Descargar

La radiación solar (página 2)

Enviado por N�stor Sanz


Partes: 1, 2

En función de cómo reciben la radiación solar los objetos situados en la superficie terrestre, se pueden distinguir estos tipos de radiación:

Radiación directa Es aquella que llega directamente del Sol sin haber sufrido cambio alguno en su dirección. Este tipo de radiación se caracteriza por proyectar una sombra definida de los objetos opacos que la interceptan.

Radiación difusa Parte de la radiación que atraviesa la atmósfera es reflejada por las nubes o absorbida por éstas. Esta radiación, que se denomina difusa, va en todas direcciones, como consecuencia de las reflexiones y absorciones, no sólo de las nubes sino de las partículas de polvo atmosférico, montañas, árboles, edificios, el propio suelo, etc. Este tipo de radiación se caracteriza por no producir sombra alguna respecto a los objetos opacos interpuestos. Las superficies horizontales son las que más radiación difusa reciben, ya que ven toda la bóveda celeste, mientras que las verticales reciben menos porque sólo ven la mitad.

Radiación reflejada La radiación reflejada es, como su nombre indica, aquella reflejada por la superficie terrestre. La cantidad de radiación depende del coeficiente de reflexión de la superficie, también llamado albedo. Las superficies horizontales no reciben ninguna radiación reflejada, porque no ven ninguna superficie terrestre y las superficies verticales son las que más radiación reflejada reciben.

Radiación global Es la radiación total. Es la suma de las tres radiaciones. En un día despejado, con cielo limpio, la radiación directa es preponderante sobre la radiación difusa. Por el contrario, en un día nublado no existe radiación directa y la totalidad de la radiación que incide es difusa.

Los distintos tipos de colectores solares aprovechan de forma distinta la radiación solar. Los colectores solares planos, por ejemplo, captan la radiación total (directa + difusa), sin embargo, los colectores de concentración sólo captan la radiación directa. Por esta razón, los colectores de concentración suelen situarse en zonas de muy poca nubosidad y con pocas brumas, en el interior, alejadas de las costas.

Distribución espectral de la radiación solar

La aplicación de la Ley de Planck al Sol con una temperatura superficial de unos 6000 K nos lleva a que el 99% de la radiación emitida está entre las longitudes de onda 0,15 μm (micrómetros o micras) y 4 micras. Como 1 angstrom 1 Ã…= 10-10 m=10-6 micras resulta que el Sol emite en un rango de 1500 Ã… hasta 40000 Ã…. La luz visible se extiende desde 4000 Ã… a 7400 Ã… La radiación ultravioleta u ondas cortas iría desde los 1500 Ã… a los 4000 Ã… y la radiación infrarroja u ondas largas desde las 0,74 micras a 4 micras.

La atmósfera de la Tierra constituye un importante filtro que hace inobservable radiaciones de longitud de onda inferior a las 0,29 micras por la fuerte absorción del ozono y oxígeno. Ello nos libra de la radiación ultravioleta más peligrosa para la salud. La atmósfera es opaca a toda radiación infrarroja de longitud de onda superior a los 24 micras, ello no afecta a la radiación solar pero sí a la energía emitida por la Tierra que llega hasta las 40 micras y que es absorbida. A este efecto se conoce como efecto invernadero.

El máximo (Ley de Wien) ocurre a 0,475 micras es decir a 4750 Ã…. Considerando la ley de Wien ello corresponde a una temperatura de:

T = frac{2897.6 cdot mu mcdot K}{0.475 cdot mu m}=6099 K

Efectos de la radiación solar sobre los gases atmosféricos

La atmósfera es diatérmana es decir, que no es calentada directamente por la radiación solar, sino de manera indirecta a través de la reflexión de dicha radiación en el suelo y en la superficie de mares y océanos.

Los fotones según su energía o longitud de onda son capaces de:

1.       Fotoionizar la capa externa de electrones de un átomo (requiere una longitud de onda de 0,1 micra)

2.       Excitar electrones de un átomo a una capa superior (requiere longitudes de onda entre 0,1 de micra y 1 micra).

3.       Disociar una molécula (requiere longitudes de onda entre 0,1 de micra y 1 micra).

4.       Hacer vibrar una molécula (requiere longitudes de onda entre 1 de micra y 50 micra).

5.       Hacer rotar una molécula (requiere longitudes de onda mayores que 50 micras).

La energía solar tiene longitudes de onda entre 0,15 micras y 4 micras por lo que puede ionizar un átomo, excitar electrones, disociar una molécula o hacerla vibrar.

La energía térmica de la Tierra (radiación infrarroja) se extiende desde 3 micras a 80 micras por lo que sólo puede hacer vibrar o rotar moléculas, es decir, calentar la atmósfera.

Efectos sobre la salud

Espectro de la radiación solar por encima de la atmósfera y a nivel del mar.

La exposición exagerada a la radiación solar puede ser perjudicial para la salud. Esto está agravado por el aumento de la expectativa de vida humana, que está llevando a toda la población mundial, a permanecer más tiempo expuesto a las radiaciones solares, con el riesgo mayor de cáncer de piel.

La radiación ultravioleta, es emitida por el Sol en longitudes de onda van aproximadamente desde los 150 nm (1500 Ã…), hasta los 400 nm(4000 Ã…), en las formas UV-A, UV-B y UV-C pero a causa de la absorción por parte de la atmósfera terrestre, el 99% de los rayos ultravioletas que llegan a la superficie de la Tierra son del tipo UV-A. Ello nos libra de la radiación ultravioleta más peligrosa para la salud. La atmósfera ejerce una fuerte absorción que impide que la atraviese toda radiación con longitud de onda inferior a 290 nm (2900 Ã…). La radiación UV-C no llega a la tierra porque es absorbida por el oxígeno y el ozono de la atmósfera, por lo tanto no produce daño. La radiación UV-B es parcialmente absorbida por el ozono y llega a la superficie de la tierra, produciendo daño en la piel. Ello se ve agravado por el agujero de ozono que se produce en los polos del planeta.

Dirección de incidencia de la irradiación solar

El estudio de la dirección con la cual incide la irradiación solar sobre los cuerpos situados en la superficie terrestre, es de especial importancia cuando se desea conocer su comportamiento al ser reflejada. La dirección en que el rayo salga reflejado dependerá de la incidente.

Con tal fin se establece un modelo que distingue entre dos componentes de la irradiación incicente sobre un punto: La irradiación solar directa y la irradiación solar difusa.

1) Irradiación Solar Directa es aquella que llega al cuerpo desde la dirección del Sol.

2) Irradiación Solar Difusa es aquella cuya dirección ha sido modificada por diversas circunstancias ( densidad atmosférica, partículas u objetos con los que chocar,reemisiones de cuerpos, etc.). Por sus características esta luz se considera venida de todas direcciones.

La suma de ambas es la irradiación total incidente. La superficie del planeta está expuesta a la radiación proveniente del Sol.

La tasa de irradiación depende en cada instante del ángulo que forman la normal a la superficie en el punto considerado y la dirección de incidencia de los rayos solares. Por supuesto, dada la lejanía del Sol respecto de nuestro planeta, podemos suponer, con muy buena aproximación, que los rayos del Sol inciden esencialmente paralelos sobre el planeta. No obstante, en cada punto del mismo, localmente considerado, la inclinación de la superficie respecto a dichos rayos depende de la latitud y de la hora del día para una cierta localización en longitud. Dicha inclinación puede definirse a través del ángulo que forman el vector normal a la superficie en dicho punto y el vector paralelo a la dirección de incidencia de la radiación solar.

Radiación ultravioleta

Es la radiación ultravioleta de menor longitud de onda (360 nm), lleva mucha energía e interfiere con los enlaces moleculares. Especialmente las de menos de 300 nm que pueden alterar las moléculas de ADN, muy importantes para la vida. Estas ondas son absorbidas por la parte alta de la atmósfera, especialmente por la capa de ozono. Es importante protegerse de este tipo de radiación ya que por su acción sobre el ADN está asociada con el cáncer de piel. Sólo las nubes tipo cúmulos de gran desarrollo vertical atenúan éstas radiaciones prácticamente a cero. El resto de las formaciones tales como cirrus, estratos y cúmulos de poco desarrollo vertical no las atenúan, por lo cual es importante la protección aún en días nublados. Es importante tener especial cuidado cuando se desarrollan nubes cúmulos, ya que éstas pueden llegar a actuar como espejos y difusores e incrementar las intensidades de los rayos ultravioleta y por consiguiente el riesgo solar. Algunas nubes tenues pueden tener el efecto de lupa.

Luz visible

A radiación correspondiente a la zona visible cuya longitud de onda está entre 360 nm (violeta) y 760 nm (rojo), por la energía que lleva, tiene gran influencia en los seres vivos. La luz visible atraviesa con bastante eficacia la atmósfera limpia, pero cuando hay nubes o masas de polvo parte de ella es absorbida o reflejada.

Radiación infrarroja

La radiación infrarroja de más de 760 nm, es la que corresponde a longitudes de onda más largas y lleva poca energía asociada. Su efecto aumenta la agitación de las moléculas, provocando el aumento de la temperatura. El CO2 , el vapor de agua y las pequeñas gotas de agua que forman las nubes absorben con mucha intensidad las radiaciones infrarrojas.

La atmósfera se desempeña como un filtro ya que mediante sus diferentes capas distribuyen la energía solar para que a la superficie terrestre sólo llegue una pequeña parte de esa energía.

La parte externa de la atmósfera absorbe parte de las radiaciones reflejando el resto directamente al espacio exterior, mientras que otras pasarán a la Tierra y luego serán irradiadas. Esto produce el denominado balance térmico, cuyo resultado es el ciclo del equilibrio radiante.

Radiación recibida y absorbida por la Tierra

Radiación recibida por la Tierra

Porcentaje (%)

Radiación absorbida por la Tierra

Porcentaje (%)

directa a la Tierra

26% 

por la atmósfera

16%

indirecta a la Tierra.

11% 

por las nubes.

2%

difusa a la Tierra.

14% 

por ozono y otros gases.

1%

pérdida de radiación por reflexión.

4% 

 

 

Total de radiación

47% 

 

19%

Energía Solar reflejada

Energía Solar reflejada

Porcentaje (%)

Radiación reflejada por los materiales terrestres (Indirectamente)

10%

Radiación reflejada por las nubes (directamente)

24%

Total

34%

En los cuadros anteriores (Tabla 1 y 2), se observa como se distribuye el 100% de la energía proveniente del sol, un 34% (ver tabla 2) regresa al espacio exterior, de forma directa (24%) o indirecta (10%). Un 19% de la energía es absorbida por la atmósfera, mientras que la Tierra recibe un 47% ambas serán regresadas al espacio exterior (ver Tabla 1). Esta distribución de la energía hace posible el balance energético en la Tierra.

Comportamiento de la atmósfera y el suelo frente a la radiación

 La atmósfera terrestre está compuesta por numerosas partículas de materia, presenta unos 1000 km. de altura y se divide en diferentes capas concéntricas:

Troposfera

 Es la zona inferior de la atmósfera que se extiende desde el nivel del mar hasta unos 16 Km. Es una capa muy densa, en ella se encuentran más de las ¾ partes del aire de la atmósfera, además contiene mucho vapor de agua condensado en forma de nubes, y gran cantidad de polvo. A ella llegan la luz visible y los rayos UV que logran atravesar el resto de las capas de la atmósfera.

Estratosfera

Tiene un espesor aproximado de 60 Km. y se encuentra por encima de la troposfera. Es una capa tenue donde los vapores de agua y polvo disminuyen bastante con relación a los encontrados en la troposfera. En esta zona es abundante la concentración de anhídrido carbónico (CO2) que tiene la propiedad de evitar el paso de las irradiaciones a la Tierra. Hacia el medio de la estratosfera se encuentra una capa de unos 15 km. de espesor con abundante ozono, que algunos autores denominan ozonosfera, es la capa que absorbe casi toda la radiación ultravioleta proveniente del Sol. El ozono, O3, absorbe con gran eficacia las radiaciones comprendidas entre 200 y 330 nm, por lo que la radiación ultravioleta de menos de 300 nm que llega a la superficie de la Tierra es insignificante.

Mesosfera

Presenta alrededor de unos 20 km. de espesor. Sus capas superiores presentan abundantes concentraciones de sodio. La temperatura en esta capa se encuentra entre -70 y 90 ºC. En ella se encuentra la capa D, que tiene la propiedad de reflejar las ondas largas de radio durante el día y desaparece durante la noche. Esta es la causa por la cual las ondas medias son interrumpidas durante el día y puedan reanudarse una vez que se pone el Sol. Al desaparecer la capa D, permite seguir el paso de las otras ondas hacia las capas superiores.

Ionosfera: Es una zona parcialmente ionizada de radiaciones solares, de gran conductividad eléctrica. En esta capa se reflejan hacia la tierra las ondas de radio, por lo que es de gran utilidad en las telecomunicaciones.

Exosfera:

Es la última capa de la atmósfera. Se estima que presenta un espesor de 2.500 km., esta conformada principalmente por helio. El de energía absorbida. Energía absorbida por la atmósfera: En unas condiciones óptimas con un día perfectamente claro y con los rayos del Sol cayendo casi perpendiculares, las tres cuartas partes de la energía que llega del exterior alcanza la superficie.

Casi toda la radiación ultravioleta y gran parte de la infrarroja son absorbidas por la atmósfera.

 La energía que llega al nivel del mar suele ser radiación infrarroja un 49%, luz visible un 42% y radiación ultravioleta un 9%. En un día nublado se absorbe un porcentaje mucho más alto de energía, especialmente en la zona del infrarrojo.

Energía absorbida por la vegetación:

 La vegetación absorbe en todo el espectro, pero especialmente en la zona del visible, aprovechando esa energía para la fotosíntesis.

Balance total de energía – Efecto invernadero:

La temperatura media en la Tierra se mantiene prácticamente constante en unos 15ºC, pero la que se calcula que tendría, si no existiera la atmósfera, sería de unos -18ºC. Esta diferencia de 33ºC tan beneficiosa para la vida en el planeta se debe al efecto invernadero. El motivo por el que la temperatura se mantiene constante es porque la Tierra devuelve al espacio la misma cantidad de energía que recibe. Si la energía devuelta fuera algo menor que la recibida se iría calentando paulatinamente y si devolviera más se iría enfriando.

Por tanto la explicación del efecto invernadero no está en que parte de la energía recibida por la Tierra se quede definitivamente en el planeta. La explicación está en que se retrasa su devolución porque, aunque la cantidad de energía retornada es igual a la recibida, el tipo de energía que se retorna es distinto. Mientras que la energía recibida es una mezcla de radiación ultravioleta, visible e infrarroja, la energía que devuelve la Tierra es fundamentalmente infrarroja y algo de visible.

Las radiaciones que llegan del sol vienen de un cuerpo que está a 6.000ºC, pero las radiaciones que la superficie devuelve tienen la composición de longitudes de onda correspondientes a un cuerpo negro que esté a 15ºC. Por este motivo las radiaciones reflejadas tienen longitudes de onda de menor frecuencia que las recibidas. Están en la zona del infrarrojo y casi todas son absorbida por el CO2, el vapor de agua, el metano y otros gases, por lo que se forma el efecto invernadero. Así se retrasa la salida de la energía desde la Tierra al espacio y se origina el llamado efecto invernadero que mantiene la temperatura media en unos 15ºC y no en los -18ºC que tendría si no existiera la atmósfera.

Aumento de la Temperatura Global

Durante el siglo XX se ha constatado un aumento de la temperatura global y se estima que continúe así en los próximos decenios, esto preocupa al mundo científico y genera inquietudes en los más diversos ámbitos, ya que el calentamiento influye sobre el clima y por ende sobre la producción de alimentos, la salubridad mundial y en la economía en general.

 Pero no sólo la temperatura ha aumentado, también han aumentado en la atmósfera el CO2 en un 25%; el CH4 un 100%; el N2O un 10%. Más recientemente han aparecido los cloro fluorocarbonados o CFC, Freón 11 y Freón 12 principalmente.

Las sustancias radiactivas:

La llamada radiactividad está formada por un conjunto de radiaciones de onda corta y, por tanto, de mucha energía y gran capacidad de penetración. Su origen puede ser natural, pero las mediciones indican que han aumentado en los últimos años por algunas actividades humanas, sobre todo por las explosiones nucleares. Estas radiaciones, bien usadas, son muy útiles en medicina, la industria e investigación científica. Tienen muchas aplicaciones y se usan para curar cánceres hasta para revisar soldaduras o esterilizar alimentos. Sin embargo, la contaminación con sustancias radiactivas es especialmente peligrosa.

Aplicaciones de la energía solar

Entre las múltiples aplicaciones de la energía solar se encuentran su aprovechamiento como luz directa, como fuente de calor y en la generación de electricidad principalmente, a continuación se amplia cada uno de estos usos:

·         Directa: Una de las aplicaciones de la energía solar es directamente como luz solar, por ejemplo, para la iluminación. Otra aplicación directa, muy común, es el secado de ropa y algunos productos en procesos de producción con tecnología simple.

·         Térmica: La energía solar puede utilizarse para el calentamiento de algún sistema que posteriormente permitirá la climatización de viviendas, calefacción, refrigeración, secado, entre otros, son aplicaciones térmicas.

·         Fotovoltaica: Es la energía solar aprovechada por medio de celdas fotoeléctricas (celda solar, auto solar), capaces de convertir la luz en un potencial eléctrico, sin necesariamente pasar por un efecto térmico. Para lograr esto la energía solar se recoge de una forma adecuada. El calor se logra mediante los colectores térmicos, y la electricidad, a través de los llamados módulos fotovoltaicos.

Los sistemas de aprovechamiento térmico permiten que el calor recogido en los colectores pueda destinarse y satisfacer numerosas necesidades.Por ejemplo, se puede obtener agua caliente para consumo doméstico o industrial, o bien generar calefacción a casas, hoteles, colegios, fábricas, entre otros. Incluso se pueden climatizar las piscinas para permitir su uso durante gran parte del año en aquellos países donde se presentan las estaciones.

·         Las aplicaciones agrícolas: son muy amplias con invernaderos solares pueden obtenerse mayores y más tempranas cosechas; los secaderos agrícolas consumen mucha menos energía si se combinan con un sistema solar, y, por citar otro ejemplo, pueden funcionar plantas de purificación o desalinización de aguas sin consumir ningún tipo de combustible. Las "células solares", dispuestas en paneles solares, ya producían electricidad en los primeros satélites espaciales. Actualmente se perfilan como la solución definitiva al problema de la electrificación rural, con clara ventaja sobre otras alternativas, pues, al carecer los paneles de partes móviles, resultan totalmente inalterables al paso del tiempo, no contaminan ni producen ningún ruido en absoluto, no consumen combustible y no necesitan mantenimiento. Además, y aunque con menos rendimiento, funcionan también en días nublados, puesto que captan la luz que se filtra a través de las nubes.

La electricidad que se obtiene de esta manera puede usarse de forma directa (por ejemplo para sacar agua de un pozo o para regar, mediante un motor eléctrico), o bien ser almacenada en acumuladores para usarse en las horas nocturnas. Incluso es posible inyectar la electricidad sobrante a la red general, obteniendo un importante beneficio. Las células solares están hechas con obleas (láminas) finas de silicio, arseniuro de galio u otro.

·         Hornos solares: Los hornos solares son una aplicación importante de los concentradores de alta temperatura. El mayor, situado en Odeillo, en la parte francesa de los Pirineos, tiene 9.600 reflectores con una superficie total de unos 1.900 m2 para producir temperaturas de hasta 4.000 °C. Estos hornos son ideales para investigaciones, por ejemplo, en la investigación de materiales, que requieren temperaturas altas en entornos libres de contaminantes.

·         Enfriamiento solar: Se puede producir frío con el uso de energía solar como fuente de calor en un ciclo de enfriamiento por absorción. Uno de los componentes de los sistemas estándar de enfriamiento por absorción, llamado generador, necesita una fuente de calor.

En general, se requieren temperaturas superiores a 150 °C para que los dispositivos de absorción trabajen con eficacia, los colectores de concentración son más apropiados que los de placa plana.

Tormenta geomagnética

Una tormenta geomagnética es una perturbación temporal de la magnetosfera terrestre. Asociada a una eyección de masa coronal (CME), un agujero en la corona o una llamarada solar, es una onda de choque de viento solar que llega entre 24 y 36 horas después del suceso. Esto solamente ocurre si la onda de choque viaja hacia la Tierra.

La presión del viento solar sobre la magnetosfera aumentará o disminuirá en función de la actividad solar. La presión del viento solar modifica las corrientes eléctricas en la ionosfera. Las tormentas magnéticas duran de 24 a 48 horas, aunque pueden prolongarse varios días.

Etapas

  • Erupción solar: La primera etapa, que puede romper las comunicaciones. Tarda 8 min. en llegar. Además, hace que la atmósfera aumente su tamaño hasta las órbitas de los satélites, altere sus orbitas y haga que estos caigan a tierra.
  • Tormenta de Radiación: Consiste en un "bombardeo" de radiación contra la Tierra. Esta puede freír los circuitos eléctricos y atacar a las personas. En la Tierra estamos protegidos gracias a los efectos combinados de la Atmósfera y la Magnetosfera. Debido a esto, sólo afecta a los astronautas que no estén a salvo.
  • CME: La onda más peligrosa, ya que daña a los satélites y a los transformadores eléctricos del planeta por los que pase electricidad. Daña las comunicaciones en todo el planeta. Tiene campo magnético: si está orientada al norte, rebotará inofensivamente en la magnetosfera; si está orientada hacia el sur, causaría una catástrofe global, por los daños que ocasionaría.

Anexos

 

Conclusión

La mayor parte de la energía que llega a nuestro planeta procede del Sol. El Sol emite energía en forma de radiación electromagnética. Estas radiaciones se distinguen por sus diferentes longitudes de onda. Algunas, como las ondas de radio, llegan a tener longitudes de onda de kilómetros, mientras que las más energéticas, como los rayos X o las radiaciones gamma tienen longitudes de onda de milésimas de nanómetro.

La energía que llega al exterior de la atmósfera lo hace en una cantidad fija, llamada constante solar. Esta energía es una mezcla de radiaciones de longitudes de onda entre 200 y 4000 nm, que se distingue entre radiación ultravioleta, luz visible y radiación infrarroja.

Bibliografía

www.encarta.com

www.kalipedia.com

 

 

Autor:

Néstor Sanz B.  

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente