b.- Cálculo. La primera dificultad es la comprensión y la mecánica de las cuatro operaciones básicas. La resta suele ser la operación que entraña mayor dificultad.
c.- Álgebra. Con frecuencia los alumnos no comprenden que las letras simbolizan números y que pueden tener un único valor (como en x + 5 = 9) o infinitos valores (x + y = 0); tienden a sustituir expresiones aditivas (3 + x) por multiplicaciones (3x); no respetan ni comprenden el significado del paréntesis.
c.- Resolución de problemas (lo trataremos en un apartado posterior)
d.- Geometría. Las dificultades vienen originadas por la abstracción de algunas nociones (línea, plano, etc.) y por la dificultad de la terminología (pentágono, polígono)
e.- Gráficas. Falta en la comprensión de que una gráfica muestra la relación entre dos variables y no es sólo un dibujo.
f.- Fracciones. El concepto de fracciones es difícil de entender. La mayor dificultad es cuando se tiene que sumar o restar una fracción con un número entero. Otro error común es considerar que numerador y denominador son elementos independientes, por lo que operan con ellos aisladamente. El no saber cómo interpretar el valor del cero en la fracción es otro error muy frecuente.
g.- Lenguaje matemático. Las dificultades se producen por: Cantidad de vocabulario teórico nuevo que los alumnos deben asimilar. Distinto significado que los términos tienen a veces respecto a su uso habitual. Legibilidad del texto por el uso del léxico, sintaxis, gráficas, tablas, diagramas, etc. Símbolos matemáticos.
3.2.- Dificultades en la resolución de problemas. Traducción del problema: transformar cada paso en la secuencia de realización de un problema en una representación interna. Para ello necesitamos el conocimiento del lenguaje y del mundo (semántico)
Integración del problema: consiste en aunar cada una de las informaciones o representaciones que se van obteniendo de la traducción. Se trata de construir una representación global del problema.
Planificación y supervisión del problema: para establecer un plan primero tenemos que preguntarnos si conocemos algún problema que sea parecido. Si la respuesta es afirmativa lo reconocemos (identificamos el problema), realizamos una abstracción (extraemos el método de solución) y trazamos el plan (aplicamos el método al objetivo actual)
Puesta en marcha de la solución: aplicamos o realizamos los cálculos pertinentes.
4.- Evaluación. Desde un punto de vista cognitivo, la evaluación para un diagnóstico eficaz debe: Evaluar tanto el conocimiento formal como el informal. Evaluar la precisión y eficacia de las técnicas matemáticas básicas y su grado de automatización, así como las estrategias que se siguen para la solución y los errores sistemáticos.
¿Cómo detectar a un niño con DAM? 1.- Lentitud: En dar la respuesta a cuestiones matemáticas. En la realización de tareas en comparación con sus compañeros. 2.- Uso de la contabilización tangible Tienen dificultad en el cálculo mental. Utilizan los dedos para contar. Utilizan marcas donde otros alumnos utilizan el cálculo mental. Encuentran dificultades en estimar o dar respuestas aproximadas.
3.- Dificultades con las secuencias. Se pierden al contar. Se pierden al decir las tablas de multiplicar. Dificultades en recordar todos los pasos de un proceso. 4.- Dificultades en el lenguaje matemático. Le resulta difícil hablar sobre procesos matemáticos. No formulan preguntas, a pesar de resultar evidente que no comprenden. Dificultades en generalizar el aprendizaje de una situación a otra. Omisión de errores en la interpretación de los enunciados de los problemas. 5.- Dificultades mnésicas. Dificultades en el recuerdo de hechos matemáticos y símbolos. Dificultades en recordar aprendizajes anteriores. Dificultades en recordar los enunciados de los problemas. 6.- Uso de la imitación y el aprendizaje de memoria en lugar de comprender.
5.- Intervención. Un niño con DAM necesita: Una enseñanza más intensiva y explícita sobre el sentido numérico. Más práctica en el uso del sistema numérico. Un periodo de tiempo más extenso en el aprendizaje de los conocimientos básicos. Experiencia concreta con números grandes y pequeños.
Para la intervención se aconseja el uso de las estrategias habituales en la enseñanza de las matemáticas , pero más intensivas, más extensas en el tiempo y con un repaso constante.
Decálogo para que la enseñanza de las matemáticas sea más efectiva y motivadora: 1.- Hay que generar expectativas positivas en todos los alumnos. Se debe de cuidar las reacciones frente a los errores, sobre todo, con comentarios informales que pueden afectar a la autoestima del alumno cuestionando su capacidad y sus posibilidades de mejora.
2.- Se debe prestar especial atención a la construcción del conocimiento. Hay que sobrepasar el simple desarrollo disciplinar y centrarse en un enfoque más global, que los niños investiguen, piensen, analicen, indaguen, saquen sus conclusiones. 3.- La experimentación debe ser la base del aprendizaje. Los principios, leyes, pautas, estrategias, etc., se deben introducir a partir de simples experiencias y situaciones significativas que se convertirán en los algoritmos que luego aplicarán. 4.- Hay que favorecer y estimular la comprensión. Es necesario dar tiempo para el diálogo, hacer preguntas, consultar, etc. Precipitar los resultados no es adecuado. Hay que asegurarse de que se ha asimilado lo viejo antes de pasar a lo nuevo. 5.- Se enseñarán paso a paso las estrategias y algoritmos específicos que exige la tarea. Para ello hay que servirse de la atención exploratoria del niño como recurso educativo.
6.- Hay que asegurar que el niño puede recordar los aspectos relevantes de una tarea o problema. Se debe ir comprobando siempre que sea posible que el niño ha procesado la información relevante. 7.- Hay que tener presente que la diversidad es un hecho. Pretender que todos los alumnos consigan los mismos objetivos con las mismas actividades y al mismo tiempo es simplemente una falacia. Lo adecuado es plantear la programación como un espacio flexible y disponer de actividades de diferentes niveles para el refuerzo y la ampliación. 8.- La ayuda se debe prestar de forma mutua. Los compañeros pueden actuar de forma cooperativa, ayudándose los unos a los otros. 9.- La enseñanza de las matemáticas debe seguir una secuenciación espiral ascendente. Un determinado contenido se retoma en niveles sucesivos, acordes con los niveles madurativos del niño y valiéndose de otros contenidos que se han ido desarrollando paralelamente. En una espiral ascendente se retoma cada aspecto de la disciplina en un nivel superior, más complejo.
10.- Hay que procurar darle al niño tareas de orientación adecuada, procedimientos de análisis profundo y ocasiones frecuentes de aprendizaje incidental. Esto es válido tanto para los niños interesados en la matemáticas como para aquellos que no están motivados.
5.2.- Métodos de enseñanza. Los métodos de enseñanza basados en la psicología cognitiva proponen algunas prescripciones, que completan el decálogo de principios generales que hemos expuesto anteriormente: a.- Tener en cuenta los conocimientos previos de los alumnos, con el fin de que los materiales no resulten ni demasiado nuevos ni demasiado conocidos. b.- Disponer el tiempo suficiente para que se dé un aprendizaje significativo. c.- Planificar las actividades para que los niños experimenten las matemáticas en acción, aclarando los objetivos de las mismas. d.- Evitar la complejidad notacional, introduciendo la notación formal y las técnicas pertinentes sólo cuando el alumno disponga de suficientes estructuras de conocimiento para asimilarlas y esté adecuadamente motivado.
e.- Estimular el aprendizaje de relaciones y la modificación de los puntos de vista, priorizando la comprensión y la resolución de problemas, pero sin descuidar el recuerdo de hechos numéricos, deficitario en los alumnos con DAM. f.- Aprovechar la matemática inventada por los niños y el interés de éstos por el juego. g.- Proporcionar experiencias múltiples, con formas de representación diversas y materiales variados. h.- Emplear la práctica distribuida, breve pero frecuente, en torno a los conceptos más complejos.
5.3.- Cambio de actitudes. Desde la psicología cognitiva se ha comprobado que los procesos implicados en la resolución de problemas son susceptibles al influjo de los factores afectivos. Muchas creencias negativas en torno a las matemáticas, algunas de ellas inducidas por la instrucción, tienen una influencia inhibitoria sobre sus actividades. Ello hace necesario romper el círculo vicioso que muchos alumnos con DAM establecen entre las creencias irracionales, ansiedad, conductas de protección para fomentar creencias constructivas acerca de las matemáticas.
Lo anterior se puede lograr poniendo de manifiesto la inexactitud de las creencias y ayudando a los niños a desarrollar una perspectiva adecuada, que mantenga una imagen positiva de las matemáticas, tanto por su papel en la resolución de tareas cotidianas como en la propia naturaleza de las matemáticas.
5.4.- Enseñanza de conceptos y de procedimientos. Las principales dificultades de las matemáticas surgen durante la adquisición de los conceptos básicos que son la base de toda actividad matemática. Su adquisición supone un nivel determinado de desarrollo que depende del proceso de maduración. Por ello, debemos cuidar en modo extremo la enseñanza de nociones como las de clasificación, correspondencia, valor cardinal, etc. Es recomendable identificar las características relevantes e irrelevantes de cada concepto, llamando la atención de los alumnos hacia las mismas mediante preguntas y explicaciones, así como seleccionar ejemplos que contengan las características relevantes más frecuentes, y gran variedad de contraejemplos que infrinjan las características relevantes.
Uno de los métodos más conocidos que utiliza sistemáticamente las ideas erróneas de los alumnos, con el fin de modificarlas, es la enseñanza diagnóstica. Dicho método se basa en tareas críticas que exponen las ideas, tanto correctas como equivocadas, de los alumnos, a partir de las cuales se estima la discusión; dichas tareas se aproximan lo más posible a aquellas en las que se espera que los alumnos apliquen los principios aprendidos. Una vez que los alumnos descubren el método correcto de resolución, se les plantea problemas similares, con feed-back inmediato, para consolidar el nuevo conocimiento. Este método ejemplifica la idea de que la enseñanza de conceptos y de procedimientos se encuentra íntimamente relacionada, más aún si cabe que en otras disciplinas. Por lo que respecta a la enseñanza de procedimientos, actualmente se recomienda dar instrucción explícita de los conceptos y las relaciones entre ellos. Esto ayuda a los niños con DAM a progresar en las fases de resolución de problemas de modo ordenado y exitoso, evitando que sus errores sistemáticos predominen en todos sus intentos de solución.
Página anterior | Volver al principio del trabajo | Página siguiente |