- Introducción
- Motor eléctrico
- Fundamentos de operación de los motores eléctricos
- Partes fundamentales de un motor eléctrico
- Características particulares de los motores eléctricos de corriente alterna
- Clasificación de los motores de corriente alterna
- Diagramas de conexión de los motores de corriente alterna
- Sistemas de arranque de los motores trifásicos
- Recomendaciones sobre los motores eléctricos
- Conclusión
- Bibliografía
- Anexos
Introducción
Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de campos magnéticos variables, los motores eléctricos se componen en dos partes una fija llamada estator y una móvil llamada rotor.
Estos funcionan generalmente bajo los principios de magnetismo, los cuales son desarrollados en el interior de la investigación, además de ello se especificara la clasificación de los Motores de Corriente Alterna, según el número de fases en Monofásicos, Bifásicos y Trifásicos, siendo este último el más utilizado a nivel industrial.
Los motores eléctricos se hallan formados por varios elementos, los cuales son definidos en el contenido de la presente investigación, sin embargo, las partes principales son: el estator, la carcasa, la base, el rotor, la caja de conexiones, las tapas y los cojinetes. No obstante, un motor puede funcionar solo con el estator y el rotor.
Por otra parte se explica las principales conexiones con las que es posible la alimentación de los motores eléctricos, detallando cada una de ellas, las ventajas que suelen proporcionarle, entre otras. También se hace hincapié en un tema muy importante para la conservación de los motores eléctricos, como lo es el mantenimiento preventivo de los mismos, donde se indaga a el alargamiento de la vida útil del motor y disminuir pérdidas y deformaciones del mismo, finalizando la investigación con una serie de recomendaciones para la instalación y mantenimiento de los motores eléctricos.
Motor eléctrico
Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. Algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras realizan a menudo ambas tareas, si se los equipa con frenos regenerativos.
Son ampliamente utilizados en instalaciones industriales, comerciales y particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.
Fundamentos de operación de los motores eléctricos
En magnetismo se conoce la existencia de dos polos: polo norte (N) y polo sur (S), que son las regiones donde se concentran las líneas de fuerza de un imán. Un motor para funcionar se vale de las fuerzas de atracción y repulsión que existen entre los polos. De acuerdo con esto, todo motor tiene que estar formado con polos alternados entre el estator y el rotor, ya que los polos magnéticos iguales se repelen, y polos magnéticos diferentes se atraen, produciendo así el movimiento de rotación. En la figura se muestra como se produce el movimiento de rotación en un motor eléctrico.
Un motor eléctrico opera primordialmente en base a dos principios: El de inducción, descubierto por Michael Faraday en 1831; que señala, que si un conductor se mueve a través de un campo magnético o está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se induce una corriente eléctrica en el primer conductor. Y el principio que André Ampére observo en 1820, en el que establece: que si una corriente pasa a través de un conductor situado en el interior de un campo magnético, éste ejerce una fuerza mecánica o f.e.m. (fuerza electromotriz), sobre el conductor.
Partes fundamentales de un motor eléctrico
Dentro de las características fundamentales de los motores eléctricos, éstos se hallan formados por varios elementos, sin embargo, las partes principales son: el estator, la carcasa, la base, el rotor, la caja de conexiones, las tapas y los cojinetes. No obstante, un motor puede funcionar solo con el estator y el rotor.
Estator
El estator es el elemento que opera como base, permitiendo que desde ese punto se lleve a cabo la rotación del motor. El estator no se mueve mecánicamente, pero si magnéticamente. Existen dos tipos de estatores
a) Estator de polos salientes.
b) Estator ranurado.
El estator está constituido principalmente de un conjunto de láminas de acero al silicio (y se les llama "paquete"), que tienen la habilidad de permitir que pase a través de ellas el flujo magnético con facilidad; la parte metálica del estator y los devanados proveen los polos magnéticos.
Los polos de un motor siempre son pares (pueden ser 2, 4, 6, 8, 10, etc.,), por ello el mínimo de polos que puede tener un motor para funcionar es dos (un norte y un sur).
Rotor
El rotor es el elemento de transferencia mecánica, ya que de él depende la conversión de energía eléctrica a mecánica. Los rotores, son un conjunto de láminas de acero al silicio que forman un paquete, y pueden ser básicamente de tres tipos:
a) Rotor ranurado
b) Rotor de polos salientes
c) Rotor jaula de ardilla
Los Motores de Corriente Alterna [C.A.]: Son los tipos de motores más usados en la industria, ya que estos equipos se alimentan con los sistemas de distribución de energías "normales". En la actualidad, el motor de corriente alterna es el que más se utiliza para la mayor parte de las aplicaciones, debido fundamentalmente a que consiguen un buen rendimiento, bajo mantenimiento y sencillez, en su construcción, sobre todo en los motores asíncronos.
Características particulares de los motores eléctricos de corriente alterna
Los parámetros de operación de un motor designan sus características, es importante determinarlas, ya que con ellas conoceremos los parámetros determinantes para la operación del motor. Las principales características de los motores de C.A. son:
Potencia: Es la rapidez con la que se realiza un trabajo.
En física la Potencia = Trabajo/tiempo, la unidad del Sistema Internacional para la potencia es el joule por segundo, y se denomina watt (W). Sin embargo estas unidades tienen el inconveniente de ser demasiado pequeñas para propósitos industriales.
Por lo tanto, se usan el kilowatt (kW) y el caballo de fuerza (HP) que se definen como:
1 kW = 1000 W
1 HP = 747 W = 0.746 kW
1kW = 1.34 HP
Voltaje: También llamada tensión eléctrica o diferencia de potencial, existe entre dos puntos, y es el trabajo necesario para desplazar una carga positiva de un punto a otro:
E = [VA –VB]
Dónde:
E = Voltaje o Tensión
VA = Potencial del punto A
VB = Potencial del punto B
La diferencia de tensión es importante en la operación de un motor, ya que de esto dependerá la obtención de un mejor aprovechamiento de la operación.
Los voltajes empleados más comúnmente son: 127V, 220V, 380V, 440V, 2300V y 6000V.
Corriente: La corriente eléctrica [I], es la rapidez del flujo de carga [Q] que pasa por un punto dado [P] en un conductor eléctrico en un tiempo [t] determinado.
Dónde:
I = Corriente eléctrica
Q = Flujo de carga que pasa por el punto P
t = Tiempo
La unidad de corriente eléctrica es el ampere. Un ampere [A] representa un flujo de carga con la rapidez de un coulomb por segundo, al pasar por cualquier punto.
Los motores eléctricos esgrimen distintos tipos de corriente, que fundamentalmente son: corriente nominal, corriente de vacío, corriente de arranque y corriente a rotor bloqueado.
Corriente nominal: En un motor, el valor de la corriente nominal es la cantidad de corriente que consumirá el motor en condiciones normales de operación.
Corriente de vacío: Es la corriente que consumirá el motor cuando no se encuentre operando con carga y es aproximadamente del 20% al 30% de su corriente nominal.
Corriente de arranque: Todos los motores eléctricos para operar consumen un excedente de corriente, mayor que su corriente nominal, que es aproximadamente de dos a ocho veces superior.
Corriente a rotor bloqueado: Es la corriente máxima que soportara el motor cuando su rotor esté totalmente detenido.
Eficiencia: La eficiencia de un motor de Corriente Alterna mide la conversión de la energía eléctrica en trabajo útil. La energía que se pierde se convierte en calor. Para aumentar la eficiencia es preciso reducir estas pérdidas.
Las pérdidas de los motores se pueden clasificar en cinco categorías principales. Dos de éstas –las pérdidas en el hierro del núcleo y las pérdidas por resistencia aerodiná-mica y fricción– se clasifican como pérdidas no relacionadas con la carga, ya que permanecen constantes con independencia de la misma.
Las pérdidas relacionadas con la carga, es decir, que varían con ella, son las pérdidas en el cobre del estator, las pérdidas en el rotor y las pérdidas de carga por dispersión. En todas estas pérdidas pueden influir diversas consideraciones de diseño y construcción, es decir, la calidad de los procesos de diseño y fabricación.
Clasificación de los motores de corriente alterna
Por su velocidad de giro:
1. Asíncrono: Son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias.
2. Motores Síncronos: Son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias. Este motor tiene la característica de que su velocidad de giro es directamente proporcional a la frecuencia de la red de corriente alterna que lo alimenta. Es utilizado en aquellos casos en donde se desea una velocidad constante.
Se utilizan para convertir potencia eléctrica en potencia mecánica de rotación. La característica principal de este tipo de motores es que trabajan a velocidad constante que depende solo de la frecuencia de la red y de otros aspectos constructivos de la máquina. A diferencia de los motores asincrónicos, la puesta en marcha requiere de maniobras especiales a no ser que se cuente con un sistema automático de arranque. Otra particularidad del motor síncrono es que al operar de forma sobreexcitado consume potencia reactiva y mejora el factor de potencia.
Las máquinas síncronas funcionan tanto como generadores y como motores. En nuestro medio sus aplicaciones son mínimas y casi siempre están relacionadas en la generación de energía eléctrica. Para el caso referente a la máquina rotativa síncrona, todas las centrales Hidroeléctricas y Termoeléctricas funcionan mediante generadores síncronos trifásicos.
Para el caso del motor se usa principalmente cuando la potencia demandada es muy elevada, mayor que 1MW (mega vatio).
Los motores síncronos se subdividen a su vez, de acuerdo al tipo del rotor que utilizan, siendo estos: rotor de polos lisos (polos no salientes) y de polos salientes.
Motores de rotor de polos lisos o polos no salientes: se utilizan en rotores de dos y cuatro polos. Estos tipos de rotores están construidos al mismo nivel de la superficie del rotor. Los motores de rotor liso trabajan a elevadas velocidades.
Motores de polos salientes: Los motores de polos salientes trabajan a bajas velocidades. Un polo saliente es un polo magnético que se proyecta hacia fuera de la superficie del rotor.
Los rotores de polos salientes se utilizan en rotores de cuatro o más polos.
Por el tipo de rotor
1. Motores de anillos rozantes: Es similar al motor trifásico jaula de ardilla, su estator contiene los bobinados que generan el campo magnético giratorio.
El objetivo del diseño del motor de anillos rosantes es eliminar la corriente excesivamente alta del arranque y el troqué elevado asociado con el motor de jaula de ardilla. Cuando el motor se arranca un voltaje es inducido en el rotor, con la resistencia agregada de la resistencia externa la corriente del rotor y por lo tanto el troqué pueden controlarse fácilmente
2. Motores con colector: Los colectores también son llamados anillos rotatorios, son comúnmente hallados en máquinas eléctricas de corriente alterna como generadores, alternadores, turbinas de viento, en las cuales conecta las corriente de campo o excitación con el bobinado del rotor.
Pueden entregar alta potencia con dimensiones y peso reducidos.
Pueden soportar considerables sobrecargas temporales sin detenerse completamente.
Se adaptan a las sobrecargas disminuyendo la velocidad de rotación, sin excesivo consumo eléctrico.
Producen un elevado torque de funcionamiento.
3. Motores de jaula de ardilla: un motor eléctrico con un rotor de jaula de ardilla también se llama "motor de jaula de ardilla". En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras longitudinales de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula. El nombre se deriva de la semejanza entre esta jaula de anillos y barras y la rueda de un hámster (ruedas probablemente similares existen para las ardillas domésticas).
Por su número de fases de alimentación:
Motores monofásicos
Fueron los primeros motores utilizados en la industria. Cuando este tipo de motores está en operación, desarrolla un campo magnético rotatorio, pero antes de que inicie la rotación, el estator produce un campo estacionario pulsante.
Para producir un campo rotatorio y un par de arranque, se debe tener un devanado auxiliar desfasado 90° con respecto al devanado principal. Una vez que el motor ha arrancado, el devanado auxiliar se desconecta del circuito.
Debido a que un motor de corriente alterna (C.A.) monofásico tiene dificultades para arrancar, está constituido de dos grupos de devanados: El primer grupo se conoce como el devanado principal o de trabajo, y el segundo, se le conoce como devanado auxiliar o de arranque. Los devanados difieren entre sí, física y eléctricamente. El devanado de trabajo está formado de conductor grueso y tiene más espiras que el devanado de arranque.
Es importante señalar, que el sentido de giro de las bobinas involucra la polaridad magnética correspondiente, como puede verse en la figura
Tipos y características
Los motores monofásicos han sido perfeccionados a través de los años, a partir del tipo original de repulsión, en varios tipos mejorados, y en la actualidad se conocen:
Motores de fase partida: En general consta de una carcasa, un estator formado por laminaciones, en cuyas ranuras aloja las bobinas de los devanados principal y auxiliar, un rotor formado por conductores a base de barras de cobre o aluminio embebidas en el rotor y conectados por medio de anillos de cobre en ambos extremos, denominado lo que se conoce como una jaula de ardilla. Se les llama así, porque se asemeja a una jaula de ardilla. Fueron de los primeros motores monofásicos usados en la industria, y aún permanece su aplicación en forma popular. Estos motores se usan en: máquinas herramientas, ventiladores, bombas, lavadoras, secadoras y una gran variedad de aplicaciones; la mayoría de ellos se fabrican en el rango de 1/30 (24.9 W) a 1/2 HP (373 W).
Motores de arranque con capacitor: Este tipo de motor es similar en su construcción al de fase partida, excepto que se conecta un capacitor en serie con el devanado de arranque para tener un mayor par de arranque. Su rango de operación va desde fracciones de HP hasta 15 HP. Es utilizado ampliamente en muchas aplicaciones de tipo monofásico, tales como accionamiento de máquinas herramientas (taladros, pulidoras, etcétera), compresores de aire, refrigeradores, etc. En la figura se muestra un motor de arranque con capacitor.
Motores con Imán permanente: Utilizan un capacitor conectado en serie con los devanados de arranque y de trabajo. El crea un retraso en el devanado de arranque, el cual es necesario para arrancar el motor y para accionar la carga.
La principal diferencia entre un motor con permanente y un motor de arranque con capacitor, es que no se requiere switch centrífugo. Éstos motores no pueden arrancar y accionar cargas que requieren un alto par de arranque.
Motores de inducción-repulsión: Los motores de inducción-repulsión se aplican donde se requiere arrancar cargas pesadas sin demandar demasiada corriente. Se fabrican de 1/2 HP hasta 20 HP, y se aplican con cargas típicas como: compresores de aire grandes, equipo de refrigeración,
etc.
Motores de polos sombreados: Este tipo de motores es usado en casos específicos, que tienen requerimientos de potencia muy bajos.
Su rango de potencia está comprendido en valores desde 0.0007 HP hasta 1/4HP, y la mayoría se fabrica en el rango de 1/100 a 1/20 de HP. La principal ventaja de estos motores es su simplicidad de construcción, su confiabilidad y su robustez, además, tienen un bajo costo. A diferencia de otros motores monofásicos de C.A., los motores de fase partida no requieren de partes auxiliares (capacitores, escobillas, conmutadores, etc.) o partes móviles (switches centrífugos). Esto hace que su mantenimiento sea mínimo y relativamente sencillo.
Motores trifásicos
Los motores trifásicos usualmente son más utilizados en la industria, ya que en el sistema trifásico se genera un campo magnético rotatorio en tres fases, además de que el sentido de la rotación del campo en un motor trifásico puede cambiarse invirtiendo dos puntas cualesquiera del estator, lo cual desplaza las fases, de manera que el campo magnético gira en dirección opuesta.
Tipos y características
Los motores trifásicos se usan para accionar máquinas-herramientas, bombas, elevadores, ventiladores, sopladores y muchas otras máquinas.
Básicamente están construidos de tres partes esenciales: Estator, rotor y tapas.
El estator consiste de un marco o carcasa y un núcleo laminado de acero al silicio, así como un devanado formado por bobinas individuales colocadas en sus ranuras. Básicamente son de dos tipos:
• De jaula de ardilla.
• De rotor devanado
El de jaula de ardilla es el más usado y recibe este nombre debido a que parece una jaula de ardilla de aluminio fundido. Ambos tipos de rotores contienen un núcleo laminado en contacto sobre el eje. El motor tiene tapas en ambos lados, sobre las cuales se encuentran montados los rodamientos o baleros sobre los que rueda el rotor. Estas tapas se fijan a la carcasa en ambos extremos por medio de tomillos de sujeción. Los rodamientos, baleros o rodamientos pueden ser de rodillos o de deslizamiento.
Diagramas de conexión de los motores de corriente alterna
Todos los motores trifásicos están construidos internamente con un cierto número de bobinas eléctricas que están devanadas siempre juntas, para que conectadas constituyan las fases que se conectan entre sí, en cualquiera de las formas de conexión trifásicas, que pueden ser:
Delta
Estrella
Estrella-delta
Delta
Los devanados conectados en delta son cerrados y forman una configuración en triangulo. Se pueden diseñar con seis (6) o nueve (9) terminales para ser conectados a la líneo de alimentación trifásica.
Cada devanado de un motor de inducción trifásico tiene sus terminales marcadas con un número para su fácil conexión. Los terminales o puntas de los devanados se conectan de modo que A y B cierren un extremo de la delta (triángulo), también B y C, así como C y A, para de esta manera formar la delta de los devanados del motor.
Los motores de inducción de jaula de ardilla son también devanados con nueve (9) terminales para conectar los devanados internos para operación en delta. Se conectan seis (6) devanados internos para formar una delta cerrada, tres devanados están marcados como 1-4-9, 2-5-7 y 3-6-8, en éstos.
Los devanados se pueden bobinar para operar a uno o dos voltajes.
Estrella
Los devanados de la mayoría de los motores de inducción de jaula de ardilla están conectados en estrella. La conexión estrella se forma uniendo una terminal de cada devanado, las tres terminales restantes se conectan a las líneas de alimentación L1, L2 Y L3. Los devanados conectados en estrella forman una configuración en Y.
Un motor conectado en estrella con nueve (9) terminales, tiene tres puntas en sus devanados conectadas para formar una estrella (7-8-9). Los tres pares de puntas de los devanados restantes, son los números: 1-4, 2-5 y 3-6.
Los devanados se pueden conectar para operar en bajo o alto voltaje.
Para la operación en bajo voltaje, éstos se conectan en paralelo; para la operación en alto voltaje, se conectan en serie.
Conexiones para dos voltajes
Algunos motores trifásicos están construidos para operar en dos voltajes. El propósito de hacer posible que operen con dos voltajes distintos de alimentación, y tener la disponibilidad en las líneas para que puedan conectarse indistintamente. Comúnmente, las terminales externas al motor permiten una conexión serie para el voltaje más alto y una conexión doble paralelo para la alimentación al menor voltaje.
Sistemas de arranque de los motores trifásicos
MOTOR TRIFÁSICO EN ARRANQUE DIRECTO
Como se ha comentado anteriormente, los motores de cortocircuito suelen consumir en el arranque corriente muy elevadas, que para el caso de potencias elevadas (P>10 kW) pueden provocar fluctuaciones en la redes eléctricas de distribución, de ahí que para el arranque de motores se utilizan distintos procedimientos para limitar la corriente absorbida en su puesta en marcha.
A título de ejemplo se incluye la siguiente figura donde se pueden distinguir los esquemas de fuerza y maniobra del arranque de un motor trifásico, así como sus elementos de mando y protección.
MOTOR TRIFÁSICO EN ARRANQUE DIRECTO
Con independencia del arranque directo, el arrancador estrella-triángulo es el sistema de arranque más utilizado en los motores asíncronos de inducción.
Consiste en arrancar el motor con conexión estrella a una tensión 3 veces inferior a la que soporta el motor para este tipo de conexión, transcurrido un cierto tiempo, cuando el momento desarrollado por el motor conectado en estrella M1 iguales al momento de la carga (alrededor del 80% de la velocidad nominal) conmutar las conexiones de bobinas del motor a triángulo.
ARRANQUE DE UN MOTOR TRIFÁSICO DE ROTOR BOBINADO
Este tipo de arranque es aplicable a los motores de rotor bobinado con anillos rozantes. Gracias a estos anillos rotóricos es posible conectar resistencias en serie con las bobinas del rotor de forma que al elevarse su impedancia se disminuya la corriente absorbida en el arranque. A medida que el rotor va adquiriendo velocidad se va disminuyendo la resistencia mediante cortocircuito de las mismas.
ARRANQUE DE UN MOTOR TRIFÁSICO POR AUTOTRANSFORMADOR
Es un tipo de arranque poco frecuente puesto que suele emplearse en motores muy grandes P>100 kW. Consiste en alimentar a tensión reducida al motor durante el proceso de arranque a través de un autotransformador hasta adquirir la velocidad nominal en que se desconecta el autotransformador del circuito.
ARRANQUE DE UN MOTOR TRIFÁSICO POR RESISTENCIAS ESTATÓRICAS.
El principio consiste en arrancar el motor a una tensión reducida mediante la inserción en serie con las bobinas del estator unas resistencias. Una vez estabilizada la velocidad, se eliminan las resistencias y el motor se acopla directamente a la red de alimentación.
MANTENIMIENTO PREVENTIVO DE MOTORES ELÉCTRICOS
El mantenimiento de los motores eléctricos constituye uno de los aspectos fundamentales para garantizar la óptima operatividad de los mismos, y por consiguiente, la confiabilidad del proceso productivo.
Por tal motivo es muy importante que las actividades de mantenimiento preventivo, predictivo y correctivo sean realizadas por personal calificado y entrenado para tal fin.
Los motores eléctricos por ser máquinas rotativas y generalmente de uso continuo, están propensos a sufrir desgastes en sus componentes mecánicos, especialmente en los rodamientos o cojinetes, los cuales merecen especial atención por parte del departamento de mantenimiento, y someterlos a un programa de mantenimiento rutinario.
El material aislante es otro componente aún más importante, ya que si éste falla la máquina puede quedar inutilizada. Las fallas en el aislamiento de las máquinas eléctricas son producidas por degradación del material aislante debido a fatigas mecánicas y eléctricas, contaminación, temperatura y humedad. Una falla del material aislante produce fallas incluso catastróficas en las máquinas eléctricas, por lo que es recomendable realizar el mantenimiento rutinario y preventivo en las mismas para minimizar las interrupciones no programadas de los procesos productivos.
El objetivo del mantenimiento es lograr con el mínimo coste el mayor tiempo de servicio de las Instalaciones y Maquinaria productiva.
El mantenimiento preventivo abarca todos los planes y acciones necesarias para determinar y corregir las condiciones de operación que puedan afectar a un sistema, maquinaria o equipo, antes de que lleguen al grado de mantenimiento correctivo, considerando la selección, la instalación y la misma operación.
El mantenimiento preventivo bien aplicado disminuye los costos de producción, aumenta la productividad, así como la vida útil de la maquinaria y equipo, obteniendo como resultado la disminución de paro de máquinas.
Las actividades principales del mantenimiento preventivo son:
a) Inspección periódica con el fin de encontrar las causas que provocarían paros imprevistos.
b) Conservar la planta, anulando y reparando aspectos dañinos cuando apenas comienzan.
Recomendaciones sobre los motores eléctricos
Seleccionar el armazón del motor, de acuerdo con el ambiente en que va a estar trabajando. Los motores abiertos son más sencillos y por lo tanto menos costosos, además de operar con mayor factor de potencia. Sin embargo, en condiciones adversas del medio, los motores cerrados serán los indicados.
Seleccionar correctamente la velocidad del motor. Si la carga lo permite prefiera motores de alta velocidad, son más eficientes y si se trata de motores de corriente alterna, trabajan con un mejor factor de potencia.
Sustituir los motores antiguos o de uso intenso. Los costos de operación y mantenimiento de motores viejos o de motores que por su uso han depreciado sus características de operación, pueden justificar su sustitución por motores normalizados y de alta eficiencia.
Realizar en forma correcta la conexión a tierra de los motores. Una conexión defectuosa o la ausencia de ésta, puede poner en peligro la vida de los operarios si se presenta una falla a tierra. Además de ocasionar corrientes de fuga que no son liberadas por el equipo de protección con un dispendio de energía.
Evitar concentrar motores en locales reducidos o en lugares que puedan dificultar su ventilación. Un sobrecalentamiento del motor se traduce en una disminución de su eficiencia.
Balancear la tensión de alimentación en los motores trifásicos de corriente alterna. El desequilibrio entre fases no debe excederse en ningún caso del 5%, pero mientras menor sea el desbalance, los motores operan con mayor eficiencia.
Instalar equipos de control de la temperatura del aceite de lubricación de cojinetes de motores de gran capacidad a fin de minimizar las pérdidas por fricción y elevar la eficiencia.
Mantener en buen estado y correctamente ajustados los equipos de protección contra sobrecalentamientos o sobrecargas en los motores. Los protegen de daños mayores y evitan que operen con baja eficiencia.
Revisar periódicamente las conexiones del motor, junto con las de su arrancador y demás accesorios. Conexiones flojas o mal realizadas con frecuencia originan un mal funcionamiento del motor y ocasionan pérdidas por disipación de calor.
Mantener en óptimas condiciones los sistemas de ventilación y enfriamiento de los motores, para evitar sobrecalentamientos que puedan aumentar las pérdidas en los conductores del motor y dañar los aislamientos.
Reparar o cambiar los ejes del motor y de la transmisión, si se han doblado por sobrecarga o por mal uso. Un eje en mal estado incrementa las pérdidas por fricción y puede ocasionar daños severos sobre todo en los cojinetes del motor.
Mantener en buen estado los medios de transmisión entre el motor y la carga, tales como: poleas, engranes, bandas y cadenas. Si estos no se encuentran en condiciones apropiadas o su instalación es incorrecta, pueden ocasionar daños importantes, además de representar una carga inútil para el motor.
Mantener en óptimas condiciones los cojinetes del motor. Una cantidad considerable de energía se pierde en cojinetes en mal estado o si su lubricación es inadecuada (insuficiente o excesiva). Repárelos o sustitúyalos si tienen algún desperfecto y siga las instrucciones del fabricante para lograr una correcta lubricación.
Realizar la inspección periódica del motor, incluyendo lecturas de corriente, potencia (kW), velocidad (rpm), resistencia de aislamiento, etc., con objeto de verificar si se mantienen en condiciones apropiadas de funcionamiento y eficiencia, y poder tomar acciones correctivas, cuando se requieran.
Efectuar rutinariamente la limpieza del motor, con el propósito de eliminar la suciedad, el polvo y objetos extraños, que impidan su óptimo funcionamiento. La regularidad con que ésta se realice dependerá de las condiciones en las que el motor este trabajando, pero es recomendable desmontarlo al menos una vez al año para realizar la limpieza completa de todos sus componentes.
Conclusión
Toda máquina que convierte energía eléctrica en movimiento o trabajo mecánico, a través de medios electromagnéticos es considerada esencialmente un motor eléctrico, algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores.
El principio de funcionamiento de todo motor se basa en que tiene que estar formado con polos alternados entre el estator y el rotor, ya que los polos magnéticos iguales se repelen, y polos magnéticos diferentes se atraen, produciendo así el movimiento de rotación.
Entre las características fundamentales de los motores eléctricos, tenemos que se hallan formados por varios elementos, sin embargo, las partes principales son: el estator, la carcasa, la base, el rotor, la caja de conexiones, las tapas y los cojinetes.
Los Motores de Corriente Alterna; Son los tipos de motores más usados en la industria, ya que estos equipos se alimentan con los sistemas de distribución de energías "normales" y por último Los Motores Universales Tienen la forma de un motor de corriente continua, la principal diferencia es que está diseñado para funcionar con corriente continua y corriente alterna. El inconveniente de este tipo de motores es su eficiencia, ya que es baja (del orden del 51%).
Para el arranque de motores es indispensable su instalación pero no solo su instalación sino su conexión. Para efectuar el cambio de sentido de giro de los motores eléctricos de corriente alterna monofásicos únicamente es necesario invertir las terminales del devanado de arranque, esto se puede realizar manualmente o con unos relevadores, Para motores trifásicos únicamente es necesario invertir dos de las conexiones de alimentación correspondientes a dos fases de acuerdo a la secuencia trifásica y Para motores de corriente directa es necesario invertir los contactos del par de arranque.
Bibliografía
http://www.MOTORES%20MANTTO%202.htm
MANUAL DE MOTORES ELECTRICOS, Andrés Videla Flores Ingeniero Civil Eléctrico Página 1 de 70
http://es.wikipedia.org/wiki/Motor_el%C3%A9ctrico
http://www.monografias.com/trabajos10/motore/motore
http://www.monografias.com/trabajos74/motores-corriente-directa/motores-corriente-directa2
Anexos
Partes de un Rotor
Partes de un Motor
Conexionado de un Motor de Corriente Alterna
Medición de fases de un Motor Trifásico
Partes de un Motor de Corriente Alterna
Motor de Corriente Alterna cubierto por el polvo
Motor de Corriente Alterna con polvo acumulado
Placa de un Motor de Corriente Alterna
Autor:
Dubraska Ollarves
Freddy Villena
Johan González
Joyner Teran
Leudis Belisario
Randdy Gonzalez
Sergio Tirado
PROFESOR: JOSÉ CARIAS
DEPARTAMENTO DE ELECTRICIDAD
DISEÑO DE SISTEMAS ELECTRICOS INDUSTRIALES
X-ELEC-UN
CIUDAD BOLÍVAR, 16 DE JULIO DE 2013