Descargar

Arranque de motores asincrónicos

Enviado por buscador


Partes: 1, 2

  1. Introducción
  2. Consideraciones generales de las máquinas asincrónicas
  3. Corrientes de arranque de los motores asíncronos
  4. Diferentes sistemas de arranque de los motores asíncronos
  5. Arranque de motores asincrónicos con rotor en jaula por dispositivos electrónicos
  6. Arranque de los motores asíncronos con rotor bobinado
  7. Diferentes métodos de regulación de velocidad de los motores asincrónicos
  8. Consideraciones generales, funcionamiento y circuito eléctrico equivalente del motor asincrónico monofásico
  9. Algunas aplicaciones del motor asíncrono monofásico
  10. Motor monofásico de arranque por condensador
  11. Motor de fase partida
  12. Circuito eléctrico equivalente de un motor monofásico
  13. Circuitos equivalentes precisados de un motor asincrónico monofásico
  14. Consideraciones generales sobre el generador asincrónico
  15. Generador de corriente alterna asíncrono o de inducción
  16. Máquinas asincrónicas para dispositivos automáticos
  17. Regímenes especiales de trabajo de las máquinas asincrónicas
  18. Funcionamiento de un motor asincrónico en el régimen de alimentación doble (bilateral)
  19. Conclusiones Generales
  20. Bibliografía

edu.red

Introducción

Contrariamente a las máquinas síncronas empleadas normalmente como generadores, las máquinas asíncronas han encontrado su principal aplicación como motores, debido a la sencillez de su construcción. El motor asíncrono trifásico es hoy el motor usual de accionamiento en todas las redes de distribución.

Los motores asíncronos o de inducción son un tipo de motores eléctricos de corriente alterna. El primer prototipo de motor eléctrico capaz de funcionar con corriente alterna fue desarrollado y construido por el ingeniero Nikola Tesla y presentado en el American Institute of Electrical Engineers (en español, Instituto Americano de Ingenieros Eléctricos, actualmente IEEE) en 1888.

El motor asíncrono trifásico está formado por un rotor, que puede ser de dos tipos: a) de jaula de ardilla; b) bobinado, y un estator, en el que se encuentran las bobinas inductoras. Estas bobinas son trifásicas y están desfasadas entre sí 120º. Según el Teorema de Ferraris, cuando por estas bobinas circula un sistema de corrientes trifásicas, se induce un campo magnético giratorio que envuelve al rotor. Este campo magnético variable va a inducir una tensión en el rotor según la Ley de inducción de Faraday.

En este trabajo trataremos todos los temas relacionados con el estudio y los diversos temas relacionados con la maquina asincrónica o motor de inducción en el caso de que siempre que hablemos de maquinas asincrónicas el 98% de los casos este trabaja como motor.

Consideraciones generales de las máquinas asincrónicas

El principio de funcionamiento de las maquinas asincrónicas se basa en el concepto de campo magnético giratorio, al igual que cualquier otro dispositivo de conversión electromecánica de la energía de tipo rotativo, está formada por un estator y un rotor. En el estator se coloca normalmente el inductor, alimentado por una red monofásica o trifásica. El rotor es el inducido, y las corrientes que circulan por él aparecen por consecuencia de la interacción con el flujo del estator. Dependiendo del tipo de rotor, estas maquinas se clasifican en: a) rotor en jaula de ardilla o en cortocircuito, y b) rotor bobinado o con anillos.

El descubrimiento original fue publicado en 1888 por el profesor Galileo Ferraris en Italia y por Nikola Tesla en los EE.UU. Ambos diseños de motores asíncronos se basaban en la producción de campos magnéticos giratorios con sistemas bifásicos, es decir, utilizando una bobina a 90º. A principios del siglo XX se impuso el sistema trifásico europeo ante el bifásico americano, por lo que las maquinas asincrónicas comenzaron a ser y son trifásicas.

La diferencia de la maquina asincrónica con los demás tipos de maquinas se debe a que no existe corriente conducida a uno de los arrollamientos. La corriente que circula por uno de los devanados generalmente situado en el rotor, se debe a la f.e.m inducida por la acción del flujo del otro, y por esta razón se denomina maquinas de inducción. También reciben el nombre de maquinas asincrónicas debido a que la velocidad de giro del rotor no es la de sincronismo impuesta por la frecuencia de la red. La importancia de los motores asíncronos se debe a su construcción simple y robusta, sobre todo en el caso del rotor en forma de jaula de ardilla, que les hace trabajar en circunstancias más adversas, dando un excelente servicio con pequeño mantenimiento. Hoy en día se puede decir que más del 80% de los motores eléctricos industriales emplean este tipo de maquinas, trabajando con una frecuencia de alimentación constante. Sin embargo, históricamente su inconveniente más grave ha sido la limitación para regular su velocidad, y de ahí cuando esto era necesario, en diversas aplicaciones como la tracción eléctrica, trenes de laminación, etc., eran sustituidos por motores de c.c., que eran más idóneos para este servicio. Desde finales del siglo XX y con el desarrollo tan particular de la electrónica industrial, con accionamientos electrónicos como inversores u onduladores y cicloconvertidores, que permiten obtener frecuencia variable a partir de la frecuencia de la red, y con la introducción del microprocesador en la electrónica de potencia, se han realizado grandes cambios, y los motores asíncronos se están imponiendo poco a poco en los accionamientos eléctricos de velocidad variable.

edu.red

Corrientes de arranque de los motores asíncronos

Los motores de inducción no tienen los mismos problemas de arranque que presentan los motores síncronos. En muchos casos los motores de inducción se pueden poner en marcha simplemente conectándolos a la línea de potencia. Sin embargo en algunos casos hay muy buenas razones para no hacerlo de esta manera. Por ejemplo, la corriente de arranque requerida puede causar una caida en el voltaje del sistema de potencia por lo cual no es aceptable el arranque a través de la línea.

Los motores de inducción con rotor devanado se pueden poner en marcha con corrientes relativamente bajas por medio de la inserción de una resistencia extra en el circuito del rotor en el momento del arranque. Esta resistencia extra no solo incrementa el par de arranque sino que también reduce la corriente de arranque.

Para los motores de inducción de jaula, la corriente de arranque puede variar en forma amplia, depende principalmente de la potencia nominal del motor y de la efectividad de la resistencia del rotor en condiciones de arranque. Para estimar la corriente del rotor en condiciones de arranque, todos los motores de jaula tienen una letra código de arranque (no se debe confundir con la letra clase de diseño) en su placa de características. Esta letra código establece los límites de la cantidad de corriente que el motor puede aceptar en condiciones de arranque.

Estos límites se expresan en términos de potencia aparente de arranque del motor en función de los caballos de fuerza nominales. La tabla al final de este tema contiene los kilovoltamperes de arranque por caballo de fuerza para cada letra código.

Para determinar la corriente de arranque de un motor de inducción, léase el voltaje nominal, los caballos de fuerza y la letra código de su placa de características. Entonces, la potencia aparente de arranque del motor será:

Sarranque = (caballaje nominal) (factor de la letra de código)

Y la corriente de arranque se puede calcular con la ecuación

IL = Sarranque/ v3VT

Si se requiere, la corriente de arranque de un motor de inducción se puede reducir con un circuito de arranque. Sin embargo, esto también reducirá el par de arranque del motor. Una forma de reducir la corriente de arranque es insertar un inductor o resistor extra en la línea de potencia durante el arranque. Aun cuando en el pasado esta era una práctica común, este enfoque casi no se utiliza hoy en día. Una manera alternativa consiste en reducir el voltaje en los terminales del motor durante el arranque por medio de la utilización de autotransformadores. Es importante tomar en cuenta que aun cuando se reduce la corriente de arranque en proporción directa a la disminución del voltaje en los terminales, el par de arranque disminuye con el cuadrado del voltaje aplicado. Por lo tanto, solo se puede lograr una cierta reducción de la cantidad de corriente si el motor debe arrancar con una carga en su eje.

Diferentes sistemas de arranque de los motores asíncronos

Arranque de motores asincrónicos con rotor en jaula:

Los motores de corriente alterna con rotor en jaula de ardilla se pueden poner en marcha mediante los métodos de arranque directo o a tensión reducida.

En ambos casos, la corriente de arranque generalmente resulta mayor que la nominal, produciendo las perturbaciones comentadas en la red de distribución. Estos inconvenientes no son tan importantes en motores pequeños, que habitualmente pueden arrancar a tensión nominal. La máxima caída de tensión en la red no debe superar el 15% durante el arranque.

 Los circuitos con motores deben contar con interruptores que corten todas las fases o polos simultáneamente y con protecciones que corten automáticamente cuando la corriente adquiera valores peligrosos.

En los motores trifásicos debe colocarse una protección automática adicional que corte el circuito cuando falte una fase o la tensión baje de un valor determinado.

Arranque directo

Este método se emplea únicamente en maquinas de una potencia inferior a 5Kw.

Un motor arranca en forma directa cuando a sus bornes se aplica directamente la tensión nominal a la que debe trabajar.

Si el motor arranca a plena carga, el bobinado tiende a absorber una cantidad de corriente muy superior a la nominal, lo que hace que las líneas de alimentación incrementen considerablemente su carga y como consecuencia directa se reduzca la caída de tensión. La intensidad de corriente durante la fase de arranque puede tomar valores entre 6 a 8 veces mayores que la corriente nominal del motor. Su ventaja principal es el elevado par de arranque, que es 1.5 veces el nominal.

edu.red

Siempre que sea posible conviene arrancar los motores a plena tensión por el gran par de arranque que se obtiene, pero si se tuvieran muchos motores de media y gran potencia que paran y arrancan en forma intermitente, se tendrá un gran problema de perturbaciones en la red eléctrica.

Por lo tanto, de existir algún inconveniente, se debe recurrir a alguno de los métodos de arranque por tensión reducida.

Arranque a tensión reducida de motores asíncronos con rotor en jaula de ardilla

Este método se utiliza para motores que no necesitan un gran par de arranque. Este método consiste en producir en el momento de arranque una tensión menor que la nominal en los arrollamientos del motor. Al reducir la tensión se reduce proporcionalmente la corriente, la intensidad del campo magnético y el par motriz.

Entre los métodos de arranque por tensión reducida más utilizados podemos citar; el arranque por autotransformador, conmutación estrella-triangulo y el de arrancador electrónico

Arranque por autotransformador

Consiste en intercalar un autotransformador entre la red y el motor, de tal forma que la tensión aplicada en el arranque sea solo una fracción de la asignada. El proceso puede realizarse en dos o tres escalones y con tensiones no inferiores al 40, 60 y 75% de la tensión de la línea.

Se aplica a motores cuya potencia nominal es mayor que 5Kw. El autotransformador de arranque es un dispositivo similar al estrella-triangulo, salvo por el hecho de que la tensión reducida en el arranque se logra mediante bobinas auxiliares que permiten aumentar la tensión en forma escalonada, permitiendo un arranque suave.

Su único inconveniente es que las conmutaciones de las etapas se realizan bruscamente, produciendo en algunas ocasiones daños perjudiciales al sistema mecánico o a la maquina accionada. Por ejemplo, desgaste prematuro en los acoplamientos (correas, cadenas, engranajes o embragues de acoplamiento) o en casos extremos roturas por fatiga del eje o rodamientos del motor, producido por los grandes esfuerzos realizados en el momento de arranque.

Este método de arranque es posible solo en los casos cuando el par de frenado durante el arranque no es grande. De lo contrario el motor no podrá iniciar la marcha.

Una variante menos usada es la conexión Kusa, en la que durante el proceso de arranque se intercala una resistencia en uno de los conductores de línea.

Es decir, que la corriente de arranque depende de la tensión de alimentación del motor. Si disminuimos la tensión de alimentación en el momento del arranque, reduciremos la corriente de arranque. Una vez que el motor alcance una determinada velocidad, con s<1, procederemos a restablecer la tensión nominal de alimentación.

edu.red

En la fig. 4.30 se muestra un arranque por autotransformador, con dos etapas de tensión. En la posición 1 del conmutador se alimenta el autotransformador con tensión de la red, aplicando al motor solamente una fracción de esta tensión de la red etapa de arranque). Cuando la maquina ha aumentado su velocidad hasta un valor adecuado, cercano al asignado, el conmutador se pasa a la posición 2, lo que eleva la tensión que llega al motor y este sigue aumentando de velocidad. Finalmente se pasa el conmutador a la posición 3, de tal forma que la tensión de la red queda aplicada directamente al estator de la red.

Conmutación estrella-Delta

Este método de arranque se puede aplicar tanto a motores de rotor devanado como a motores de rotor jaula de ardilla, la única condición que debe cumplir el motor para que pueda aplicarse este método de arranque es que tenga acceso completo a los devanados del estator (6 bornes de conexión).

Este método solamente se puede utilizar en aquellos motores que estén preparados para funcionar en delta con la tensión de la red, si no es así no se le puede conectar. La maquina se conecta en estrella en el momento del arranque y se pasa después a delta cuando está en funcionamiento.

La conmutación de estrella-delta generalmente se hace de forma automática luego de transcurrido un lapso (que puede regularse) en que el motor alcanza determinada velocidad.

El arranque estrella-delta es el procedimiento más empleado para el arranque a tensión reducida debido a que su construcción es simple, su precio es reducido y tiene una buena confiabilidad.

En el caso más simple tres contactos realizan la tarea de maniobrar el motor, disponiendo de enclavamientos adecuados. La protección del motor se hace por medio de un relé térmico. El térmico debe estar colocado en las fases del motor.

La regulación del mismo debe hacerse a un valor que resulta de multiplicar la corriente de línea por 0,58. La protección del circuito más adecuada también es el fusible.

Algunas indicaciones que se deben tener en cuenta sobre el punto de conmutación son: el pico de corriente que toma el motor al conectar a plena tensión (etapa delta) debe ser el menor posible; por ello, la conmutación debe efectuarse cuando el motor esté cercano a su velocidad nominal (95% de la misma), es decir cuando la corriente de arranque baje prácticamente a su valor normal en la etapa de estrella.

Asimismo, el relé de tiempo debe ajustarse para conmutar en este momento, no antes ni mucho después. Habitualmente, un arranque normal puede durar hasta 10 segundos, si supera los 12 segundos se debe consultar al proveedor del equipo. Si no se cumple con lo anterior, el pico de corriente que se produce al pasar a la etapa de triángulo es muy alto, perjudicando a los contactos, al motor y a la máquina accionada. El efecto es similar al de un arranque directo.

edu.red

La operación se realiza en la actualidad con automatismos de contactores, con un circuito de fuerza y otro con mando o control; se requiere tres contactores, uno denominado principal, para la alimentación de los principios de la bobina de los devanados del motor; otro un contactor que se encarga de realizar la conexión al devanado en estrella, y el tercero ejecuta la conexión triangulo; además se necesita de un relé de tiempo para ajustar el momento en que se pasa de la conexión estrella a la conexión triangulo.

Arranque de motores asincrónicos con rotor en jaula por dispositivos electrónicos

Los arrancadores electrónicos son una mejor solución que los autotransformadores gracias a la posibilidad de su arranque suave, permitiendo un aumento en la vida útil de todas las partes involucradas.

Los mismos consisten básicamente en un convertidor estático alterna-continua-alterna ó alterna-alterna, generalmente de tiristores, que permiten el arranque de motores de corriente alterna con aplicación progresiva de tensión, con la consiguiente limitación de corriente y par de arranque. En algunos modelos también se varía la frecuencia aplicada. Al iniciar el arranque, los tiristores dejan pasar la corriente que alimenta el motor según la programación realizada en el circuito de maniobra, que irá aumentando hasta alcanzar los valores nominales de la tensión de servicio.

La posibilidad de arranque progresivo, también se puede utilizar para detener el motor, de manera que vaya reduciendo la tensión hasta el momento de la detención.

Estos arrancadores ofrecen selección de parada suave, evitando por ejemplo, los dañinos golpes de ariete en las cañerías durante la parada de las bombas; y detención por inyección de corriente continúa para la parada más rápida de las masas en movimiento.

Además poseen protecciones por asimetría, contra sobre temperatura y sobrecarga, contra falla de tiristores, vigilancia del tiempo de arranque con limitación de la corriente, control de servicio con inversión de marcha, optimización del factor de potencia a carga parcial, maximizando el ahorro de energía durante el proceso y permiten un ahorro en el mantenimiento por ausencia de partes en movimiento que sufran desgastes.

Arranque de los motores asíncronos con rotor bobinado

edu.red

En los motores de rotor devanado o con anillos se puede reducir la corriente de arranque introduciendo una resistencia adicional en cada una de las fases del rotor. La operación se realiza con la ayuda de un reóstato trifásico, como se indica en la figura, donde se ha supuesto que los devanados de la maquina están conectados en estrella.

En el arranque se introduce toda la resistencia adicional (posición 1), de esta forma aumenta la impedancia de la maquina y se reduce la corriente inicial; conforme al motor inicia su marcha, se va eliminando la resistencia del reóstato pasando el mando móvil a las posiciones 2,3 y 4, que conforman una serie de contactos, en la última parte queda cortocircuitado el rotor y finaliza la operación de arranque.

En esta situación, para reducir las pérdidas mecánicas del motor y también el desgaste de anillos y escobillas, estas maquinas llevan a menudo dispositivos para levantar las escobillas y poner en cortocircuito los anillos. Hoy día esta operación de arranque se realiza automáticamente por mediación de contactores y relés de tiempo que van eliminando secuencialmente las resistencias adicionales.

Este método de arranque sólo se puede aplicar a motores de rotor devanado. Como se comprueba fácilmente, al introducir una resistencia adicional en el devanado del rotor, se disminuye la corriente de arranque con relación a la corriente absorbida por el método de arranque directo.

Diferentes métodos de regulación de velocidad de los motores asincrónicos

Regulación por variación de número de polos

Variando el numero de polos del estator de la maquina, cambia la velocidad del campo giratorio y en consecuencia varia la velocidad de rotación del rotor. El procedimiento utiliza diversos devanados en el estator dependiendo de las velocidades que se quiera obtener; generalmente, por limitación de espacio de las ranuras suelen emplearse dos combinaciones diferentes, dando lugar a dos r.pm., asíncronas cercanas a 3.000, 1.500, 750, 500, etc., (a 50Hz). Para que el funcionamiento sea posible es preciso que el rotor sea jaula de ardilla, ya que este tipo de rotor adapta automáticamente por inducción su número de polos al existente en el estator. Con frecuencia se emplean dos escalones de velocidad en la relación 2:1, y con un solo devanado que se conmuta adecuadamente, lo que se denomina conexión Dahlander.

En este caso, cada fase del devanado consta de dos partes iguales, que pueden ponerse en serie o en paralelo, dando lugar a una reducción de pares de polos a la mitad del original, aumentando en consecuencia la velocidad del rotor a prácticamente el doble.

edu.red

En la fig. se muestra el procedimiento adecuado utilizado. En a) se muestra el devanado formado por 4 polos, estando las bobinas conectadas en serie. En b) se muestra el devanado formado por 2 polos, con bobinas conectadas en paralelo; se observa en este caso que la corriente en la bobina c-d ha sufrido una inversión.

Regulación por variación de frecuencia

La preferencia actual por la regulación a frecuencia variable se debe a la posibilidad de utilizar el sencillo y robusto motor de jaula de ardilla; cuyo mantenimiento es mucho más fácil que el de un motor de contactos deslizantes, lo que resulta muy importante en máquinas que operan bajo condiciones ambientales difíciles.

Además este tipo de motor eléctrico resulta más económico y compacto que los restantes. Asimismo, este método permite transformar fácilmente un equipo de velocidad fija en un accionamiento de velocidad variable, sin realizar grandes modificaciones.

Con este tipo de regulación se puede obtener un amplio control de velocidades, con el máximo par disponible en todas las frecuencias con un elevado rendimiento.

Si se prolonga la característica al cuadrante generador se puede obtener un frenado muy eficiente por reducción de frecuencia, con una recuperación de energía hacia la red de alimentación. Si bien pueden utilizarse distintos tipos de convertidores de frecuencia rotativos (semejantes al sistema Ward-Leonard), en la actualidad la modificación de la frecuencia se realiza fundamentalmente por medio de variadores estáticos electrónicos que ofrecen una regulación suave, permitiendo un aumento en la vida útil de todas las partes involucradas y originando un ahorro en el mantenimiento por ausencia de partes en movimiento que sufran desgastes.

Los mismos se construyen generalmente con tiristores gobernados por un microprocesador que utiliza un algoritmo de control vectorial del flujo, y consisten básicamente en un convertidor estático alterna-alterna (cicloconvertidor) ó alterna-continua-alterna (convertidor de enlace), que permiten la modificación progresiva de la frecuencia aplicada, con la consiguiente modificación de la corriente y el par motor. En algunos casos se agregan filtros de armónicas. En el cicloconvertidor se sintetiza una onda de menor frecuencia a partir de una alimentación polifásica de mayor frecuencia, conectando sucesivamente los terminales del motor a las distintas fases de la alimentación.

La onda sintetizada generada es rica en armónicos y en algunos casos el circuito puede generar subarmónicos que podrían llegar a producir problemas si existiera alguna resonancia mecánica del sistema. 

Por otro lado, el cicloconvertidor ofrece una transformación simple de energía de buen rendimiento, permite la inversión del flujo de potencia para la regeneración y la transmisión de la corriente reactiva; proporcionando una gama de frecuencias de trabajo que va desde valores cercanos a cero hasta casi la mitad de la frecuencia de alimentación, con fácil inversión de fase para invertir el sentido de rotación. En ciertos casos este tipo de convertidor se emplea en motores asincrónicos de rotor bobinado con alimentación doble, estando el estator conectado a la red y el rotor al convertidor.

En el convertidor de enlace la alimentación de la red de corriente alterna se rectifica en forma controlada y luego alternativamente se conmutan las fases del motor al positivo y al negativo de la onda rectificada, de manera de crear una onda de alterna de otra frecuencia.

La tensión y frecuencia de salida se controlan por la duración relativa de las conexiones con las distintas polaridades (modulación del ancho de pulso) de manera de conservar constante el cociente tensión / frecuencia para mantener el valor del flujo magnético en el motor. 

Aunque la onda de tensión obtenida no es sinusoidal, la onda de corriente tiende a serlo por efecto de las inductancias presentes. Además, de este modo se obtiene una amplia gama de frecuencias por encima y por debajo de la correspondiente al suministro, pero exige dispositivos adicionales c.c. /c.a. para asegurar el flujo de potencia recuperada.

Hay que considerar que las corrientes poliarmónicas generan un calentamiento adicional que disminuye el rendimiento y puede llegar a reducir el par (por ejemplo, el 5º armónico produce un campo giratorio inverso).

También cabe acotar que la vibración de los motores aumenta cuando se les alimentan con conversores electrónicos de frecuencia y que la componente de alta frecuencia de la tensión de modo común de los conversores de frecuencia puede causar un acoplamiento con la tierra a través de la capacidad que se forma en los rodamientos, donde las pistas actúan como armaduras y la capa de grasa como dieléctrico. Asimismo digamos que los variadores de velocidad generalmente también sirven para arrancar o detener progresivamente el motor, evitando por ejemplo, los dañinos golpes de ariete que pueden aparecer en las cañerías durante la parada de las bombas.

Ventajas de la utilización del Variador de Velocidad en el arranque de motores asíncronos.

  • El variador de velocidad no tiene elementos móviles, ni contactos.

  • La conexión del cableado es muy sencilla.

  • Permite arranques suaves, progresivos y sin saltos.

  • Controla la aceleración y el frenado progresivo.

  • Limita la corriente de arranque.

  • Permite el control de rampas de aceleración y deceleración regulables en el tiempo.

  • Consigue un ahorro de energía cuando el motor funcione parcialmente cargado, con acción directa sobre el factor de potencia

  • Puede detectar y controlar la falta de fase a la entrada y salida de un equipo. Protege al motor.

  • Puede controlarse directamente a través de un autómata o microprocesador.

  • Se obtiene un mayor rendimiento del motor.

  • Nos permite ver las variables (tensión, frecuencia, r.p.m, etc…).

Inconvenientes de la utilización del Variador de Velocidad en el arranque de motores asíncronos.

  • Es un sistema caro, pero rentable a largo plazo.

  • Requiere estudio de las especificaciones del fabricante.

  • Requiere un tiempo para realizar la programación.

Regulación por variación del deslizamiento

El deslizamiento S varía con la carga, pero la variación de la carga no proporciona un método práctico de control de la velocidad. Sin embargo, es posible cambiar la característica par – velocidad de varias maneras, de modo que para cada par de carga se necesita un valor de S distinto. 

Estos métodos proporcionan una mala utilización de la potencia y capacidad del motor, pero el control suele ser sencillo y justificable en algunas aplicaciones. En el caso de variación de la tensión se pueden utilizar tiristores conectados en serie con el estator para interrumpir el paso de la corriente durante una fracción del período (control de fase) o en algunos períodos completos (encendido alternado), reduciéndose así la tensión media aplicada. 

El control de fase produce armónicos de orden elevado, mientras que el encendido intermitente puede generar subarmónicos que podrían entrar en resonancia con el sistema mecánico. La regulación permite disminuir la velocidad nominal y la utilización óptima del motor se produce en caso de regulación a par constante.

La gama de regulación no es constante y resulta muy sensible a las variaciones de la carga. Asimismo, el inconveniente de este sistema de variación está en las grandes pérdidas de energía. La modificación de la resistencia rotórica puede verse como un caso especial de inyección de una tensión al rotor, pues se crea una caída de tensión en la resistencia agregada externamente. 

Si se sustituye la resistencia por un elemento activo, la energía no se desperdicia y se puede alcanzar velocidades supersincrónicas y corregir el factor de potencia. De esta manera, inyectando una tensión secundaria de frecuencia de resbalamiento y con un ángulo de fase determinado se puede variar el deslizamiento resultante e introducir una componente reactiva adecuada.

Un método para lograr esto consiste en acoplar mecánicamente un segundo motor asincrónico y alimentarlo de los anillos rozantes del primero (control en cascada), otro es utilizar un convertidor de frecuencia de colector y un tercero es emplear un motor polifásico de inducción a colector con rotor alimentado (motor Schrage). Dado que estos métodos en la actualidad sólo tienen un interés meramente académico no serán desarrollados.

Regulación por impulsos

La regulación por impulsos de la velocidad generalmente se aplica en motores de pequeña potencia, y básicamente consiste en provocar variaciones periódicas y de corta duración de los parámetros del motor, de tal manera y a una frecuencia tal, que la velocidad requerida se obtiene como una velocidad promedio de las aceleraciones y desaceleraciones producidas durante el ciclo completo de variación de los parámetros. Estas variaciones pueden realizarse mediante contactores o tiristores que conectan y desconectan la alimentación de los distintos arrollamientos, cortocircuitan alternativamente ciertas impedancias o invierten periódicamente la polaridad del suministro.

Variadores de velocidad electrónicos

Las principales funciones de los variadores de velocidad electrónicos son los siguientes:

Aceleración controlada

La aceleración del motor se controla mediante una rampa de aceleración lineal o en «S». Generalmente, esta rampa es controlable y permite por tanto elegir el tiempo de aceleración adecuado para la aplicación.

Variación de velocidad

Un variador de velocidad no puede ser al mismo tiempo un regulador. En este caso, es un sistema, rudimentario, que posee un mando controlado mediante las magnitudes eléctricas del motor con amplificación de potencia, pero sin bucle de realimentación: es lo que se llama «en bucle abierto».

La velocidad del motor se define mediante un valor de entrada (tensión o corriente) llamado consigna o referencia.

Para un valor dado de la consigna, esta velocidad puede variar en función de las perturbaciones (variaciones de la tensión de alimentación, de la carga, de la temperatura). El margen de velocidad se expresa en función de la velocidad nominal.

Regulación de la velocidad

Un regulador de velocidad es un dispositivo controlado. Posee un sistema de mando con amplificación de potencia y un bucle de alimentación: se denomina, «bucle abierto».

La velocidad del motor se define mediante una consigna o referencia. El valor de la consigna se compara permanentemente con la señal de alimentación, imagen de la velocidad del motor. Esta señal la suministra un generador tacométrico o un generador de impulsos colocado en un extremo del eje del motor.

Si se detecta una desviación como consecuencia de una variación de velocidad, las magnitudes aplicadas al motor (tensión y/o frecuencia) se corrigen automáticamente para volver a llevar la velocidad a su valor inicial.

Gracias a la regulación, la velocidad es prácticamente insensible a las perturbaciones.

La precisión de un regulador se expresa generalmente en % del valor nominal de la magnitud a regular.

edu.red

Deceleración controlada

Cuando se desconecta un motor, su deceleración se debe únicamente al par resistente de la máquina (deceleración natural). Los arrancadores y variadores electrónicos permiten controlar la deceleración mediante una rampa lineal o en «S», generalmente independiente de la rampa de aceleración.

Esta rampa puede ajustarse de manera que se consiga un tiempo para pasar de la velocidad de régimen fijada a una velocidad intermediaria o nula:

– Si la deceleración deseada es más rápida que la natural, el motor debe de desarrollar un par resistente que se debe de sumar al par resistente de la máquina; se habla entonces de frenado eléctrico, que puede efectuarse reenviando energía a la red de alimentación, o disipándola en una resistencia de frenado.

– Si la deceleración deseada es más lenta que la natural, el motor debe desarrollar un par motor superior al par resistente de la máquina y continuar arrastrando la carga hasta su parada.

Inversión del sentido de marcha

La mayoría de los variadores actuales tienen implementada esta función. La inversión de la secuencia de fases de alimentación del motor se realiza automáticamente o por inversión de la consigna de entrada, o por una orden lógica en un borne, o por la información transmitida a mediante una red.

Frenado

Este frenado consiste en parar un motor pero sin controlar la rampa de desaceleració

n. Con los arrancadores y variadores de velocidad para motores asíncronos, esta función se realiza de forma económica inyectando una corriente continua en el motor, haciendo funcionar de forma especial la etapa de potencia. Toda la energía mecánica se disipa en el rotor de la máquina y, por tanto, este frenado sólo puede ser intermitente.

En el caso de un variador para motor de corriente continua, esta función se realiza conectando una resistencia en bornes del inducido.

Consideraciones generales, funcionamiento y circuito eléctrico equivalente del motor asincrónico monofásico

El motor asíncrono monofásico

Los motores monofásicos, como su propio nombre indica son motores con un solo devanado en el estator, que es el devanado inductor, tampoco en estos existe conexión física entre el rotor y el estator, ya que se encuentran separadas uniformemente (entrehierro).

Prácticamente todas las realizaciones de este tipo de motores son con el rotor en jaula de ardilla. Suelen tener potencias menores de 1KW, aunque hay notables excepciones como los motores de los aires acondicionados con potencias superiores a 10KW.

Se pueden alimentar entre una fase y el neutro o entre dos fases. No presentan los problemas de excesiva corriente de arranque como en el caso de los motores trifásicos de gran potencia, debido a su pequeña potencia, por tanto todos ellos utilizan el arranque directo. La denominación "motor pequeño" se aplica a motores de potencia inferior a un caballo de fuerza, es decir, menor a un HP. También es llamado motor de potencia fraccional y casi la totalidad de los motores monofásicos son de potencia fraccional.

Aun cuando, se fabrican en potencias enteras normalizadas: 1.5, 2.5, 5, 7.5 y 10 HP tanto para tensiones de 115, 230 e incluso 440 volt para las potencias de 7.5 y 10 HP.

El motor monofásico de inducción es netamente inferior al motor de inducción trifásico. Para iguales pesos, su potencia bordea solo el 60% de la del motor de inducción trifásico; tiene un factor de potencia más bajo y menor rendimiento.

Comparado con el trifásico:

  • Más ruidoso

  • Menor rendimiento

  • Menor cos f

  • No tiene par de arranque

Consta de:

  • Una sola bobina

  • Rotor tipo jaula de ardilla

El motor asincrónico monofásico presenta los siguientes inconvenientes:

Se caracterizan por sufrir vibraciones debido a que la potencia instantánea absorbida por cargas monofásicas es pulsante de frecuencia doble que la de la red de alimentación.

No arrancan solos, debido a que el par de arranque es cero. Para explicar esta última afirmación recordemos la expresión general del campo magnético en el entrehierro generado por una corriente monofásica.

edu.red

Algunas aplicaciones del motor asíncrono monofásico

  • Se utilizan fundamentalmente en electrodomésticos, bombas y ventiladores de pequeña potencia, pequeñas máquinas-herramientas, en los mencionados equipos de aire acondicionado, etc.

  • Este también se utiliza en aplicaciones de baja potencia ( de hasta 1CV).

Principio de funcionamiento del motor asíncrono monofásico.

Este tipo de motor una vez conectado no gira, necesita un movimiento inicial para salir del punto de inestabilidad.

El motor monofásico de inducción una vez que comienza a girar el rotor se producirá en este un momento inducido. Existen dos teorías básicas que explican por qué se produce momento en el rotor cuando este comienza a girar. La teoría del doble campo giratorio de los motores de inducción monofásicos y la teoría de campo cruzado de dicho motores. Ambas explicadas a continuación.

Teoría del doble campo giratorio

Básicamente, esta teoría sostiene que un campo magnético pulsante y estacionario puede descomponerse en dos campos magnéticos giratorios de igual magnitud pero que giran en direcciones opuestas. El motor responde separadamente a cada campo magnético, y el momento neto de la maquina será la suma de los momentos correspondientes a cada uno de los dos campos magnéticos.

Que a la velocidad cero no tendrá momento neto, y lo cual explica el par que este tipo de motor no tiene momento de arranque.

Por otra parte, en un motor monofásico los campos magnéticos tanto de avance como de inversión están presentes y ambos son producidos por la misma corriente.

Teoria del campo cruzado

Esta teoría considera el motor de inducción desde un punto de vista totalmente diferente, y se ocupa de las tensiones y corrientes que el campo magnético estacionario del estator puede inducir en las barras del rotor cuando esta se halla en movimiento.

Las tensiones del rotor producen un flujo de corriente en el mismo, pero debido a la alta reactancia del rotor la corriente atrasa a la tensión en cerca de 90°. Como el rotor está girando casi a la velocidad sincrónica, este retardo de tiempo de 90° en la corriente produce una desviación angular de casi 90° entré el plano de la tensión máxima del rotor y el plano de la corriente máxima.

El campo magnético del rotor es, por tanto, un poco menor que el campo magnético del estator debido a las perdidas del rotor, pero difieren en casi 90° tanto en espacio como en tiempo.

En estos motores la corriente en el devanado auxiliar se encuentra retrazada aproximadamente en 15° respecto de la tensión de alimentación. En tanto que la corriente del devanado principal, que es mayor, esta retrazada en unos 40° respecto de la tensión monofásica. A pesar del hecho que la corriente en los dos devanados en cuadratura en el espacio no es igual, aún cuando las componentes en cuadratura son prácticamente iguales.

Si los devanados están desplazados en 90° en el espacio y si las componentes en cuadratura de la corriente, que están desfasadas en 90°, son prácticamente iguales, se produce entonces un campo giratorio bifásico equivalente en el arranque que desarrolla el par suficiente para acelerar el rotor en el sentido del campo giratorio producido por las corrientes. Cuando el rotor acelera genera su propia F.e.m. De rotación (teoría del campo transversal) y tiende a producir un par resultante en virtud de su propia rotación en un sentido particular (teoría del campo giratorio). El par desarrollado por el campo principal pulsatorio (producido por el devanado principal) supera al desarrollo por ambos devanados a un valor del deslizamiento de alrededor del 15%. Asimismo, es evidente, que la corriente sola produciría menos perdida ya que se eliminarían las perdidas del devanado auxiliar. Por estas dos razones se utiliza un interruptor centrífugo (normalmente cerrado en reposo) que se accione a un deslizamiento de alrededor de un 25% (par máximo como motor monofásico), con lo que el motor alcanza su deslizamiento nominal (aproximadamente el 5% o menos según la carga aplicada) como motor monofásico en virtud de su propio campo transversal.

Partes: 1, 2
Página siguiente