Descargar

Conceptos Fundamentales De Mecánica De Fluidos

Enviado por pedrynho


     

    1. El fluido como un continuo
    2. El campo de velocidades
    3. Flujos en una, dos y tres dimensiones
    4. Trayectorias, lineas del trazador y lineas de corriente
    5. Campo de esfuerzos
    6. Fluido newtoniano, viscosidad
    7. Flujos viscosos y no viscosos
    8. Flujos laminares y turbulentos
    9. Flujo compresible y flujo incompresible

    EL FLUIDO COMO UN CONTINUO

    Un fluido es una sustancia que se deforma continuamente al ser sometida a un esfuerzo cortante (esfuerzo tangencial) no importa cuan pequeño sea.

    Todos los fluidos están compuestos de moléculas que se encuentran en movimiento constante. Sin embargo, en la mayor parte de las aplicaciones de ingeniería, nos interesa más conocer el efecto global o promedio (es decir, macroscópico) de las numerosas moléculas que forman el fluido. Son estos efectos macroscópicos los que realmente podemos percibir y medir. Por lo anterior, consideraremos que el fluido está idealmente compuesto de una sustancia infinitamente divisible (es decir, como un continuo) y no nos preocuparemos por el comportamiento de las moléculas individuales.

    El concepto de un continuo es la base de la mecánica de fluidos clásica. La hipótesis de un continuo resulta válida para estudiar el comportamiento de los fluidos en condiciones normales. Sin embargo, dicha hipótesis deja de ser válida cuando la trayectoria media libre de las moléculas (aproximadamente 6.3 x 10-5 mm o bien 2.5 x 10-6 pulg para aire en condiciones normales de presión y temperatura)]` resulta del mismo orden de magnitud que la longitud significativa más pequeña, característica del problema en cuestión.

    Una de las consecuencias de la hipótesis del continuo es que cada una de las propiedades de un fluido se supone que tenga un valor definido en cada punto del espacio. De esta manera, propiedades como la densidad, temperatura, velocidad, etc., pueden considerarse como funciones continuas de la posición y del tiempo.

    EL CAMPO DE VELOCIDADES

    Al estudiar el movimiento de los fluidos, necesariamente tendremos que considerar la descripción de un campo de velocidades. la velocidad del fluido en un punto C (cualquiera) se define como la velocidad instantánea del centro de gravedad del volumen dV que instantáneamente rodea al punto C. Por lo tanto, si definimos una partícula de fluido como la pequeña masa de fluido completamente identificada que ocupa el volumen dV, podemos definir la velocidad en el punto C como la velocidad instantánea de la partícula de fluido, que en el instante dado, está pasando a través del punto C. La velocidad en cualquier otro punto del campo de flujo se puede definir de manera semejante. En un instante dado el campo de velocidades, V, es una función de las coordenadas del espacio x, y, z, es decir V = V(x, y, z). La velocidad en cualquier punto del campo de flujo puede cambiar de un instante a otro. Por lo tanto, la representación completa de la velocidad (es decir, del campo de velocidades) está dado por

    V = V(x, y, z, t) ecuación 2.3

    Si las propiedades de fluido en un punto en un campo no cambian con el tiempo, se dice que el flujo es estacionario. Matemáticamente, el flujo estacionario se define como

    σn / σt = 0

    donde representa cualquier propiedad de fluido.

    Se concluye entonces que las propiedades en un flujo estacionario pueden variar de un punto a otro del campo pero deben permanecer constantes respecto al tiempo en cualquiera de los puntos.

     

    FLUJOS EN UNA, DOS Y TRES DIMENSIONES

    La ecuación 2.3 establece que el campo de velocidades es una función en las tres coordenadas del espacio y del tiempo. Un flujo de tal naturaleza se denomina tridimensional (también constituye un flujo no estacionario) debido a que la velocidad de cualquier punto del campo del flujo depende de las tres coordenadas necesarias para poder localizar un punto en el espacio.

    No todos los campos de flujo son tridimensionales. Considérese por ejemplo el flujo a través de un tubo recto y largo de sección transversal constante. A una distancia suficientemente alejada de la entrada del tubo.

    Un flujo se clasifica como de una, dos o tres dimensiones dependiendo del número de coordenadas espaciales necesarias para especificar el campo de velocidades.

    En numerosos problemas que se encuentran en ingeniería el análisis unidimensional sirve para proporcionar soluciones aproximadas adecuadas.

    Puesto que todos los fluidos que satisfacen la hipótesis del medio continuo deben tener una velocidad cero relativa a una superficie sólida (con objeto de satisfacer la condición de no deslizamiento), la mayor parte de los flujos son intrínsecamente de dos o tres dimensiones. Sin embargo, para propósitos de análisis muchas veces resulta conveniente introducir la idea de un flujo uniforme en una sección transversal dada. Se dice que un flujo es uniforme en una sección transversal dada, si la velocidad es constante en toda la extensión de la sección transversal normal al flujo

    El término campo de flujo uniforme (opuesto al flujo uniforme en una sección transversal) se emplea para describir un flujo en el cual la magnitud y la dirección del vector velocidad son constantes, es decir, independiente de todas las coordenadas espaciales en todo el campo de flujo.

    TRAYECTORIAS, LINEAS DEL TRAZADOR Y LINEAS DE CORRIENTE

    En el análisis de problemas de mecánica de fluidos frecuentemente resulta ventajoso disponer de una representación visual de un campo de flujo. Tal representación se puede obtener mediante las trayectorias, las líneas del trazador y las líneas de corriente.

    Una trayectoria está constituida por la curva trazada en su movimiento por una partícula de fluido. Para determinar una trayectoria, se puede identificar a una partícula de fluido en un instante dado, por ejemplo, mediante el uso de un colorante (tinta), y tomar fotografías de su movimiento con un tiempo de exposición adecuado. La línea trazada por la partícula constituye entonces una trayectoria.

    Por otra parte, podemos preferir fijar nuestra atención en un punto fijo del espacio, e identificar, empleando también un colorante, todas las partículas que pasan a través de este punto. Después de un corto periodo tendremos entonces cierta cantidad de partículas de fluido identificables en el flujo, todas las cuales han pasado en algún momento a través del punto fijo previamente seleccionado. La línea que une todas estas partículas define una línea del trazador.

    Por su parte, las líneas de corriente son líneas dibujadas en el campo de flujo de tal manera que en un instante dado se encuentran siempre tangentes a la dirección del flujo en cada punto del campo de flujo. La forma de las líneas de corriente puede cambiar de un instante a otro si la velocidad del flujo es una función del tiempo, es decir, si se trata de un flujo no estacionario. Dado que las líneas de corriente son tangentes al vector velocidad de cada punto del flujo, el fluido nunca puede cruzar una línea de corriente.

    En un flujo estacionario, la velocidad en cada punto del campo permanece constante con el tiempo y en consecuencia, las líneas de corriente no cambian de un instante a otro. Lo anterior implica que una partícula localizada en una línea de corriente determinada permanecerá en la misma línea de corriente. Lo que es más, partículas consecutivas que pasan a través de un punto fijo del espacio se encontrarán en la misma línea de corriente y permanecerán en ella. Se concluye, entonces, que en el caso de flujo estacionario, las trayectorias, las líneas del trazador y las líneas de corriente son idénticas para todo el campo. En el caso de un flujo no estacionario las tres curvas no coinciden.

    CAMPO DE ESFUERZOS

    Los esfuerzos en un continuo son el resultado de fuerzas que actúan en alguna parte del medio. El concepto de esfuerzo constituye una forma apropiada para describir la manera en que las fuerzas que actúan sobre las fronteras del medio se transmiten a través de él. Puesto que tanto la fuerza como el área son cantidades vectoriales, podemos prever que un campo de esfuerzos no resulta un campo vectorial: veremos que, en general, se necesitan nueve cantidades para especificar el estado de esfuerzos en un fluido. (El esfuerzo es una cantidad tensorial de segundo orden.)

    FUERZAS SUPERFICIALES Y FUERZAS VOLUMETRICAS

    En el estudio de la mecánica de los fluidos continuos suelen considerarse dos tipos de fuerzas: las superficiales y las volumétricas. Las fuerzas superficiales son aquellas que actúan sobre las fronteras del medio a través del contacto directo. Las fuerzas que actúan sin contacto físico, y que se distribuyen sobre el volumen del fluido, se denominan fuerzas volumétricas. Ejemplos de éstas, que actúan sobre un fluido, son las fuerzas gravitacionales y las electromagnéticas.

    La fuerza gravitacional que actúa sobre un elemento de volumen, dV, está dada por p*g*dV, donde p es la densidad (masa por unidad de volumen) y g es la aceleración local de la gravedad. Así, la fuerza volumétrica gravitacional por unidad de volumen es p*g y la fuerza volumétrica gravitacional por unidad de masa es g.

    FLUIDO NEWTONIANO, VISCOSIDAD

    FLUIDO NEWTONIANO

    Hemos definido un fluido como una sustancia que se deforma continuamente bajo la acción de un esfuerzo cortante. En ausencia de éste, no existe deformación. Los fluidos se pueden clasificar en forma general, según la relación que existe entre el esfuerzo cortante aplicado y la rapidez de deformación resultante. Aquellos fluidos donde el esfuerzo cortante es directamente proporcional a la rapidez de deformación se denominan fluidos newtonianos. La mayor parte de los fluidos comunes como el agua, el aire, y la gasolina son prácticamente newtonianos bajo condiciones normales. El término no newtoniano se utiliza para clasificar todos los fluidos donde el esfuerzo cortante no es directamente proporcional a la rapidez de deformación.

    Numerosos fluidos comunes tienen un comportamiento no newtoniano. Dos ejemplos muy claros son la crema dental y la pintura Lucite. Esta última es muy "espesa" cuando se encuentra en su recipiente, pero se "adelgaza" si se extiende con una brocha. De este modo, se toma una gran cantidad de pintura para no repetir la operación muchas veces. La crema dental se comporta como un "fluido" cuando se presiona el tubo contenedor. Sin embargo, no fluye por sí misma cuando se deja abierto el recipiente. Existe un esfuerzo limite, de cedencia, por debajo del cual la crema dental se comporta como un sólido. En rigor, nuestra definición de fluido es válida únicamente para aquellos materiales que tienen un valor cero para este esfuerzo de cedencia. En este texto no se estudiarán los fluidos no newtonianos.

    VISCOSIDAD

    Si se considera la deformación de dos fluidos newtonianos diferentes, por ejemplo, glicerina y agua, se encontrará que se deforman con diferente rapidez para una misma fuerza cortante. La glicerina ofrece mucha mayor resistencia a la deformación que el agua; se dice entonces que es mucho más viscosa.

    En la mecánica de fluidos se emplea muy frecuentemente el cociente de la viscosidad absoluta, u, entre la densidad, p. Este cociente recibe el nombre de viscosidad cinemática y se representa mediante el símbolo v. Como la densidad tiene dimensiones [M/Lt], las dimensiones que resultan para v son [L2/t]. En el sistema métrico absoluto de unidades, la unidad para v recibe el nombre de stoke = cm2/s).

    La viscosidad es una manifestación del movimiento molecular dentro del fluido. Las moléculas de regiones con alta velocidad global chocan con las moléculas que se mueven con una velocidad global menor, y viceversa. Estos choques permiten transportar cantidad de movimiento de una región de fluido a otra. Ya que los movimientos moleculares aleatorios se ven afectados por la temperatura del medio, la viscosidad resulta ser una función de la temperatura

    DESCRIPCION Y CLASIFICACION DE LOS MOVIMIENTOS DE UN FLUIDO

    Antes de proceder con un análisis detallado, intentaremos una clasificación general de la mecánica de fluidos sobre la base de las características físicas observables de los campos de flujo. Dado que existen bastantes coincidencias entre unos y otros tipos de flujos, no existe una clasificación universalmente aceptada. Una posibilidad es la que se muestra en la figura 2-9.

    FLUJOS VISCOSOS Y NO VISCOSOS

    La subdivisión principal señalada en la figura anterior se tiene entre los flujos viscosos y no viscosos. En un flujo no viscoso se supone que la viscosidad de fluido u, vale cero. Evidentemente, tales flujos no existen; sin embargo; se tienen numerosos problemas donde esta hipótesis puede simplificar el análisis y al mismo tiempo ofrecer resultados significativos. (Si bien, los análisis simplificados siempre son deseables, los resultados deben ser razonablemente exactos para que tengan algún valor.) Dentro de la subdivisión de flujo viscoso podemos considerar problemas de dos clases principales. Flujos llamados incompresibles, en los cuales las variaciones de densidad son pequeñas y relativamente poco importantes. Flujos conocidos como compresibles donde las variaciones de densidad juegan un papel dominante como es el caso de los gases a velocidades muy altas. Estudiaremos ambos casos dentro del área general de flujos no viscosos.

    Por otra parte, todos los fluidos poseen viscosidad, por lo que los flujos viscosos resultan de la mayor importancia en el estudio de mecánica de fluidos.

    Podemos observar que las líneas de corriente son simétricas respecto al eje x. El fluido a lo largo de la línea de corriente central se divide y fluye alrededor del cilindro una vez que ha incidido en el punto A. Este punto sobre el cilindro recibe el nombre de punto de estancamiento. Al igual que en el flujo sobre una placa plana, se desarrolla una capa límite en las cercanías de la pared sólida del cilindro. La distribución de velocidades fuera de la capa límite se puede determinar teniendo en cuenta el espaciamiento entre líneas de corriente. Puesto que no puede haber flujo a través de una línea de corriente, es de esperarse que la velocidad del fluido se incremente en aquellas regiones donde el espaciamiento entre líneas de corrientes disminuya. Por el contrario, un incremento en el espaciamiento entre líneas de corriente implica una disminución en la velocidad del fluido.

    Considérese momentáneamente el flujo incompresible alrededor del cilindro, suponiendo que se trate de un flujo no viscoso, como el mostrado en la figura 2-11b, este flujo resulta simétrico respecto tanto al eje x como al eje y. La velocidad alrededor del cilindro crece hasta un valor máximo en el punto D y después disminuye conforme nos movemos alrededor del cilindro. Para un flujo no viscoso, un incremento en la velocidad siempre va acompañado de una disminución en la presión, y viceversa. De esta manera, en el caso que nos ocupa, la presión sobre la superficie del cilindro disminuye conforme nos movemos del punto A al punto D y después se incrementa al pasar del punto D hasta el E. Puesto que el flujo es simétrico respecto a los dos ejes coordenados, es de esperarse que la distribución de presiones resulte también simétrica respecto a estos ejes. Este es, en efecto, el caso.

    No existiendo esfuerzos cortantes en un flujo no viscoso, para determinar la fuerza neta que actúa sobre un cilindro solamente se necesita considerar las fuerzas de presión. La simetría en la distribución de presiones conduce a

    la conclusión de que en un flujo no viscoso no existe una fuerza neta que actúe sobre un cilindro, ya sea en la dirección x o en la dirección y. La fuerza neta en la dirección x recibe el nombre de arrastre. Según lo anterior, se concluye que el arrastre para un cilindro en un flujo no viscoso es cero; esta conclusión evidentemente contradice nuestra experiencia, ya que sabemos que todos los cuerpos sumergidos en un flujo real experimentan algún arrastre. Al examinar el flujo no viscoso alrededor de un cuerpo hemos despreciado la presencia de la capa límite, en virtud de la definición de un flujo no viscoso. Regresemos ahora a examinar el caso real correspondiente.

    Para estudiar el caso real de la figura 2-11a, supondremos que la capa límite es delgada. Si tal es el caso, es razonable suponer además que el campo de presiones es cualitativamente el mismo que en el correspondiente flujo no viscoso. Puesto que la presión disminuye continuamente entre los puntos A y B un elemento de fluido dentro de la capa límite experimenta una fuerza de presión neta en la dirección del flujo. En la región entre A y B, esta fuerza de presión neta es suficiente para superar la fuerza cortante resistente, manteniéndose el movimiento del elemento en la dirección del flujo.

    Considérese ahora un elemento de fluido dentro de la capa límite en la parte posterior del cilindro detrás del punto B. Puesto que la presión crece en la dirección del flujo, dicho elemento de fluido experimenta una fuerza de presión neta opuesta a la dirección del movimiento. En algún punto sobre el cilindro, la cantidad de movimiento del fluido dentro de la capa limite resulta insuficiente para empujar al elemento más allá dentro de la región donde crece la presión. Las capas de fluido adyacentes a la superficie del sólido alcanzarán el reposo, y el flujo se separará de la superficie; el punto preciso donde esto ocurre se llama punto de separación o desprendimiento. La separación de la capa límite da como resultado la formación de una región de presión relativamente baja detrás del cuerpo; esta región resulta deficiente también en cantidad de movimiento y se le conoce como estela. Se tiene, pues, que para el flujo separado alrededor de un cuerpo, existe un desbalance neto de las fuerzas de presión, en la dirección del flujo dando como resultado un arrastre debido a la presión sobre el cuerpo. Cuanto mayor sea el tamaño de la estela detrás del cuerpo, tanto mayor resultará el arrastre debido a la presión.

    Es lógico preguntarnos cómo se podría reducir el tamaño de la estela y por lo tanto el arrastre debido a la presión. Como una estela grande surge de la separación de la capa límite, y este efecto a su vez se debe a la presencia de un gradiente de presión adverso (es decir, un incremento de presión en la dirección del flujo), la reducción de este gradiente adverso debe retrasar el fenómeno de la separación y, por tanto, reducir el arrastre.

    El fuselado de un cuerpo reduce la magnitud del gradiente de presión adverso al distribuirlo sobre una mayor distancia. Por ejemplo, si se añadiese una sección gradualmente afilada (cuña) en la parte posterior del cilindro de

    la figura 2-11, el flujo cualitativamente sería como se muestra en la figura 2-12. El fuselaje en la forma del cuerpo efectivamente retrasa el punto de separación, si bien la superficie del cuerpo expuesta al flujo y, por lo tanto, la fuerza cortante total que actúa sobre el cuerpo, se ven incrementadas, el arrastre total se ve reducido de manera significativa.

    La separación del flujo se puede presentar también en flujos internos (es decir, flujos a través de ductos) como resultado de cambios bruscos en la geometría del ducto.

    FLUJOS LAMINARES Y TURBULENTOS

    Los flujos viscosos se pueden clasificar en laminares o turbulentos teniendo en cuenta la estructura interna del flujo. En un régimen laminar, la estructura del flujo se caracteriza por el movimiento de láminas o capas. La estructura del flujo en un régimen turbulento por otro lado, se caracteriza por los movimientos tridimensionales, aleatorios, de las partículas de fluido, superpuestos al movimiento promedio.

    En un flujo laminar no existe un estado macroscópico de las capas de fluido adyacentes entre sí. Un filamento delgado de tinta que se inyecte en un flujo laminar aparece como una sola línea; no se presenta dispersión de la tinta a través del flujo, excepto una difusión muy lenta debido al movimiento molecular. Por otra parte, un filamento de tinta inyectado en un flujo turbulento rápidamente se dispersa en todo el campo de flujo; la línea del colorante se descompone en una enredada maraña de hilos de tinta. Este comportamiento del flujo turbulento se debe a las pequeñas fluctuaciones de velocidad superpuestas al flujo medio de un flujo turbulento; el mezclado macroscópico de partículas pertenecientes a capas adyacentes de fluido da como resultado una rápida dispersión del colorante. El filamento rectilíneo de humo que sale de un cigarrillo expuesto a un ambiente tranquilo, ofrece una imagen clara del flujo laminar. Conforme el humo continúa subiendo, se transforma en un movimiento aleatorio, irregular; es un ejemplo de flujo turbulento.

    El que un flujo sea laminar o turbulento depende de las propiedades del caso. Así, por ejemplo, la naturaleza del flujo (laminar o turbulento) a través de un tubo se puede establecer teniendo en cuenta el valor de un parámetro adimensional, el número de Reynolds, Re = pVD/u, donde p es la densidad del fluido, V la velocidad promedio, D el diámetro del tubo y u la viscosidad.

    El flujo dentro de una capa límite puede ser también laminar o turbulento; las definiciones de flujo laminar y flujo turbulento dadas anteriormente se aplican también en este caso. Como veremos más adelante, las características de un flujo pueden ser significativamente diferentes dependiendo de que la capa. límite sea laminar o turbulenta. Los métodos de análisis también son diferentes para un flujo laminar que para un flujo turbulento. Por lo tanto, al iniciar el análisis de un flujo dado es necesario determinar primero si se trata de un flujo laminar o de un flujo turbulento. Veremos más detalles a este respecto en capítulos posteriores.

    FLUJO COMPRESIBLE Y FLUJO INCOMPRESIBLE

    Aquellos flujos donde las variaciones en densidad son insignificantes se denominan incompresibles; cuando las variaciones en densidad dentro de un flujo no se pueden despreciar, se llaman compresibles. Si se consideran los dos estados de la materia incluidos en la definición de fluido, líquido y gas, se podría caer en el error de generalizar diciendo que todos los flujos líquidos son flujos incompresibles y que todos los flujos de gases son flujos compresibles. La primera parte de esta generalización es correcta mayor parte de los casos prácticos, es decir, casi todos los flujos líquidos son esencialmente incompresibles. Por otra parte, los flujos de gases se pueden también considerar como incompresibles si las velocidades son pequeñas respecto a la velocidad del sonido en el fluido; la razón de la velocidad del flujo, V, a la velocidad del sonido, c, en el medio fluido recibe el nombre de número de Mach, M, es decir,

    M=V/c

    Los cambios en densidad son solamente del orden del 2% de valor medio, para valores de M < 0.3. Así, los gases que fluyen con M < 0.3 se pueden considerar como incompresibles; un valor de M = 0.3 en el aire bajo condiciones normales corresponde a una velocidad de aproximadamente 100 m/s.

    Los flujos compresibles se presentan con frecuencia en las aplicaciones de ingeniería. Entre los ejemplos más comunes se pueden contar los sistemas de aire comprimido utilizados en la operación de herramienta de taller y de equipos dentales, las tuberías de alta presión para transportar gases, y los sistemas censores y de control neumático o fluídico. Los efectos de la compresibilidad son muy importantes en el diseño de los cohetes y aviones modernos de alta velocidad, en las plantas generadoras, los ventiladores y compresores.

    Bajo ciertas condiciones se pueden presentar ondas de choque y flujos supersónicos, mediante las cuales las propiedades del fluido como la presión y la densidad cambian bruscamente

     

     

    Pedro Ocaña Müller