Descargar

Familias Lógicas


Partes: 1, 2, 3
Monografía destacada

    1. Introducción
    2. Primeras familias lógicas: C. I. con transistores bipolares
    3. Lógica «interbús»
    4. Lógica de baja tensión
    5. Lógica de Altas Velocidades
    6. Características a tener en cuenta en una familia lógica
    7. Estudio Especifico de las Familias Lógicas Cmos y TTL
    8. Conclusión
    9. Bibliografías

    Introducción

    El presente trabajo esta hecho con la finalidad de comprender en líneas generales el funcionamiento de las familias lógicas cmos y ttl, para ello es bueno comprender que desde el comienzo, el proceso de miniaturización de la electrónica, iniciado en la década de los 50 con la utilización del transistor, continuó con un segundo salto cualitativo en la década siguiente (años 60) mediante la integración de sub circuitos completos en un mismo substrato de silicio ( chip): sub circuitos correspondientes a módulos digitales tales como puertas booleanas, biestables o bloques combinacionales o secuenciales.

    Los circuitos digitales son sumamente apropiados para su inserción en circuitos integrados: de un lado, la ausencia de autoinducciones y el poder prescindir, asimismo, de condensadores reduce los elementos a integrar a transistores y resistencias y a las conexiones de estos entre sí; de otro, la propia modularidad de los sistemas digitales precisa de un número reducido de tipos de puertas lógicas, e incluso, basta con un solo tipo de ellas (puertas Nand o Nor).

    Por ello, los circuitos integrados invadieron muy pronto el campo digital; en unos pocos años resultó anacrónico y antieconómico construir las puertas booleanas (lógicas) con componentes discretos, una vez que se disponía de una gran variedad de puertas lógicas y de una amplia serie de funciones de gran complejidad construidas dentro de un circuito integrado.

    En el presente trabajo se desarrolla una breve explicación referencial, en cuanto a la evolución histórica de las familias lógicas, así como también su esquema general-diagramas, características, cuadros comparativos que nos reflejen las diferentes desventajas y ventajas de cada tipo de familia, analizando el triestado y sus consideraciones, la potencia disipada, la velocidad, el "Fan In" y el "Fan Out" y finalmente su margen de ruido, específicamente de; las familias CMOS y TTL.

    En primer lugar, las puertas bipolares que condujeron a la gran familia TTL (cuya amplia difusión consolidó la lógica integrada); luego las tecnologías MOS, hasta llegar a la predominante HCMOS; la mezcla BiCMOS (bipolar-CMOS) que resulta muy apropiada para circuitos «interbús» (en medio de los buses); y la derivación actual hacia series de bajo voltaje (pasando de la alimentación habitual de 5 V a sólo 3 V).

    En todo caso, para elegir y utilizar correcta y eficazmente una familia lógica (y, dentro de ella, una serie específica) es preciso tener en cuenta sus características funcionales. Aún más, es requisito previo para ello comprender el significado conceptual y las implicaciones prácticas de tales características y ser capaz de localizar y «hacer una lectura efectiva» de las mismas en los catálogos que suministran los fabricantes de circuitos integrados.

    Entre las diversas cuestiones a las que prestar atención aparece el «ruido electromagnético» como un «compañero no deseado» que puede perturbar el correcto funcionamiento de un circuito digital y que requiere una actitud vigilante y un importante esfuerzo de «autoprotección» en el proceso de diseño y puesta a punto del circuito. Pero, a la vez, la producción de «ruido electromagnético» por el propio circuito obliga a un esfuerzo complementario de reducción de la emisión de perturbaciones para cumplir con las normativas de compatibilidad electromagnética.

    Primeras familias lógicas: C. I. con transistores bipolares

    Las primeras puertas lógicas integradas eran mera copia directa de las puertas "o-negada" (Nor) con componentes discretos, mediante la conexión en paralelo de varios transistores bipolares NPN en emisor común; tales puertas dieron lugar a la primera familia lógica: RTL (lógica de transistores y resistencias).

    Pronto se mejoraron las características de estas puertas integradas, en cuanto a velocidad y a consumo, combinando una puerta "y" de diodos con un transistor inversor en emisor común; así se configuró la puerta "y-negada" (Nand) base de la familia DTL (lógica de transistores y diodos) que fue la primera que llegó a alcanzar una difusión apreciable.

    A partir de este esquema (puerta "y" + inversor), aprovechando en mayor profundidad las posibilidades que ofrece la integración sobre un substrato único, se planteó una segunda mejora en velocidad y en consumo, añadiendo una etapa de salida amplificadora de intensidad (dos transistores en push-pull) y substituyendo los diodos por un transistor multi emisor.

    La etapa de salida de dos transistores NPN (totem pole: «palo de tótem») aumenta la intensidad suministrable y disminuye la resistencia de salida; el transistor multi emisor mejora considerablemente la conmutación de la puerta (en una primera aproximación, su comportamiento puede ser analizado en términos de diodos:

    La clave del funcionamiento de la puerta TTL es el sentido en que circula la intensidad que la base del transistor multi emisor recibe desde la resistencia de 4K: – si dicha corriente va «hacia fuera», es decir, si alguna de las entradas está conectada a 0, el transistor T se encontrará en corte y el transistor T1, en colector común, transmite un 1 a la salida;

    – cuando todas las entradas se encuentran a 1 dicha intensidad circula «hacia dentro», hacia la base del transistor T, que se satura y lleva también a saturación al transistor T2, que pone la salida a 0. [Un 0 en una entrada supone una intensidad «hacia fuera», de forma que una entrada TTL «al aire» equivale a un 1, salvo efectos de ruido.]

    La puertas TTL se alimentan a 5 V; su tensión de conmutación se sitúa en el entorno de 1,2 V, de manera que un 0 en la entrada ha de ser menor de 1 V (ViLmáx = 1 V) y, en cambio, una tensión superior a 1,5 V es entendida como un 1 (ViHmín = 1,5 V); la tensión de salida para el 0 es 0 V, pero la correspondiente al 1 es de solamente 4 V. Los tiempos de propagación de la serie TTL estándar son del orden de 10 ns. y el consumo promedio es de unos 2 mA (10 mW).

    La familia TTL proporcionó la base del gran desarrollo que tuvieron los sistemas digitales durante la década de los 70; su amplia difusión y utilización favoreció la aparición de diversas series derivadas de la mejora de características concretas, una de las cuales, la serie LS ha sustituido por completo a la serie estándar inicial y es la que se ha seguido utilizando a lo largo de la década de los 80.

    La serie 74LS (low power Schottky) mejora en gran medida a la serie estándar en cuanto a consumo (0,4 mA), manteniendo la velocidad de trabajo en valores análogos e incluso, algo superiores. La disminución del consumo se deriva del empleo de resistencias de mayor valor, lo cual acarrea un aumento de las constantes de tiempo asociadas; este efecto queda compensado por la inclusión de un diodo Schottky entre base y colector de los transistores que impide su saturación (desvía la corriente de base hacia el colector antes de entrar en una saturación profunda) y, con ello, aumenta su velocidad de conmutación.

    Posteriores series «avanzadas» con el mismo esquema circuital han aprovechado la reducción de dimensiones de los transistores y la correspondiente disminución de sus capacidades parásitas para conseguir tiempos de propagación inferiores: la serie 74ALS (advanced LS) presenta tiempos por debajo de 4 ns, mientras que las series 74F (fast-TTL) y 74AS (advanced Schottky) ofrecen tiempos de propagación del orden de 2,5 ns y 1,5 ns, respectivamente, a costa de un mayor consumo (por utilizar resistencias de menor valor).

    Esta línea de evolución de las puertas con transistores bipolares constituye la «edad antigua» de los circuitos integrados digitales; actualmente, apenas se utilizan las familias bipolares, salvo en determinadas aplicaciones específicas, en particular, para sistemas de muy alta velocidad.

    La serie 74LS sigue siendo útil para «recambio y mantenimiento» de los numerosos sistemas digitales que han sido construidos con ella (o con la serie estándar 74), la serie 74ALS se emplea en circuitos «interbús» (aplicación que consideraremos un poco más adelante) y la serie 74F resulta adecuada para diseños de muy alta velocidad de trabajo (frecuencias superiores a los 100 MHz).

    Partes: 1, 2, 3
    Página siguiente