La cadena de transporte de electrones, compuesta por cuatro complejos enzimáticos fijos y dos transportadores de electrones móviles: el complejo I o NADH deshidrogenasa que contiene flavina mononucleótido (FMN), el complejo II o succinato deshidrogenasa; ambos ceden electrones al coenzima Q o ubiquinona; el complejo III o citocromo bc1 que cede electrones al citocromo c y el complejo IV o citocromo c oxidasa que cede electrones al O2 para producir dos moléculas de agua.
Un complejo enzimático, el canal de H+ ATP-sintasa que cataliza la síntesis de ATP (fosforilación oxidativa).
Proteínas transportadoras que permiten el paso de iones y moléculas a su través, como ácidos grasos, ácido pirúvico, ADP, ATP, O2 y agua; pueden destacarse:
Nucleótido de adenina translocasa. Se encarga de transportar a la matriz mitocondrial el ADP citosólico formado durante las reacciones que consumen energía y, paralelamente transloca hacia el citosol el ATP recién sintetizado durante la fosforilación oxidativa.
Fosfato translocasa. Transloca fosfato citosólico junto con un protón a la matriz; el fosfato es esencial para fosforilar el ADP durante la fosforilación oxidativa.
Espacio intermembranoso
Entre ambas membranas queda delimitado un espacio intermembranoso está compuesto de un líquido similar al hialoplasma; tienen una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria. En él se localizan diversos enzimas que intervienen en la transferencia del enlace de alta energía del ATP, como la adenilato quinasa o la creatina quinasa.
Matriz mitocondrial
La matriz mitocondrial o mitosol contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 70S similares a los de bacterias, llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-oxidación de los ácidos grasos; también se oxidan los aminoácidos y se localizan algunas reacciones de la síntesis de urea y grupos hemo.
Función
Del apartado anterior se deduce que la principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.
Origen
La científica estadounidense Lynn Margulis, junto con otros científicos, recuperó en torno a 1980 una antigua hipótesis, reformulándola como teoría endosimbiótica. Según esta versión actualizada, hace unos 1.500 millones de años, una célula procariota capaz de obtener energía de los nutrientes orgánicos empleando el oxígeno molecular como oxidante, se fusionó en un momento de la evolución con otra célula procariota o eucariota primitiva al ser fagocitada sin ser inmediatamente digerida, un fenómeno frecuentemente observado. De esta manera se produjo una simbiosis permanente entre ambos tipos de seres: la procariota fagocitada proporcionaba energía, especialmente en forma de ATP y la célula hospedadora ofrecía un medio estable y rico en nutrientes a la otra. Este mutuo beneficio hizo que la célula invasora llegara a formar parte del organismo mayor, acabando por convertirse en parte de ella: la mitocondria. Otro factor que apoya esta teoría es que las bacterias y las mitocondrias tienen mucho en común, tales como el tamaño, la estructura, componentes de su membrana y la forma en que producen energía, etc.
Esta hipótesis tiene entre sus fundamentos la evidencia de que las mitocondrias poseen su propio ADN y está recubierta por su propia membrana. Otra evidencia que sostiene esta hipótesis es que el código genético del ADN mitocondrial no suele ser el mismo que el código genético del ADN nuclear.2 A lo largo de la historia común la mayor parte de los genes mitocondriales han sido transferidos al núcleo, de tal manera que la mitocondria no es viable fuera de la célula huésped y ésta no suele serlo sin mitocondrias.
Enfermedades mitocondriales
El ADN mitocondrial humano contiene información genética para 13 proteínas mitocondriales y algunos ARN;1 no obstante, la mayoría de las proteínas de las mitocondrias proceden de genes localizados en el ADN del núcleo celular y que son sintetizadas por ribosomas libres del citosol y luego importadas por el orgánulo. Se han descrito más de 150 enfermedades mitocondriales, como la enfermedad de Luft o la neuropatía óptica hereditaria de Leber. Tanto las mutaciones del ADN mitocondrial, como del ADN nuclear dan lugar a enfermedades genéticas mitocondriales, que originan un mal funcionamiento de procesos que se desarrollan en las mitocondrias, como alteraciones de enzimas, ARN, componentes de la cadena de transporte de electrones y sistemas de transporte de la membrana interna; muchas de ellas afectan al músculo esquelético y al sistema nervioso central.
El ADN mitocondrial puede dañarse con los radicales libres formados en la mitocondria; así, enfermedades degenerativas relacionadas con el envejecimiento, como la enfermedad de Parkinson, la enfermedad de Alzheimer y las cardiopatías pueden tener relaciones con lesiones mitocondriales.1
Cloroplasto
Células vegetales en las que son visibles los cloroplastos
Los cloroplastos son los orgánulos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía luminosa en energía química.
El término cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosíntesis, o específicamente a los plastos verdes propios de las algas verdes y las plantas.
Estructura
Las dos membranas del cloroplasto poseen una estructura continua que delimita completamente el cloroplasto. Ambas se separan por un espacio intermembranoso llamado a veces indebidamente espacio periplastidial. La membrana externa es muy permeable gracias a la presencia de porinas. Sin embargo no tanto como la membrana interna, que contiene proteínas específicas para el transporte.
La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijación de CO2, contiene ADN circular, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias. También, hay una serie de sáculos delimitados por una membrana llamados tilacoides los cuales se organizan en los cloroplastos de las plantas terrestres en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantofilas) y distintos lípidos; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetasa.
Al observar la estructura del cloroplasto y compararlo con el de la mitocondria, se nota que ésta tiene dos sistemas de membrana, delimitando un compartimento interno (matriz) y otro externo, el espacio perimitocondrial; mientras que el cloroplasto tiene tres, que forman tres compartimentos, el espacio intermembrana, el estroma y el espacio intratilacoidal.
Funciones
Es el orgánulo donde se realiza la fotosíntesis. Existen dos fases, que se desarrollan en compartimentos distintos:
- Fase luminosa: Se realiza en la membrana de los tilacoides, donde se halla la cadena de transporte de electrones y la ATP-sintetasa responsables de la conversión de la energía lumínica en energía química (ATP) y de la generación poder reductor (NADPH).
- Fase obscura: Se produce en el estroma, donde se halla el enzima RuBisCO, responsable de la fijación del CO2 mediante el ciclo de Calvin.
Ribosoma
Los ribosomas son complejos supramoleculares encargados de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides).
En células eucariotas, los ribosomas se elaboran en el núcleo pero desempeñan su función de en el citosol. Están formados por ARN ribosómico (ARNr) y por proteínas. Estructuralmente, tienen dos subunidades. En las células, estos orgánulos aparecen en diferentes estados de disociación. Cuando están completos, pueden estar aislados o formando grupos (polisomas); las proteínas sintetizadas por ellos actúan principalmente en el citosol; también pueden aparecer asociados al retículo endoplasmático rugoso o a la membrana nuclear, y las proteínas que sintetizan son sobre todo para la exportación.
Tanto los ARNr como las subunidades de los ribosomas se suelen nombrar por su coeficiente de sedimentación en unidades Svedberg. En eucariotas, los ribosomas del citoplasma se denominan 80 S. En mitocondrias y plastos de eucariotas, así como en procariotas, son 70 S.
Ribosomas procariotas
Los ribosomas de las células procariotas son los más estudiados. Son de 70 S y su masa molecular es de 2.500 kilodalton. Las moléculas de ARNr forman el 65% del ribosoma y las proteínas representan el 35%. Las moléculas de ARN ribosómico son ricas en adenina y guanina y forman una hélice alrededor de las proteínas. Los ribosomas están formados por dos subunidades:
Subunidad mayor: es 50 S. Está formada por dos moléculas de ARN, una de 23 S y otra de 5 S. Además hay 34 proteínas básicas de las cuales sólo una se repite en la subunidad menor.
Subunidad menor: es de 30 S y tiene una molécula de ARNr de 16 S además de 21 proteínas.
Ribosoma eucariotas
En eucariotas, los ribosomas son 80 S. Su peso molecular es de 4.200 Kd. Contienen un 40% de ARNr y 60% de proteínas. Al igual que los procariotas se dividen en dos subunidades de distinto tamaño:
Subunidad mayor: es 60 S. Tiene tres tipos de ARNr: 5 S, 28 S y 5,8 S y tiene 49 proteínas, todas ellas distintas a las de la subunidad menor.
Subunidad menor: es 40 S. Tiene una sola molécula de ARNr 18 S y contiene 33 proteínas. Dependiendo de qué organismo eucariota sea, este ARNr 18 S puede sufrir alteraciones.
Ribosomas mitocondriales
Las mitocondrias tienen su propio aparato de síntesis proteica que incluye ribosomas, ARNt y ARNm. Los ribosomas mitocondriales de las células animales contienen dos tipos de ARN ribosómicos, el 12S y 16S, que se transcriben a partir de genes del ADN mitocondrial, y son transcritos por una ARN polimerasa mitocondrial específica. Todas las proteínas que forman parte de los ribosomas mitocondriales están codificadas por genes los núcleo celular, que son traducidos en el citosol y transportados hasta las mitocondrias.1
Ribosoma de plastos
Los ribosomas que aparecen en plastos son similares a los procariotas. Son, al igual que los procariotas, 70 S, pero en la subunidad mayor hay un ARNr de 4 S que es equivalente al 5 S procariota.
Funciones
Los ribosomas son los orgánulos encargados de la síntesis de proteínas, en un proceso conocido como traducción. La información necesaria para esa síntesis se encuentra en el ARN mensajero (ARNm), cuya secuencia de nucleótidos determina la secuencia de aminoácidos de la proteína; a su vez, la secuencia del ARNm proviene de la transcripción de un gen del ADN. El ARN de transferencia lleva los aminoácidos a los ribosomas donde se incorporan al polipéptido en crecimiento.
Centrosoma
El centrosoma es una estructura exclusiva de las células animales. El centrosoma es el equivalente de los centriolos (o centro organizador de microtúbulos (COMTs)) que están presentes solo en las células animales, constituidos por nueve grupos de microtúbulos de una proteína llamada tubulina. Alrededor de éstos se dispone radialmente un conjunto de microtúbulos llamado áster. Los centrosomas se encuentran en una zona llamada, zona de exclusión, la cual está libre de organelos u otras estructuras y que sirve para protejerlos. En las células animales también está presente la zona de exclusión solo que en su interior tiene los pares de centriolos, en cambio en las células vegetales no posee nada dentro, y ese vacio es lo que se conoce como centrosoma, este cumple las mismas funciones que los centriolos.
Funciones
Sus funciones están relacionadas con la motilidad celular y con la organización del citoesqueleto. Durante la división celular los centrosomas se dirigen a polos opuestos de la célula vegetal, organizando el huso acromático (o mitótico). En el periodo de anafase los microtúbulos del áster estiran la célula y contribuyen a la separación de los cromosomas a cromátidas y a la división del citoplasma.
Autor:
Wilmer León
Página anterior | Volver al principio del trabajo | Página siguiente |