Las raíces de la investigación de operaciones se remontan a muchas décadas, cuando se hicieron los primeros intentos para emplear el método científico en la administración de una empresa. Sin embargo, el inicio de la actividad llamada investigación de operaciones, casi siempre se atribuye a los servicios militares prestados a principios de la segunda guerra mundial.
Debido a los esfuerzos bélicos, existía una necesidad urgente de asignar recursos escasos a las distintas operaciones militares y a las actividades dentro de cada operación, en la forma más efectiva. Por esto, las administraciones militares americana e inglesa hicieron un llamado a un gran número de científicos para que aplicaran el método científico a éste y a otros problemas estratégicos y tácticos. De hecho, se les pidió que hicieran investigación sobre operaciones (militares).
Estos equipos de científicos fueron los primeros equipos de IO. Con el desarrollo de métodos efectivos para el uso del nuevo radar, estos equipos contribuyeron al triunfo del combate aéreo inglés. A través de sus investigaciones para mejorar el manejo de las operaciones antisubmarinas y de protección, jugaron también un papel importante en la victoria de la batalla del Atlántico Norte. Esfuerzos similares fueron de gran ayuda en a isla de campaña en el pacífico.
Al terminar la guerra, el éxito de la investigación de operaciones en las actividades bélicas generó un gran interés en sus aplicaciones fuera del campo militar. Como la explosión industrial seguía su curso, los problemas causados por el aumento en la complejidad y especialización dentro de las organizaciones pasaron de nuevo a primer plano. Comenzó a ser evidente para un gran número de personas, incluyendo a los consultores industriales que habían trabajado con o para los equipos de IO durante la guerra, que estos problemas eran básicamente los mismos que los enfrentados por la milicia, pero en un contexto diferente. Cuando comenzó la década de 1950, estos individuos habían introducido el uso de la investigación de operaciones en la industria, los negocios y el gobierno. Desde entonces, esta disciplina se ha desarrollado con rapidez.
Características de la Investigación de Operaciones
- La Investigación de Operaciones usa el método científico para investigar el problema en cuestión. En particular, el proceso comienza por la observación cuidadosa y la formulación del problema incluyendo la recolección de datos pertinentes.
- La Investigación de Operaciones adopta un punto de vista organizacional. De esta manera intenta resolver los conflictos de interés entre los componentes de la organización de forma que el resultado sea el mejor para la organización completa.
- La Investigación de Operaciones intenta encontrar una mejor solución (llamada solución óptima), para el problema bajo consideración. En lugar de contentarse con mejorar el estado de las cosas, la meta es identificar el mejor curso de acción posible.
- En la Investigación de Operaciones es necesario emplear el enfoque de equipo. Este equipo debe incluir personal con antecedentes firmes en matemáticas, estadísticas y teoría de probabilidades, economía, administración de empresas ciencias de la computación, ingeniería, etc. El equipo también necesita tener la experiencia y las habilidades para permitir la consideración adecuada de todas las ramificaciones del problema.
- La Investigación de Operaciones ha desarrollado una serie de técnicas y modelos muy útiles a la Ingeniería de Sistemas. Entre ellos tenemos: la Programación No Lineal, Teoría de Colas, Programación Entera, Programación Dinámica, entre otras.
- La Investigación de Operaciones tiende a representar el problema cuantitativamente para poder analizarlo y evaluar un criterio común.
Etapas de la Investigación de Operaciones
Las etapas de un estudio de Investigación de Operaciones son las siguientes:
– Definición del problema de interés y recolección de los datos relevantes.
– Formulación de un modelo matemático que represente el problema.
– Desarrollo de un procedimiento basado en computadora para derivar una solución al problema a partir del modelo.
– Prueba del modelo y mejoramiento según sea necesario.
– Preparación para la aplicación del modelo prescrito por la administración.
– Puesta en marcha.
Programación lineal
Procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de ecuaciones lineales, optimizando la función objetivo, también lineal.
La programación lineal consiste en optimizar (minimizar o maximizar) una función lineal, que denominaremos función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales
Historia de la programación lineal
El problema de la resolución de un sistema lineal de inecuaciones se remonta, al menos, a Fourier, después de quien nace el método de eliminación de Fourier-Motzkin. La programación lineal se plantea como un modelo matemático desarrollado durante la segunda guerra mundial para planificar los gastos y los retornos, a fin de reducir los costos al ejército y aumentar las pérdidas del enemigo. Se mantuvo en secreto hasta 1947. En la posguerra, muchas industrias lo usaron en su planificación diaria.
Los fundadores de la técnica son George Dantzig, quien publicó el algoritmo simplex, en 1947, John von Neumann, que desarrolló la teoría de la dualidad en el mismo año, y Leonid Kantorovich, un matemático ruso, que utiliza técnicas similares en la economía antes de Dantzig y ganó el premio Nobel en economía en 1975. Leonid Khachiyan en 1979 fue el primero en demostrar que el problema de la programación lineal se solucionaba en tiempo polinomial, sin embargo, el mejor avance en los principios teóricos y prácticos en el campo se produjo en 1984, cuando Narendra Karmarkar introduce un nuevo método del punto interior para resolver problemas de programación lineal.
El ejemplo original de Dantzig de la búsqueda de la mejor asignación de 70 personas a 70 puestos de trabajo es un ejemplo de la utilidad de la programación lineal. La potencia de computación necesaria para examinar todas las permutaciones a fin de seleccionar la mejor asignación es inmensa; el número de posibles configuraciones excede al número de partículas en el universo. Sin embargo, toma sólo un momento encontrar la solución óptima mediante el planteamiento del problema como una programación lineal y la aplicación del algoritmo simplex. La teoría de la programación lineal reduce drásticamente el número de posibles soluciones óptimas que deberán ser revisadas.
Variables
Las variables son números reales mayores o iguales a cero.
En caso que se requiera que el valor resultante de las variables sea un número entero, el procedimiento de resolución se denomina Programación entera.
Restricciones
Las restricciones pueden ser de la forma:
Donde:
- A = valor conocido a ser respetado estrictamente;
- B = valor conocido que debe ser respetado o puede ser superado;
- C = valor conocido que no debe ser superado;
- j = número de la ecuación, variable de 1 a M (número total de restricciones);
- a; b; y, c = coeficientes técnicos conocidos;
- X = Incógnitas, de 1 a N;
- i = número de la incógnita, variable de 1 a N.
En general no hay restricciones en cuanto a los valores de N y M. Puede ser N = M; N > M; ó, N < M.
Sin embargo si las restricciones del Tipo 1 son N, el problema puede ser determinado, y puede no tener sentido una optimización.
Los tres tipos de restricciones pueden darse simultáneamente en el mismo problema
Autor:
Maria J.
Página anterior | Volver al principio del trabajo | Página siguiente |