Cámaras Tipos de luz: Visible Infrarroja Cámaras: Manocromáticas / color Analógicas / digitales Pasivos / activos (puntos, línea láser)
Sensores de fuerza Micro-interruptores bigotes Acelerómetros Sensores de curvatura
Sonidos Micrófonos trabajan con frecuencias audibles Sensor de película piezoeléctrica producen un voltaje cuando hay cambios en la cantidad medida (vibración, temperatura, …) Sonar miden el tiempo que tardan en recibir un sonido (no audible) emitido
Sensores de posición y orientación Odometría Encoders Incrementales / absolutos Navegación inercial Giroscopios Inclinación Acelerómetros Brújula
Tipos función: SubProximidad y rangoTáctilEstado interno
Sensores de proximidad Permiten inferir la distancia a objetos en el ambiente: Cercanos: Infrarrojos Lejanos Sonares Láser
Infrarrojos Mediante la emisión y detección de luz infrarroja permiten la detección de obstáculos cercanos Tipos: binario / distancia Rango: pocos cm a metros Problemas: Interferencia de luz ambiental Depende del color/propiedades de las superficies
Infrarojos
Infrarojos
Infrarojos
Infrarojos
Sonares Detectan obstáculos mediante la emisión de ultrasonido y detección del tiempo de retorno Rango: aprox. 10/20 cm a 5 m Problemas: Patrón de emisión Depende del tipo de superficie Múltiples reflexiones
Arreglos de Sonares Normalmente se combinan varios sonares para tener un rango mayor y redundancia. Algunos arreglos comunes: 1 sonar giratorio Varios sonares al frente 1 anillo de sonares (12, 16, …) 2 anillos de sonares a diferente altura Sonares apuntando arriba y/o abajo
Arreglos de Sonares
Telémetro laser Otro método para estimar la distancia a obstáculos, con mayor rango y mejor precisión que los sonares Tres métodos alternativos: Triangulación relación geométrica entre el haz emitido y el haz recibido Tiempo de vuelo tiempo de regreso del haz Basado en fase diferencia de fase entre el haz emitido y el haz reflejado
Telémetro laser
Apuntador laser con cámara Una alternativa más económica al telémetro laser es el usar una apuntador láser (punto o línea) combinado con una cámara La distancia al obstáculo se estima en base a la altura del punto o línea en la imagen y relaciones geométricas
Apuntador laser con cámara
Sensores de Contacto Permiten al robot detectar cuando hace contacto con los obstáculos Se usan principalmente para evitar daño al robot como último recurso (también se utilizan en manos robóticas) Dos formas de uso: Como otro sensor que va al computador del robot Conectado directamente al circuito de control de los motores de forma que detenga automáticamente al robot
Sensores de Contacto Principales tipos: Bumpers: microswitches en un arreglo alrededor del robot Materiales que cambian la resistencia o capacitancia al acercarse a un obstáculo Bigotes Sensores de Curvatura Medidores de corriente en los motores
Sensores internos Permiten al robot conocer su estado interno. Entre los más comunes están Encoders permiten determinar la posición absoluta o relativa del robot en función del movimiento de las ruedas (odometría) Brújulas permiten estimar en forma aproximada la orientación del robot Giroscopios, acelerómetros, GPS Medidores de energía, corriente de motores, temperatura
Modelo del Sensor El modelo de un sensor provee una relación matemática entre la propiedad de interés (e) y la lectura del sensor (r) r = f (e) El modelo debe incluir la relación del dispositivo físico y el ruido debido al sensor mismo (interno) y al medio ambiente (externo)
Modelo del Sensor r e ruido
Referencias [Jones, Flynn] Cap 5 [Dudek y Jenkin] Cap 2 H.R. Everett, Sensors for mobile robots, A K Peters, 1995.
Actividades Hacer prácticas de sensores en el laboratorio virtual Seleccionar categoría: Rescate (lego) Pirámide (abierta) Laberinto (abierta) Seleccionar plataforma: Lego Híbrida (Lego + PDA)
Página anterior | Volver al principio del trabajo | Página siguiente |