Descargar
Partes: 1, 2

7. ¿Qué es el formato lógico HSG/ISO 9660 para organización interna de un CD-ROM usado en sistemas operativos para almacenar archivos?

Las siglas HSG hacen mención al High Sierra Group, grupo de fabricantes de hard y soft que se reunió en el High Sierra Hotel de Nevada en 1985, para establecer normas de compatibilidad entre CDs. Estas con muy pocas variantes constituyera luego el estándar ISO 9660. De ahí la denominación HSG/ISO 9660. Este estándar sirve para acceder a archivos en un CD-ROM, a través del DOS u otro sistema operativo de uso en una PC. Según el mismo, un sistema operativo -para almacenar la información o leerla- "ve" un CD-ROM conformado por una sucesión de sectores lógicos (figura 2.49) de 2048 bytes (2KB) como en una cinta magnética, constituidos a su vez por 4 bloques lógicos de 512 bytes.

Un archivo se guarda en una secuencia continua de bloques lógicos.

Tanto los sectores lógicos como los bloques lógicos se numeran 0,1,2… Estos números identificatorios se denominan Logical Sector Numbers (LSN), y Logical Blocks Numbers (LBN), respectivamente.

Resulta, pues, que el tamaño de un sector lógico (2 KB) coincide cm el de un sector antes definido (figura 2.48), también llamado sector físico, siendo que en un sector físico entran 4 bloques lógicos de 512 bytes.

El sector lógico 0 (SLN 0) se encuentra luego que pasaron 150 sectores físicos, en el sector físico de dirección 00:02 0, o sea en el sector que está a 2 seg. del comienzo del CD (figura 2.50), suponiendo que pasan 75 sectores por segundo por el punto de incidencia del rayo láser enfocado en la espiral.

Mediante un simple cálculo, con el SLN se puede hallar la dirección del sector físico que le corresponde.

Según se vio, en un disquete o en un disco rígido un archivo puede estar fraccionado: parte en sectores consecutivos de un cilindro, y parte en sectores consecutivos de otro(s) cilindro(s). Ello depende del espacio existente cuando fue creado, de su extensión, y del hecho de que si el archivo fue ampliado en distintas oportunidades, en el lapso transcurrido entre éstas fueron creados o borrados otros archivos.

En un CD la espiral una vez grabada no puede borrarse (sea del tipo CD-ROM grabado por inyección en un molde patrón, o un CD-R). Cada archivo guardado en el CD consta de varios sectores consecutivos de la espiral, sin posibilidad de fragmentación, ni de cambios (gran estabilidad). Resulta así sencillo ubicar en un CD todos los bloques lógicos que constituyen un archivo, pues basta indicar la ubicación del primero de ellos y el número total de tales bloques.

Por lo tanto, un CD no requiere de una tabla tipo FAT, necesaria para seguir la continuidad de un archivo que se encuentra fraccionado en distintos cilindros de un disco o disquete.

La denominada "Path table" ("tabla de alternativas") de un CD, contiene -por orden alfabético- los nombres de todos los directorios y subdirectorios, junto con el número de sector lógico (SLN) donde cada uno de ellos empieza, con lo cual puede determinarse en qué sector físico están. Puede haber varias tablas. Si una copia de esta tabla pasa a memoria principal, en ella se selecciona el subdirectorio buscado, y luego es factible perder tiempo únicamente para acceder a un solo sector del CD, donde dicho subdirectorio se encuentra, a fin de localizar por su nombre un archivo que forma parte del mismo. Para traer a memoria la "Path Table", el sistema operativo debe averiguar en qué sector del CD ella está. A tal fin primero debe llevar a memoria el Descriptor de Volúmen estándar (VD), que siempre debe existir en el SLN 0. Este sector y hasta el SLN 15 están reservados para el área del sistema (figura 2.50); o sea que ésta consta de 32 KB (16 sectores de 2KB). Luego, se extiende el área de datos hasta el fin del CD. Este VD también permite localizar el SLN del área de datos donde se encuentra el "directorio raíz" del CD, a partir del cual comienza la estructura jerárquica de subdirectorios y archivos contenidos en el CD, como en los discos y disquetes.

Conforme al estándar HSG, pueden existir en el área del sistema un "boot sector", y hasta 5 descriptores de volumen distintos, que informan sobre distintos atributos del CD, siendo obligatoria la existencia del VD estándar. Esta información debe estar en sectores consecutivos, a partir del SLN 0, al final de los cuales un sector lógico debe indicar el fin de la secuencia de sectores ocupados en el área del sistema.

Los descriptores de volumen posibilitan la creación de varios directorios en un CD (o para un grupo de CD)

8. ¿En qué consisten las técnicas magneto-ópticas (MO) y de cambio de fase usadas en discos ópticos borrables?

Los discos borrables magneto-ópticos (M0) presentan (figura 2.5 1) una fina capa de material magnetizable y reflectante, protegida entre dos capas de material plástico transparente. La capa magnetizaba guarda la información en pistas concéntricas, que se graban y leen a velocidad angular constante (CAV: constant angular velocity) como ocurre en los discos magnéticos. También como en éstos, mientras el disco gira, el cabezal primero se posiciona en la pista a la que se quiere acceder, quedando inmóvil sobre ella (al igual que el cabezal de los discos magnéticos), y luego busca al sector (de 512 ó 1024 bytes) direccionado.

En la escritura (figuras 2.52 y 2.53) un cabezal con un haz láser auxilia con calor puntual la grabación N-S o S-N que llevará a cabo un campo magnético. Dicho haz, en la lectura de un sector, al ser reflejado por la capa magnetizada servirá para detectar si el punto donde incidió tiene polarización magnética correspondiente a un uno o cero.

El tiempo de acceso puede ser hoy de 30 mseg. para discos MO de 3 1/2", y velocidades de 3000 r.p.m.

Los discos MO se alojan en los denominados "cartuchos" ("cartridges"), semejantes a los que protegen disquetes magnéticos. Pueden grabarse y leerse en ambas caras, pero en el presente de a una por vez, debiéndose extraer el disco para darlo vuelta y reinsertarlo. Existen discos MO de 5 1/4", con 325 ó 650 MB por cara; y de 3 1/2" con 128 MB por cara.

Dado que no existen aún normas acordadas mundialmente, puede ocurrir que un disco MO de un fabricante no funcione en una unidad para tales discos de otra marca.

Como se detallará, en la grabación de unos y ceros de un sector, debe generarse un campo magnético de polaridad adecuada mediante un electroimán, como en los discos magnéticos.

Pero para que tal grabación sea posible, debe acompañar al campo magnético un haz láser puntual de cierta potencia, perpendicular a la pista, que caliente los puntos de ésta (dominios mgnéticos) que son magnetizados como ceros o unos. Esto permite una mayor densidad de grabación, especial en el números de pistas por pulgada (t.p.i).

En la lectura de una pista, no interviene el electroimán citado. Este sensado se hace con un haz láser de baja potencia, cuya reflexión permite diferenciar campos magnéticos, ya sean de unos o ceros grabados.

Otra diferencia de los MO respecto de los magnéticos, radica en que la superficie de material magnetizable y reflectiva (actualmente de Cobalto-Platino) que contiene la información grabada, está protegida por una capa de plástico translúcida.

Para regrabar (o grabar en un disco virgen) información en un sector, una forma de hacerlo es realizando dos pasos (previamente el cabezal debe acceder al sector a grabar):

1. Un denominado borrado, que en definitiva es una escritura de todos ceros en la porción de la capa magnetizable a grabar. Consiste (figura 2.52) en calentar con el láser' los puntos microscópicos magnetizados que guardan tanto los unos como los ceros existentes en la porción a grabar (lo mismo si se graba por primera vez), al mismo tiempo que se aplica un campo magnético con el electroimán que actúa desde la cara superior del disco. El láser puntual calienta (a unos 150 ºC durante menos de una millonésima de segundo) cada punto a fin de desmagnetizarlo, para que luego quede polarizado magnéticamente S-N como un cero, merced a la acción del campo magnético del electroimán citado. Aunque dicho campo actúe sobre otros puntos vecinos, sólo puede ser cambiada la polaridad magnética del punto que es calentado por el láser.

Se trata, pues, de una escritura termomagnética "asistida" por láser que la figura 2.52 esquematiza.

La bobina del electroimán sobre el disco genera el campo rnagnetizador externo -usado sólo para grabar- que es vertical a la pista accedida.

El calor es disipado por la capa grabada hacia todo el CD.

2. Escritura de unos, para lo cual el disco debe hacer casi una revolución para volver al inicio de la zona del sector a grabar. En este paso (figura 2.53) el electroimán invierte la polaridad del campo magnético que genera, y el haz puntual es activado por el microprocesador, sólo para calentar puntos que deben ser cambiados a unos (magnetizados como ceros en el paso anterior) conforme a la información que debe ser realmente escrita. Esto se hace igual que en el paso 1. Lo único que cambia es la dirección de la corriente en el electroimán. En dichos puntos la dirección de magnetización se invierte en la dirección del campo magnético externo. La energía calorífico absorbida es disipada merced a la conducción técnica del sustrato del disco.

Tanto en la escritura de unos o ceros la polarización resultante N-S o S-N es perpendicular a la superficie, como en los discos rígidos actuales (figura 2.23), a fin de lograr una mayor densidad de grabación.

En una lectura (figura 2.51), el cabezal se posiciona en la pista a leer, y genera un haz de luz láser, de baja potencia siempre activado, el cual polarizado' es enfocado en esa pista de la superficie metálica, antes magnetizada según los dos pasos citados. El haz láser al ser reflejado en dicha superficie permite detectar indirectamente la polaridad magnética (N-S ó S-N) de cada uno de los puntos de la pista, o sea si representa un uno o un cero. Esto se debe a que el plano de polarización del haz reflejado rota un pequeño ángulo en sentido horario o antihorario según la polaridad del campo magnético existente en cada punto donde el haz incidió. Tal diferencia de rotación del haz reflejado (figura 2.54) se manifiesta en un cambio en la intensidad de luz que detecta un diodo sensor, ubicado en el cabezal, que convierte este cambio en una señal eléctrica.

En el presente existen discos MO de escritura en una sola pasada (DOW: Direct Overwriter o LIMDOW: Light Intensity Modulation Direct Overwriter), o sea de sobreescritura directa Una técnica consiste en agregar una capa MO adicional, paralela a la que actúa como memoria propiamente dicha, para que puntos de ésta puedan ser puestos a cero por la capa adicional.

9. ¿Qué son los CD-RW o CD-E?

CD-RW son las siglas de CD ReWritable, o sea CD re-escribible (como los MO), asociado a la tecnología de regrabación por cambio de fase. También se denominan CD-E (CD-Erasable) o sea CD borrable. Esta tecnología se basa en la propiedad que posee una capa de material como el teluro (mezclado con germanio o antimonio), de cambiar del estado amorfo (0) al cristalino (1) si se alcanza la "temperatura transición" (100 ºC ó más); y de volver de cristalino a amorfo, si se alcanza la "temperatura de fusión" y se deja enfriar.

Para escribir un uno en un punto de una pista del disco, un láser con baja potencia lo calienta rápidamente hasta la temperatura de transición. Si el estado físico del punto era amorfo, pasa a cristalino; y si ya está en este estado, quedará igual. Un cero se escribe calentando el punto hasta la temperatura de fusión, usando el láser con alta potencia. Al enfriarse pasa al estado amorfo, y si estaba en ese estado volverá al mismo.

La lectura de las pistas así grabadas se realiza con el mismo cabezal, recorriéndoles con el láser de Potencia diez veces menor. La luz láser reflejada al ser sensada permite detectar, por diferencias de reflectividad, los cambios de un estado físico al otro, a lo largo de la pista. Un punto en estado cristalino refleja el 70% de la luz incidente, y en estado amorfo el 18%.

Obsérvese que esta tecnología es puramente óptica, sin magnetismo, requiriéndose tina sola pasada para escribir, a diferencia de la MO, que necesita borrar (escribir todos ceros) y luego escribir los unos. Para escribir o leer este tipo de discos se requiere grabadoras y lectoras apropiadas para su tecnología. Se estimaba hace poco un CD-E puede regrabarse unas 100.000 veces (contra 10 millones de un MO). Realizando 50 reescrituras diarias, duraría 5 años (de 365 días). Ha habido avances al respecto. Las unidades CD-RW pueden también leer los CD-ROM y CD-R, siendo además que estos CD (y los MO) cumplen con el formato UDF (Universal Disc Format) normalizado por la Asociación OSTA, que facilita a los sistemas operativos el acceso a discos.

10. ¿Qué son los discos y unidades PD?

Los discos PD (Phase change/Dual) se basan en la tecnología de cambio de fase tratada, pero las pistas generadas son concéntricas, como en los discos magnéticos (en los CD-WR se tiene una sola pista en espiral) Las unidades PD también pueden leer discos con espiral (CD-ROM, CD-R, CD-RW), de donde proviene la denominación "dual". Por tal motivo aparecen con la denominación PD/CD-ROM.

11. ¿Qué son los DVD-ROM, leídos con láser azul?

Los DVD-ROM (Digital Versatil Disk) de "simple capa" tienen el mismo tamaño que un CD-ROM de 680 MB, y se basan en la misma tecnología de grabación y lectura que éstos, pero pueden almacenar 4,7 GB de datos (7 veces más), video o audio. Típicamente pueden transferir unos 0,6 NO/seg (como un CDx4) para entretenimientos, y 1,3 MB/seg para computación (como un CDx1O). Esto se ha logrado:

  • Disminuyendo a la mitad la longitud de los "pits" en relación a un CD-ROM (figura 2.33).
  • Llevando al doble que un CD-ROM el número de vueltas por pulgada radial de la espiral.
  • Usando un haz láser de color azul, de menor longitud de onda que el rojo, a- fin de poder sensar "pits" de menor longitud.

El DVD estándar que se comercializará en el mercado es fruto del acuerdo entre Phillips – Sony (creadores del "Multimedia CD"- MMCD), y Toshiba (que con otros grupos desarrolló el Super Density – SD). Este DVD puede almacenar 2 hs de video de calidad, con títulos y sonido. Asimismo, los 4,7 GB permiten guardar 135 minutos de films (duración típica de una película de cine) en reemplazo de una cinta de video. Esto es así, dado que con compresión MPEG2 se requiere, para transferir imagen, sonido y títulos, cerca de 0,5 MB/seg. Si efectuamos: 135 min x 60 seg/min x 0,5 MB/seg., resulta un valor cercano a 4,7 GB.

Los DVD-ROM de "doble capa" presentan (figura 2.54) una capa semi-transparente reflectiva con oro (que puede guardar 3,8 GB), la cual se encuentra debajo de la capa reflectora (4,7 GB) metalizada con plata. Sumando ambas capacidades resultan en total 8,5 GB.

Para leer la capa semi-transparente el haz láser es enfocado en ella con baja potencia, mientras que la lectura de la capa reflectiva se realiza enfocando en ésta el haz, ahora con mayor potencia, para que atraviese la capa semi-transparente al incidir, y cuando se refleja.

También se están fabricando DVD-ROM de "simple capa" y "doble cara", para ser leídos en ambas caras, con lo cual se logra 4,7 GB x 2 = 9,4 GB; y DVD-ROM de "doble capa" y "doble cara", de 8,5 x 2 = 17 GB. Estos CD están muy expuestos a las rayaduras, por ser más finas las capas protectoras transparentes.

12. ¿Qué son los DVD-RAM?

Un DVD-RAM es análogo a un CD-RW re-escribible antes descripto, pero tiene mayor capacidad, merced al empleo de un láser de menor longitud de onda que los usados.

Debido a las limitaciones de fabricación masiva de láseres azules de potencia de corta longitud de onda, la capacidad de los DVD-RAM es de 2,6 GB frente a los 4,7 GB de los DVD-ROM.

Potencialmente, los DVD-RAM pueden ser competidores de las cintas magnéticas para "backups" si el costo por byte almacenado lo justifica.

13. Bibliografía:

Trabajo enviado y realizado por: Leandro Vanden Bosch Estudiante de Ing. en Sistemas; Universidad Abierta Interamericana; Buenos Aires, Argentina. 1999. lvbosch[arroba]usa.net

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente