Descargar

Las redes y sus componentes (página 2)

Enviado por Osdashil Palma Ch


Partes: 1, 2

Entre los servidores podemos destacar el servidor dedicado (a extinguir) y el servidor de impresión.

WAN

Redes de área extensa o extendida. Es una red que intercomunica equipos en un área geográfica muy extensa. Las líneas de transmisión que utilizan son normalmente propiedad de las compañías telefónicas. La capacidad de transmisión de estas líneas suele ser menor que las de una LAN. P.ej. la RDSI, los bancos, Infovía, Red 1.

Funcionalidad de una WAN: Los protocolos en la WAN pueden estar o no orientados a la conexión. Es decir, según el protocolo y el servicio solicitado habrá que efectuar una llamada o no. En general la mayor parte de los servicios proporcionados por las WAN son distribuidos ¿?. Además, estas redes pueden interconectar redes de área local de tipos muy distintos. P.ej. Infovía, Redes de frame relay, redes ATM.

MAN

Las redes metropolitanas siguen estándares entre las LAN y la WAN. Una MAN es una red de distribución de datos para un área geográfica en el entorno de una ciudad. P.ej en un polígono industrial.

Su tasa de error es intermedia entre LAN y WAN. Es menor que en una LAN pero no llega a los niveles de una WAN. P.ej. Televisión por cable en Marín.

Funcionalidad: El IEEE ha propuesto la norma 802.6 como estándar para este tipo de redes. Esta normativa propuso inicialmente velocidades de transferencia desde 34 MGb/s hasta 155 MGB/s.

Topologías

Los nodos de red (las computadoras), necesitan estar conectados para comunicarse. A la forma en que están conectados los nodos se le llama topología. Una red tiene dos diferentes topologías: una física y una lógica. La topología física es la disposición física actual de la red, la manera en que los nodos están conectados unos con otros. La topología lógica es el método que se usa para comunicarse con los demás nodos, la ruta que toman los datos de la red entre los diferentes nodos de la misma. Las topologías física y lógica pueden ser iguales o diferentes. Las topologías de red más comunes son: bus, anillo y estrella.

Red en Bus

edu.red

En una topología de bus, cada computadora está conectada a un segmento común de cable de red. El segmento de red se coloca como un bus lineal, es decir, un cable largo que va de un extremo a otro de la red, y al cual se conecta cada nodo de la misma. El cable puede ir por el piso, por las paredes, por el techo, o puede ser una combinación de éstos, siempre y cuando el cable sea un segmento continuo.

Red en anillo

edu.red

Una topología de anillo consta de varios nodos unidos formando un círculo lógico. Los mensajes se mueven de nodo a nodo en una sola dirección. Algunas redes de anillo pueden enviar mensajes en forma bidireccional, no obstante, sólo son capaces de enviar mensajes en una dirección cada vez. La topología de anillo permite verificar si se ha recibido un mensaje. En una red de anillo, las estaciones de trabajo envían un paquete de datos conocido como flecha o contraseña de paso.

Red en estrella

edu.red

Uno de los tipos más antiguos de topologías de redes es la estrella, la cual usa el mismo método de envío y recepción de mensajes que un sistema telefónico, ya que todos los mensajes de una topología LAN en estrella deben pasar a través de un dispositivo central de conexiones conocido como concentrador de cableado, el cual controla el flujo de datos.

Tipos de Cables

Cable UTP. UTP son las siglas de Unshielded Twisted Pair. Es un cable de pares trenzados y sin recubrimiento metálico externo, de modo que es sensible a las interferencias; sin embargo, al estar trenzado compensa las inducciones electromagnéticas producidas por las líneas del mismo cable. Es importante guardar la numeración de los pares, ya que de lo contrario el efecto del trenzado no será eficaz, disminuyendo sensiblemente, o incluso impidiendo, la capacidad de transmisión. Es un cable barato, flexible y sencillo de instalar. La impedancia de un cable UTP es de 100 ohmios. En la figura siguiente se pueden observar los distintos pares de un cable UTP.

Cable STP. STP son las siglas de Shielded Twisted Pair. Este cable es semejante al UTP pero se le añade un recubrimiento metálico para evitar las interferencias externas. Por tanto, es un cable más protegido, pero menos flexible que el primero. el sistema  de trenzado es idéntico al del cable UTP. La resistencia de un cable STP es de 150 ohmios.

edu.red

Estos cables de pares tienen aplicación en muchos campos. El cable de cuatro pares está siendo utilizado como la forma de cableado general en muchas empresas, como conductores para la transmisión telefónica de voz, transporte de datos, etc. RDSI utiliza también este medio de transmisión.

edu.red

edu.red

Estructura de cables para un cable UTP en una red Ethernet o para una conexión RDSI, dependiendo de la elección de los pares

En los cable de pares hay que distinguir dos clasificaciones:

La Categorías: Cada categoría especifica unas características eléctricas para el cable: atenuación, capacidad de la línea e impedancia.

Las Clases: Cada clase especifica las distancias permitidas, el ancho de banda conseguido y las aplicaciones para las que es útil en función de estas características.

edu.red

Características de longitudes posibles y anchos de banda para las clases y categorías de pares trenzados.

Dado que el UTP de categoría 5 es barato y fácil de instalar, se está incrementando su utilización en las instalaciones de redes de área local con topología en estrella, mediante el uso de conmutadores y concentradores. Las aplicaciones típicas de la categoría 3 son transmisiones de datos hasta 10 Mbps (por ejemplo, la especificación 10baseT); para la categoría 4, 16 Mbps, y para la categoría 5 (por ejemplo, la especificación 100BaseT), 100 Mbps.

En concreto, este cable UTP de categoría 5 viene especificado por las características de la Tabla siguiente  (especificaciones TSB-36) referidas a un cable estándar de 100 metros de longitud.

edu.red

Nivel de atenuación permitido según la velocidad de transmisión para un cable UTP.

Es posible utilizar la lógica de las redes FDDI (Fiber Distributed Data Interface) utilizando como soporte cable UTP de categoría 5 en la clase D, ya que la velocidad de transmisión es de 100 Mbps como en FDDI. Por esta razón se le suele llamar TPDDI, Twisted Pair Distributed Data Interface.

El Cable Coaxial

Presenta propiedades mucho más favorables frente a interferencias y a la longitud de la línea de datos, de modo que el ancho de banda puede ser mayor. Esto permite una mayor concentración de las transmisiones analógicas o más capacidad de las transmisiones digitales.

edu.red

edu.red

Sección de un cable coaxial.

Su estructura es la de un cable formado por un conductor central macizo o compuesto por múltiples fibras al que rodea un aislante dieléctrico de mayor diámetro Figura siguiente. Una malla exterior aisla de interferencias al conductor central. Por último, utiliza un material aislante para recubrir y proteger todo el conjunto. Presenta condiciones eléctricas más favorables. En redes de área local se utilizan dos tipos de cable coaxial: fino y grueso.

Es capaz de llegar a anchos de banda comprendidos entre los 80 Mhz y los 400 Mhz (dependiendo de si es fino o grueso). Esto quiere decir que en transmisión de señal analógica seríamos capaces de tener, como mínimo del orden de 10.000 circuitos de voz.

Fibra Optica

La fibra óptica permite la transmisión de señales luminosas y es insensible a interferencias electromagnéticas externas. Cuando la señal supera frecuencias de 10¹º Hz hablamos de frecuencias ópticas. Los medios conductores metálicos son incapaces de soportar estas frecuencias tan elevadas y son necesarios medios de transmisión ópticos.Por otra parte, la luz ambiental es una mezcla de señales de muchas frecuencias distintas, por lo que no es una buena fuente para ser utilizada en la transmisión de datos. Son necesarias fuentes especializadas:

Fuentes láser. a partir de la década de los sesenta se descubre el láser, una fuente luminosa de alta coherencia, es decir, que produce luz de una única frecuencia y toda la emisión se produce en fase.

Diodos láser. es una fuente semiconductora de emisión de láser de bajo precio.

Diodos LED. Son semiconductores que producen luz cuando son excitados eléctricamente.

La composición del cable de fibra óptica consta de un núcleo, un revestimiento y una cubierta externa protectora Figura siguiente. El núcleo es el conductor de la señal luminosa y su atenuación es despreciable. La señal es conducida por el interior de éste núcleo fibroso, sin poder escapar de él debido a las reflexiones internas y totales que se producen, impidiendo tanto el escape de energía hacia el exterior como la adicción de nuevas señales externas.

Actualmente se utilizan tres tipos de fibras ópticas para la transmisión de datos:

Fibra monomodo. Permite la transmisión de señales con ancho de banda hasta 2 GHz.

Fibra multimodo de índice gradual. Permite transmisiones de hasta 500 MHz.

Fibra multimodo de índice escalonado. Permite transmisiones de hasta 35 MHz.

Se han llegado a efectuar transmisiones de decenas de miles de llamadas telefónicas a través de una sola fibra, debido a su gran ancho de banda.Otra ventaja es la gran fiabilidad, su tasa de error es mínima. Su peso y diámetro la hacen ideal frente a cables de pares o coaxiales. Normalmente se encuentra instalada en grupos, en forma de mangueras, con un núcleo metálico que les sirve de protección y soporte frente a las tensiones producidas.Su principal inconveniente es la dificultad de realizar una buena conexión de distintas fibras con el fin de evitar reflexiones de la señal, así como su fragilidad.

edu.red

edu.red

edu.red

Sección longitudinal de una fibra óptica.

Cable RG-58, Coaxial ó BNC

Estas formas de denominación se refieren a la misma tecnología de cableado. La primera hace referencia a la normativa del cable propiamente dicho, la segunda a su nombre y la tercera al nombre técnico que utilizan los conectores usados en este tipo de cableado.

Es un cable compuesto, de fuera a dentro, de una funda plástica, habitualmente de color negro, tras la cual se encuentra una malla entrelazada de hilos de cobre que cubren a una protección plástica con un hilo de cobre central.

Su implantación es bastante sencilla, sólo necesitaremos un cable que una los distintos equipos de una red, denominándose topología en bus lineal.

La distancia máxima utilizada en este tipo de cable es de 150 metros y 15 nodos (normativa estándar) ó 300m. y 30 nodos (normativa extendida). Entendiendo por nodo un corte realizado a dicho cable.

Cable RJ-45, Par Trenzado ó UTP

Estas formas de denominación se refieren a la misma tecnología de cableado. La primera hace referencia a la normativa del cable propiamente dicho, la segunda a su nombre y la tercera al nombre técnico que utilizan los conectores usados en este tipo de cableado.

Cuando nos referimos a este cable y utilizamos "el apellido" Tipo 5, nos referimos a que dicho cable se compone de 8 hilos conductores de cobre. Existen otros Tipos, como el 3 compuesto de 4 hilos ó el Tipo 1, pero que con la incorporación de nuevas tecnologías han caído en desuso.

Es un cable compuesto, de fuera a dentro, de una funda de plástico, habitualmente de color gris, tras la cual se encuentran 8 hilos de cobre cubiertos de una funda plástica, y entrelazados en pares dando dos vueltas y media por pulgada. (De ahí su nombre Par Trenzado).

Para la utilización de este tipo de cableado es necesario instalar un concentrador para que haga la función de repartidor de señales, por eso se denomina topología en estrella.

La distancia máxima utilizada en este tipo de cable es de 105 metros entre la tarjeta de red y el concentrador.

Cable STP, FTP ó RJ-49

No es mas que una derivación de la anterior estructura de cableado, incluyendo una platina de metal de separación entre la capa plástica de protección del cable y de los hilos.

No es ni mejor ni peor que el anterior cable, simplemente su utilización será recomendada en determinados entornos en detrimento del RJ-45 ó UTP.

Cable de Fibra Óptica

Cada vez mas utilizado este tipo de cableado, por su flexibilidad, manejabilidad y distancias que soporta. Se compone de dos hilos conductores, transmisión y recepción, de señal óptica. La distancia máxima que soporta es de 2 Km.

Todavía es una filosofía de cableado cara y costosa de grimpar, pues un error en el grimpaje del conector y habría que tirar el latiguillo de cable, pero se va imponiendo con mayor fuerza.

Normas de Cableado Estructurado

Al ser el cableado estructurado un conjunto de cables y conectores, sus componentes, diseño y técnicas de instalación deben de cumplir con una norma que de servicio a cualquier tipo de red local de datos, voz y otros sistemas de comunicaciones, sin la necesidad de recurrir a un único proveedor de equipos y programas.

De tal manera que los sistemas de cableado estructurado se instalan de acuerdo a la norma para cableado para telecomunicaciones, EIA/TIA/568-A, emitida en Estados Unidos por la Asociación de la industria de telecomunicaciones, junto con la asociación de la industria electrónica.

EIA/TIA568-A

El propósito de esta norma es permitir la planeación e instalación de cableado de edificios con muy poco conocimiento de los productos de telecomunicaciones que serán instalados con posterioridad.

ANSI/EIA/TIA emiten una serie de normas que complementan la 568-A, que es la norma general de cableado:

EIA/TIA569, define la infraestructura del cableado de telecomunicaciones, a través de tubería, registros, pozos, trincheras, canal, entre otros, para su buen funcionamiento y desarrollo del futuro.

EIA/TIA 570, establece el cableado de uso residencial y de pequeños negocios.

EIA/TIA 607, define al sistema de tierra física y el de alimentación bajo las cuales se deberán de operar y proteger los elementos del sistema estructurado.

Las normas EIA/TIA fueron creadas como norma de industria en un país, pero se a empleado como norma internacional por ser de las primeras en crearse.

ISO/IEC 11801, es otra norma internacional.

Las normas ofrecen muchas recomendaciones y evitan problemas en la instalación del mismo, pero básicamente protegen la inversión del cliente.

Ponchado

edu.red

La relación de colores de los cuatro pares de hilos del cable UTP son:

  • Par 1: T1,R1 = AZUL

  • Par 2: T2,R2 = NARANJA

  • Par 3: T3,R3 = VERDE

  • Par 4: T4,R4 = CAFÉ

edu.red

La tabla muestra la posición de los pares de hilos para el estándar EIA/TIA 568-A y la figura muestra las posiciones de un conector RJ45 (jack).

ESTANDAR EIA/TIA 568A

PIN COLOR/HILO

PAR 3 1 VERDE

PAR 3 2 BLANCO/VERDE

PAR 2 3 BLANCO/NARANJA

PAR 1 4 BLANCO/AZUL

PAR 1 5 AZUL

PAR 2 6 NARANJA

PAR 4 7 CAFÉ

PAR 4 8 BLANCO/CAFÉ

Concentradores

edu.red

Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.

Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos. También se encarga de enviar una señal de choque a todos los puertos si detecta una colisión. Son la base para las redes de topología tipo estrella. Como alternativa existen los sistemas en los que los ordenadores están conectados en serie, es decir, a una línea que une varios o todos los ordenadores entre sí, antes de llegar al ordenador central. Llamado también repetidor multipuerto, existen 3 clases.

  • Pasivo: No necesita energía eléctrica.

  • Activo: Necesita alimentación.

  • Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.

Dentro del modelo OSI el concentrador opera a nivel de la capa física, al igual que los repetidores, y puede ser implementado utilizando únicamente tecnología analógica. Simplemente une conexiones y no altera las tramas que le llegan.

Visto lo anterior podemos sacar las siguientes conclusiones

  • El concentrador envía información a ordenadores que no están interesados. A este nivel sólo hay un destinatario de la información, pero para asegurarse de que la recibe el concentrador envía la información a todos los ordenadores que están conectados a él, así seguro que acierta.

  • Este tráfico añadido genera más probabilidades de colisión. Una colisión se produce cuando un ordenador quiere enviar información y emite de forma simultánea con otro ordenador que hace lo mismo. Al chocar los dos mensajes se pierden y es necesario retransmitir. Además, a medida que añadimos ordenadores a la red también aumentan las probabilidades de colisión.

  • Un concentrador funciona a la velocidad del dispositivo más lento de la red. Si observamos cómo funciona vemos que el concentrador no tiene capacidad de almacenar nada. Por lo tanto si un ordenador que emite a 100 megabit/segundo le trasmitiera a otro de 10 megabit/segundo algo se perdería del mensaje. En el caso del ADSL los routers suelen funcionar a 10 megabit/segundo, si lo conectamos a nuestra red casera, toda la red funcionará a 10 megabit/segundo, aunque nuestras tarjetas sean 10/100 megabit/segundo.

  • Un concentrador es un dispositivo simple, esto influye en dos características. El precio es barato. Añade retardos derivados de la transmisión del paquete a todos los equipos de la red (incluyendo los que no son destinatarios del mismo).

Los concentradores fueron muy populares hasta que se abarataron los switch que tienen una función similar pero proporcionan más seguridad contra programas como los sniffer. La disponibilidad de switches ethernet de bajo precio ha dejado obsoletos, pero aún se pueden encontrar en instalaciones antiguas y en aplicaciones especializadas.

Los concentradores también suelen venir con un BNC y/o un conector AUI para permitir la conexión a 10Base5, 10Base2 o segmentos de red.

Una red Ethernet se comporta como un medio compartido, es decir, sólo un dispositivo puede transmitir con éxito a la vez y cada uno es responsable de la detección de colisiones y de la retransmisión. Con enlaces 10BASE-T y 100Base-T (que generalmente representan la mayoría o la totalidad de los puertos en un concentrador) hay parejas separadas para transmitir y recibir, pero que se utilizan en modo half duplex el cual se comporta todavía como un medio de enlaces compartidos. (Ver 10BASE-T para las especificaciones de los pines).

Un concentrador, o repetidor, es un dispositivo de emisión bastante sencillo. Los concentradores no logran dirigir el tráfico que llega a través de ellos, y cualquier paquete de entrada es transmitido a otro puerto (que no sea el puerto de entrada). Dado que cada paquete está siendo enviado a través de cualquier otro puerto, aparecen las colisiones de paquetes como resultado, que impiden en gran medida la fluidez del tráfico. Cuando dos dispositivos intentan comunicar simultáneamente, ocurrirá una colisión entre los paquetes transmitidos, que los dispositivos transmisores detectan. Al detectar esta colisión, los dispositivos dejan de transmitir y hacen una pausa antes de volver a enviar los paquetes.

La necesidad de hosts para poder detectar las colisiones limita el número de centros y el tamaño total de la red. Para 10 Mbit/s en redes, de hasta 5 segmentos (4 concentradores) se permite entre dos estaciones finales. Para 100 Mbit/s en redes, el límite se reduce a 3 segmentos (2 concentradores) entre dos estaciones finales, e incluso sólo se en el caso de que los concentradores sean de la variedad de baja demora. Algunos concentradores tienen puertos especiales (y, en general, específicos del fabricante) les permiten ser combinados de un modo que consiente encadenar a través de los cables Ethernet los concentradores más sencillos, pero aun así una gran red Fast Ethernet es probable que requiera conmutadores para evitar el encadenamiento de concentradores.

La mayoría de los concentradores detectan problemas típicos, como el exceso de colisiones en cada puerto. Así, un concentrador basado en Ethernet, generalmente es más robusto que el cable coaxial basado en Ethernet. Incluso si la partición no se realiza de forma automática, un concentrador de solución de problemas la hace más fácil ya que las luces pueden indicar el posible problema de la fuente. Asimismo, elimina la necesidad de solucionar problemas de un cable muy grande con múltiples tomas.

Históricamente, la razón principal para la compra de concentradores en lugar de los conmutadores era el precio. Esto ha sido eliminado en gran parte por las reducciones en el precio de los conmutadores, pero los concentradores aún pueden ser de utilidad en circunstancias especiales:

  • Un analizador de protocolo conectado a un conmutador no siempre recibe todos los paquetes desde que el conmutador separa a los puertos en los diferentes segmentos. La conexión del analizador de protocolos con un concentrador permite ver todo el tráfico en el segmento. (Los conmutadores caros pueden ser configurados para permitir a un puerto escuchar el tráfico de otro puerto. A esto se le llama puerto de duplicado. Sin embargo, estos costos son mucho más elevados).

  • Algunos grupos de computadoras o cluster, requieren cada uno de los miembros del equipo para recibir todo el tráfico que trata de ir a la agrupación. Un concentrador hará esto, naturalmente; usar un conmutador en estos casos, requiere la aplicación de trucos especiales.

  • Cuando un conmutador es accesible para los usuarios finales para hacer las conexiones, por ejemplo, en una sala de conferencias, un usuario inexperto puede reducir la red mediante la conexión de dos puertos juntos, provocando un bucle. Esto puede evitarse usando un concentrador, donde un bucle se romperá en el concentrador para los otros usuarios. (También puede ser impedida por la compra de conmutadores que pueden detectar y hacer frente a los bucles, por ejemplo mediante la aplicación de Spanning Tree Protocol.)

  • Un concentrador barato con un puerto 10BASE2 es probablemente la manera más fácil y barata para conectar dispositivos que sólo soportan 10BASE2 a una red moderna(no suelen venir con los puertos 10BASE2 conmutadores baratos).

Dirección IP

Una dirección IP es un número que identifica de manera lógica y jerárquica a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red o nivel 3 del modelo de referencia OSI. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar.

Es habitual que un usuario que se conecta desde su hogar a Internet utilice una dirección IP. Esta dirección puede cambiar cada vez que se conecta; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).

Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (se aplica la misma reducción por IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.

A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.

Existe un protocolo para asignar direcciones IP dinámicas llamado DHCP (Dynamic Host Configuration Protocol).

Dirección Mac

En redes de computadoras la dirección MAC (Media Access Control address o dirección de control de acceso al medio) es un identificador de 48 bits (6 bytes) que corresponde de forma única a una tarjeta o interfaz de red. Es individual, cada dispositivo tiene su propia dirección MAC determinada y configurada por el IEEE (los últimos 24 bits) y el fabricante (los primeros 24 bits) utilizando el OUI. La mayoría de los protocolos que trabajan en la capa 2 del modelo OSI usan una de las tres numeraciones manejadas por el IEEE: MAC-48, EUI-48, y EUI-64 las cuales han sido diseñadas para ser identificadores globalmente únicos. No todos los protocolos de comunicación usan direcciones MAC, y no todos los protocolos requieren identificadores globalmente únicos.

Las direcciones MAC son únicas a nivel mundial, puesto que son escritas directamente, en forma binaria, en el hardware en su momento de fabricación. Debido a esto, las direcciones MAC son a veces llamadas Las Direcciones Quemadas" (BIA, por las siglas de Burned-in Address).

La dirección MAC es un número único de 48 bits asignado a cada tarjeta de red. Se conoce también como la dirección física en cuanto identificar dispositivos de red.

Si nos fijamos en la definición como cada dígito hexadecimal son 4 dígitos binarios (bits), tendríamos:

4*12=48 bits únicos.

En la mayoría de los casos no es necesario conocer la dirección MAC, ni para montar una red doméstica, ni para configurar la conexión a internet. Pero si queremos configurar una red wifi y habilitar en el punto de acceso un sistema de filtrado basado en MAC (a veces denominado filtrado por hardware), el cual solo permitirá el acceso a la red a adaptadores de red concretos, identificados con su MAC, entonces si que necesitamos conocer dicha dirección. Dicho medio de seguridad se puede considerar como un refuerzo de otros sistemas de seguridad, ya que teóricamente se trata de una dirección única y permanente, aunque en todos los sistemas operativos hay métodos que permiten a las tarjetas de red identificarse con direcciones MAC distintas de la real.

La dirección MAC es utilizada en varias tecnologías entre las que se incluyen:

  • Ethernet

  • 802.5 o redes en anillo a 4 Mbps o 16 Mbps Token Ring

  • 802.11 redes inalámbricas (WIFI).

  • ATM

edu.red

MAC opera en la capa 2 del modelo OSI, encargada de hacer fluir la información libre de errores entre dos máquinas conectadas directamente. Para ello se generan tramas, pequeños bloques de información que contienen en su cabecera las direcciones MAC correspondiente al emisor y receptor de la información.

Dibujo de una Red Real con todas las Características

edu.red

Estos Planos fueron hechos en base a la red de mi Casa

Conclusión

A lo largo de la historia los ordenadores (o las computadoras) nos han ayudado a realizar muchas aplicaciones y trabajos, el hombre no satisfecho con esto, buscó mas progreso, logrando implantar comunicaciones entre varias computadoras, o mejor dicho: "implantar Redes en las computadoras"; hoy en día la llamada Internet es dueña de las redes, en cualquier parte del mundo una computadora se comunica, comparte datos, realiza transacciones en segundos, gracias a las redes.

En los Bancos, las agencias de alquiler de vehículos, las líneas aéreas, y casi todas las empresas tienen como núcleo principal de la comunicación a una RED.

Gracias a la denominada INTERNET, familias, empresas, y personas de todo el mundo, se comunican, rápida y económicamente.

Las redes agilizaron en un paso gigante al mundo, por que grandes cantidades de información se trasladan de un sitio a otro sin peligro de extraviarse en el camino.

edu.red

Bibliografía

  • 1. http://www.angelfire.com/alt/arashi/menu.htm

  • 2. http://fmc.axarnet.es/redes/tema_02.htm

  • 3. http://www.monografias.com/trabajos5/ponchado/ponchado.shtml#norma

  • 4. "Redes de comunicación", Enciclopedia Microsoft(R) Encarta(R) 98. (c) 1993-1997 Microsoft Corporation. Reservados todos los derechos.

  • 5. REDES DE BANDA ANCHA en la dirección: http://www.ts.es/doc/area/produccion/ral/BANDA.HTM

  • 6. Laboratorio de Redes: http://ccdis.dis.ulpgc.es/ccdis/laboratorios/redes.html

  • 7. Ral e Interconexión : http://www.ts.es/doc/area/produccion/ral/CABLE.HTM

 

 

 

Autor:

Osdashil Palma Ch

Caracas, Marzo de 2009

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente