Umbral óptimo
Umbral óptimo Si suponemos distribución gaussiana e iguales varianzas se puede obtener una expresión del umbral óptimo de la forma:
Segmentación de regiones Dividir la escena en n subregiones conexas tal que:
Regiones Las últimas 2 condiciones indican que la región cumple una propiedad y que los pixels de 2 regiones son distintas en el sentido de esa propiedad, que define la segmentación.
Regiones Estructura piramidal (quizas los pixels) Un cirterio de aproximación Unir regiones adyacentes si la aproximación es similar Dividir regiones con error de aproximación grande. Subir y bajar en la pirámide buscando bajar la norma de la aproximación. Ojo: relación de la altura en la pirámde con la escala.
Grafo de Adyacencia (RAG) Cada región un nodo, con sus propiedades. Los arcos representan las relaciones entre regiones con una distancia asociada. Se define el RAG. Unir las regiones (nodos) más cercanas si la distancia es menor a un umbral. Recalcular el RAG Volver a 2 hasta que no se puedan unir.
ejemplos En segmenta.pdf
Un modelo general de segmentación Morel y Solimini en “Variational Methods in Image Segmentation” proponen que todos los algoritmos de segmentación corresponden a un mismo modelo general: minimizar una “energía de segmentación”, esencialmente el funcional de Mumford y Shah
Energía de segmentación
En el dominio sin los bordes: Regularidad: aproximación por “trozos”. Similitud: con la imagen original En los bordes: Bordes regulares: El conjunto de discontinuidad de “longitud” mínima. Minimizar la energía.
Introducir información a priori? A veces se conoce “algo”. Cuidado con “ver lo que se quiere ver”… Buscamos objetos de forma conocida. Sabemos que hay ciertas clases. Buscamos bordes con ciertas características.
Información global/local En ocasiones la información debe ser detectada utilizando un operador global: toda la imagen aporta a la detección. La Transformada Hough es un ejemplo de operador global.
Transformada Hough. Obtener el campo de gradientes de la imagen. Crear un espacio de acumulación en función de los parámetros de la función que se busca. Los máximos en el espacio de acumulación señalan la existencia de los objetos buscados.
Transformada Hough. Líneas. Una línea es definida como: La transformada Hough de esa línea es un punto en el plano . Discretizamos el espacio y para cada punto de la imagen calculamos su representación en el plano . Los máximos locales en son líneas.
Transformada Hough. Líneas. s s y x
Transformada Hough Círculos 3 parámetros: 2 para el centro + radio Elipses
5 parámetros: centro, orientación, ejes mayor y menor. Ballard: Transformada de Hough generalizada.
Transformada de Hough Se trata de una forma de “Pattern Matching” Se transforma un una búsqueda global en una local en el espacio de parámetros. Problemas: discretización en el espacio de los parámetros. Discretizar usando información de dirección en el borde?
Ejemplos Transf. de Hough Pardo
Maximo a Posteriori En pardo hay ejemplos
Evolución de frentes Segmentar con cierta información a priori: Curvas cerradas, de espesor 1, contínuas, “más o menos regulares” Hacer evolucionar un frente de modo que minimice la funcional de Mumford-Shah u otra “energía de segmentación”:
Evolución de frentes Consideremos un frente (curva en 2D, superficie en 3D, hipersuperficie), que separa 2 regiones y que se mueve según una velocidad dada: La idea es seguir el frente cuando evoluciona en el tiempo e introducir en F “lo que buscamos”
Evolución de frentes En el caso de una curva plana. Podemos descomponer F en sus dos componentes:
La componente tangencial no cambia la geometría de la curva. Nos interesa la componente normal. Siempre podemos parametrizar la curva para que la componente tangencial sea nula.
Evolución de frentes Trabajamos entonces con una velocidad:
Donde: L:propiedades locales del frente (Ej: k) G:propiedades globales del frente (Ej: forma) I: propiedades independientes del frente. Por ejemplo asociadas a la imagen!
Ejemplo La evolución de una curva según la curvatura local en la dirección normal la regulariza, va aun círculo, a un punto y desaparece.
Página anterior | Volver al principio del trabajo | Página siguiente |