Introducción al libro Mecánica, rama de la física que se ocupa del movimiento de los objetos y de su respuesta a las fuerzas. Las descripciones modernas del movimiento comienzan con una definición cuidadosa de magnitudes como el desplazamiento, el tiempo, la velocidad, la aceleración, la masa y la fuerza. Sin embargo, hasta hace unos 400 años el movimiento se explicaba desde un punto de vista muy distinto. Por ejemplo, los científicos razonaban —siguiendo las ideas del filósofo y científico griego Aristóteles— que una bala de cañón cae porque su posición natural está en el suelo; el Sol, la Luna y las estrellas describen círculos alrededor de la Tierra porque los cuerpos celestes se mueven por naturaleza en círculos perfectos.
El físico y astrónomo italiano Galileo reunió las ideas de otros grandes pensadores de su tiempo y empezó a analizar el movimiento a partir de la distancia recorrida desde un punto de partida y del tiempo transcurrido. Demostró que la velocidad de los objetos que caen aumenta continuamente durante su caída. Esta aceleración es la misma para objetos pesados o ligeros, siempre que no se tenga en cuenta la resistencia del aire (rozamiento). El matemático y físico británico Isaac Newton mejoró este análisis al definir la fuerza y la masa, y relacionarlas con la aceleración. Para los objetos que se desplazan a velocidades próximas a la velocidad de la luz, las leyes de Newton han sido sustituidas por la teoría de la relatividad de Albert Einstein. Para las partículas atómicas y subatómicas, las leyes de Newton han sido sustituidas por la teoría cuántica. Pero para los fenómenos de la vida diaria, las tres leyes del movimiento de Newton siguen siendo la piedra angular de la dinámica (el estudio de las causas del cambio en el movimiento).
Cinemática Caída de un objeto Los ejes de la gráfica representan la distancia al punto inicial y el tiempo transcurrido desde que se deja caer un objeto cerca de la superficie terrestre. La gravedad acelera el objeto, que sólo cae unos 20 metros en los primeros dos segundos, pero casi 60 metros en los dos segundos siguientes.© Microsoft Corporation. Reservados todos los derechos.
La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la distancia recorrida dividida entre el intervalo de tiempo. La magnitud de la velocidad se denomina celeridad, y puede medirse en unidades como kilómetros por hora, metros por segundo, … La aceleración se define como la tasa de variación de la velocidad: el cambio de la velocidad dividido entre el tiempo en que se produce. Por tanto, la aceleración tiene magnitud, dirección y sentido, y se mide en unidades del tipo metros por segundo cada segundo.
En cuanto al tamaño o peso del objeto en movimiento, no se presentan problemas matemáticos si el objeto es muy pequeño en relación con las distancias consideradas. Si el objeto es grande, se emplea un punto llamado centro de masas, cuyo movimiento puede considerarse característico de todo el objeto. Si el objeto gira, muchas veces conviene describir su rotación en torno a un eje que pasa por el centro de masas.
Existen varios tipos especiales de movimiento fáciles de describir. En primer lugar, aquél en el que la velocidad es constante. En el caso más sencillo, la velocidad podría ser nula, y la posición no cambiaría en el intervalo de tiempo considerado. Si la velocidad es constante, la velocidad media (o promedio) es igual a la velocidad en cualquier instante determinado. Si el tiempo t se mide con un reloj que se pone en marcha con t = 0, la distancia d recorrida a velocidad constante v será igual al producto de la velocidad por el tiempo:
d = vt Otro tipo especial de movimiento es aquél en el que se mantiene constante la aceleración. Como la velocidad varía, hay que definir la velocidad instantánea, que es la velocidad en un instante determinado. En el caso de una aceleración a constante, considerando una velocidad inicial nula (v = 0 en t = 0), la velocidad instantánea transcurrido el tiempo t será v = at La distancia recorrida durante ese tiempo será d = yat2 Esta ecuación muestra una característica importante: la distancia depende del cuadrado del tiempo (t2, o "t al cuadrado", es la forma breve de escribir t × t). Un objeto pesado que cae libremente (sin influencia de la fricción del aire) cerca de la superficie de la Tierra experimenta una aceleración constante. En este caso, la aceleración es aproximadamente de 9,8 m/s cada segundo. Al final del primer segundo, una pelota habría caído 4,9 m y tendría una velocidad de 9,8 m/s. Al final del siguiente segundo, la pelota habría caído 19,6 m y tendría una velocidad de 19,6 m/s.
Página siguiente |