en e. momento 2.
Cuando la inversión se debe realizar en más de un año, corresponderá capitalizar el flujo de inversiones hasta el momento cero y proceder a aplicar directamente la fórmula de cálculo de la rentabilidad inmediata.
Si los beneficios netos fuesen constantes en el tiempo, no tiene sentido calcular la rentabilidad inmediata, por cuanto F,l0 tendía siempre el mismo resultado. Si éste es mayor o igual a la tasa exigida y basado sólo en consideraciones económicas se deberá implementar de inmediato el proyecto, ya que reporta al inversionista, desde el primer año de operación, a lo menos la rentabilidad deseada.
Obviamente, el modelo considera sólo la variable económica para proponer un curso de acción. Sin embargo, existe una cantidad importante de otras variables que se deben tomar en cuenta al tomar una decisión. Por ejemplo, la posibilidad de que con la postergación de la inversión se bajen las barreras a la entrada de nuevos competidores que pudieran incorporarse hoy con un proyecto opcional, o que al estar el proyecto integrado a un plan de desarrollo estratégico de la empresa atente contra los resultados consolidados de ella.
Por último, la rentabilidad inmediata no puede se empleada cuando los beneficios netos son dependientes de la inversión. Por ejemplo, sería ilógico que se postergue por cuatro años la plantación de árboles frutales que dan frutos y por lo tanto generan un flujo de caja positivo por su venta a partir del cuarto año de realizada la inversión, ya que si ésta se posterga, se deberá esperar otros cuatro años más para que los árboles den un producto que sea posible de comercializar.
2 Momento óptimo de hacer un reemplazo
Como se mencionó anteriormente, un caso especial respecto del momento óptimo de hacer la inversión se relaciona con la oportunidad de reemplazar un activo. En este caso, se pueden distinguir dos situaciones básicas:
a. el reemplazo de un activo que incrementa a lo largo el tiempo sus costos debido al deterioro normal que produce el desgaste por otro idéntico pero nuevo, y
b. el reemplazo de un activo por otro que introduce cambios tecnológicos en el proceso productivo.
La situación de reemplazar un activo deteriorado por otro igual se fundamenta en que el aumento de costos del primero llegará a tal nivel que el reemplazo se deberá hacer necesariamente en algún momento.
Para determinar el momento más conveniente para el cambio se supone, en una primera alternativa metodológica, que el costo atribuible al deterioro crece anualmente a uña tasa fija y se asume que la productividad, y por lo tanto los beneficios, son los mismos ya sea que se utilice en el proceso una máquina nueva u otra con más deterioro.
El momento óptimo del reemplazo se calculará determinando el número de años de uso que minimiza el valor actual de los costos, incluyendo en éstos la inversión inicial, lo que se logra aplicando la siguiente ecuación:
donde n representa al número de años de vida útil económica de la máquina, lo el valor de la máquina nueva, i la tasa de retorno exigida a la inversión y g el aumento anual de los costos por el deterioro del activo.3
Para encontrar n se debe proceder a probar distintos valores para que por aproximaciones sucesivas se pueda hallar el valor de n que haga cumplir la ecuación, o recurrir a una calculadora programable o a una computadora.
Ejemplo1.1
Suponga que una máquina tiene un valor de adquisición de $30.000, que el crecimiento anual en los costos de operación por su deterioro es de $1.000 y que la tasa de retorno exigida es de un 12%. Reemplazando en la ecuación anterior, se tendría el siguiente resultado:
que es lo mismo que
3. Una deducción de esta fórmula se encuentra en Gutiérrez, H., ibídem pp. 148-149.
lo que da como resultado 8,89. Es decir, el equipo debería ser sustituido por otro idéntico cuando cumpla aproximadamente nueve años de antigüedad.
Cuando se incorpora una tasa de crecimiento no constante en los costos de operación o un cambio en el valor de desecho del equipo sustituido en función de su antigüedad, la solución pasa por calcular el costo anual equivalente para diferentes plazos de uso del activo hasta encontrar aquel número de años que haga mínimo el costo anual equivalente.
El costo anual equivalente4 no es otra cosa que el valor actúa: o; los costos de un proyecto, calculados respecto a una base anual uniforme equivalente. Su principal utilidad se manifiesta al comparar proyectos, de distinta vida útil, que son replicados a perpetuidad que, al calcular el equivalente anual de su inversión y flujos futuro _ para un ciclo cualquiera de vida de un activo, el instrumento deduce su costo anual equivalente perpetuo. En cualquiera de los ciclos que se calcule se obtendrá el mismo valor anual equivalente.
Ejemplo .2
Para ejemplificar cómo determinar cuál de dos tecnologías es más conveniente para la empresa, considérese la siguiente información:
Máquina 1 Máquina 2
Precio -1.000 -1.300.
Flujo neto anual -200 -160
Vida útil 3 años 5 años
Valor de desecho +400 ' +300
Ambas máquinas prestan el mismo servicio, por lo que los beneficios asociados a ambas son iguales y, por lo tanto, irrelevantes para la decisión.
Si se actualizan los flujos anuales y se agrega el valor de la inversión resulta:
4. Aunque el nombre del concepto incluye la palabra "anual", en realidad sirve para calcular una serie equivalente uniforme cualquiera sea la unidad de tiempo de que se trate. siempre que todas las variables (tasa de descuento, la misma anualidad y el factor n de la ecuación sobre la que se calculará) estén expresadas en esa misma unidad.
Máquina 1 Máquina 2
Valor actual -1.196 -1.720
Como se vio en el capítulo 8, la anualidad equivalente de un valor actual cualquiera se puede calcular por la siguiente expresión:
(4)
Reemplazando con los valores conocidos, se obtiene, para la máquina 1:
Siguiendo el mismo procedimiento, es posible calcular el costo anual equivalente de la máquina 2 como sigue:
De esto se deduce que es más conveniente invertir cada cinco años en la segunda tecnología y no cada tres años en la primera. Es decir, el menor costo anual y la vida útil más prolongada de la máquina 2 compensan el menor valor de la inversión de la máquina 1.
En la casi totalidad de los casos, sin embargo, el costo anual de las máquinas crece en la medida en que pasa el tiempo, debido al aumento en el gasto ocasionado por sus reparaciones y mantenimiento. Por eso, el costo anual equivalente de los costos de operación debiera incrementarse, por ejemplo para la máquina 1, si su vida útil fuese de cuatro, cinco o más años.
De igual manera, el costo anual equivalente de la inversión decrece en la medida en que se prolongue el plazo de reposición de la máquina, al distribuir un mismo valor actual en un horizonte mayor de tiempo.
El valor de desecho, por otra parte, tiene también un comportamiento similar al de la inversión. Mientras más tiempo se mantenga la máquina, el valor anual equivalente de su valor de desecho disminuirá a tasas crecientes por dos razones: porque el monto a "distribuir" decrece en la medida en que pasa el tiempo y porque la distribución se hace entre un mayor número de años.
De acuerdo con esto, los valores anuales y el costo total anual, equivalente tendrían un comportamiento como el que se muestra en el gráfico 11.1. El mínimo costo anual equivalente representa la vida útil económica óptima para el activo y corresponde al factor u del gráfico.
Gráfico 11.1
Comportamiento de los costos anuales equivalentes, según el período de sustitución
Ejemplo 3
Suponga que un activo tiene un valor de adquisición de $1.000 y que su valor de desecho, neto de impuestos, es de $800 si se vende con un año de uso y de $640, $512, $410, $328 y $262 si se vende con dos, tres, cuatro, cinco o seis años de uso, respectivamente. El costo de operación y mantenimiento neto del efecto tributario de la depreciación es de $350 el primer año, $385 el segundo, $424 el tercero, $466 el cuarto, $512 el quinto y $564 el sexto. Los ingresos son independientes de la antigüedad del activo, por lo que se considera irrelevante para el cálculo de su vida útil económica en este ejemplo. Si la antigüedad del activo se asocia con un aumento en los días de detención para efectuar las reparaciones que requiera y esto ocasiona una disminución en la producción y venta, deberá considerarse este efecto , en cuanto tiempo se aconseja sustituir el equipo.
de la misma forma en que se procederá a continuación.
Para calcular la anualidad se procederá, en primer lugar, a calcular el valor actual de cada uno de los tres ítem considerados en este ejemplo, a una tasa del 10% anual.
El valor actual de la inversión será siempre $1.000, ya que independientemente de su vida útil, el desembolso por la compra se efectúa en el momento cero.
El valor actual del valor de desecho se obtiene trayéndolo a valor presente por el número de años correspondiente a cada opción de su vida útil. Así, el valor actual de recibir $800 al final del primer año es de $727, el de recibir $640 al final del segundo año es de $529 y así sucesivamente hasta llegar a un valor actual de $148 si se vende en $262 al final del sexto año.
El cálculo del valor actual de los costos se realiza actualizando el flujo discontinuo anual de la proyección de los costos anuales. De esta forma, se considerará que si se reemplaza el activo todos los años, el costo anual será siempre equivalente al de un activo nuevo, es decir, a $350, que actualizados al momento cero corresponden a $318. Si el activo se reemplaza cada dos años, el valor actual del costo de operación del primer año ($350) más el del segundo año ($385), ascendería a $636.
La tabla 11.2 muestra un resumen de los valores actuales de la inversión, del valor de desecho y de los costos de operación en función de las vidas útiles opcionales que se evalúan.
Tabla 11.2
Valores actuales a distintos períodos de sustitución
Vida útil | 1 | 2 | 3 | 4 | 5 | 6 | |
VA Inversión | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 | |
VA Valor desecho | 727 | 529 | 385 | 280 | 203 | 148 | |
VA Costo operación | -318 | -636 | -955 | -1.273 | -1.591 | -1.909 | |
VA total | -591 | -1.107 | -1.570 | -1.993 | -2.387 | -2.761 |
Por último, se debe determinar si conviene más sustituir todos los años el activo por un costo total equivalente actual de $591, cada dos años gastando $1.107 o cada más años.
Para definir económicamente la vida útil, se buscará aquel plazo de sustitución que haga mínimo el costo anual promedio de quedarse uno o más años con el activo. La tabla 3 resume los resultados para las seis vidas útiles estudiadas en el ejemplo.
Tabla .3
Costo anual equivalente a distintos períodos de sustitución
Vida útil | Valor actual Total | Costo anual equivalente -650 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | -591 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | -1.107 | -638 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | -1.570 | -631 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | -1.993 | -629 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | -2.387 | -630 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | -2.761 | -634 |
Desde la perspectiva económica, lo más conveniente es sustituir el activo cada cuatro años.
Una segunda situación relacionada con el momento óptimo del reemplazo de un activo es la que se refiere a una sustitución que introduce un cambio tecnológico y, por lo tanto, modifica el perfil de costos de la máquina que se encuentra en uso (o sea, el de la situación base).
Si se calcula el costo anual equivalente de ambas máquinas y si el de la nueva resultase más bajo, se concluye que la nueva tecnología es más conveniente que la actual y se debe recomendar el reemplazo. Sin embargo, no significa que éste deba ser realizado inmediatamente, por cuanto puede haber un momento futuro que sea más conveniente para maximizar la rentabilidad de la empresa.
Lo anterior se explica porque el costo anual equivalente es un promedio anual que incluye, en el caso de la nueva tecnología, un "prorrateo" de la inversión que, en el caso de continuarse con la actual maquina, no requerirá ser incurrida por estar ya efectuada en el pasado.
Como la decisión de reemplazar la máquina ya está tomada, para solucionar lo anterior se debe comparar el costo anual equivalente de la nueva tecnología con el costo futuro efectivo que se espera de la tecnología actual, tal como se muestra en el gráfico .2.
Ejemplo.4
Si el costo anual equivalente de la nueva máquina fuese de $362.500 y el costo anual actual (no equivalente) de la máquina en uso fuese de sólo $300.000 pero creciente anualmente en un 5%, se puede observar que en los próximos tres años su costo de operación seguirá estando por debajo del de la nueva alternativa pero que en cuatro años más llegará a $364.652, por lo que se deberá recomendar la inversión de reemplazo al final del tercer año próximo, para que a partir del cuarto y siguientes años opere con un costo "promedio" de $362.500.
Gráfico .2
Costo anual equivalente versus costo real
3 Momento óptimo de abandonar una inversión
En aquellos proyectos que presentan beneficios crecientes en el tiempo asociados a la propia maduración de la inversión, como la cría de animales o la plantación de árboles, surge el problema de determinar el momento óptimo de abandonar o liquidar esa inversión.
Estos proyectos se caracterizan por la relevancia de su valor de desecho, tanto en el resultado de su rentabilidad como en el plazo recomendable de su liquidación. Mientras más tiempo se engorde a los animales, mayor precio se logrará en su venta, y mientras más tiempo se dejen crecer los árboles, mejor precio se podrá obtener al momento de liquidarlos.
En ambos casos es posible esperar, cada año, un mayor valor de desecho de la inversión. Sin embargo, su aumento de valor se observará a tasas decrecientes en el tiempo, e incluso la tasa de crecimiento se podrá hacer igual a cero en un momento, tal como lo muestra el gráfico .3.
Aunque la postergación del momento de abandonar el proyecto hace aumentar su valor de desecho, es posible encontrar un punto donde el crecimiento de este beneficio es menor que la tasa de retorno exigida por el inversionista. Cuando eso sucede, se hace recomendable su liquidación, ya que los recursos generados de esta forma podrán ser probablemente destinados a otro proyecto que rente, a lo menos, lo exigido por el inversionista, o incluso repetir la inversión en otro proyecto igual. En otras palabras, la postergación en un año del momento de poner término al proyecto puede tener un valor actual neto incremental negativo respecto de la no postergación aunque ambos valores actuales netos sean positivos.
Gráfico 3
Tasa decrecimiento del valor de desecho por años de antigüedad
Página siguiente |