Descargar

Teoría sobre la morfología de Atlas (uno de los satélites de Saturno)


Partes: 1, 2

    edu.red

    1 Teoría sobre la morfología de Atlas (uno de los satélites de Saturno) Enrique Ordaz Romay1 Facultad de Ciencias Físicas, Universidad Complutense de Madrid Agosto 2007 Versión en castellano del artículo: http://xxx.lanl.gov/PS_cache/arxiv/pdf/0708/0708.1678v1.pdf Abstract El 12 de junio de 2007 la sonda Cassini envió las imágenes de un pequeño satélite de Saturno llamado Atlas que se sitúa entre el anillo A y el pequeño anillo R/2004 S 1. Estas imágenes han mostrado que la morfología de Atlas es muy diferente a las de otros satélites de dimensiones similares. En el presente artículo se propone una teoría plausible, a la que denominamos “duna voladora”, que explica sus características morfológicas a partir de sus magnitudes como masa, diámetros y radio orbital, así como por su posición orbital y la interpretación de las imágenes captadas por la sonda Cassini. [email protected] -1-

    edu.red

    Introducción. En 1980 la sonda Voyager 1 sobrevoló Saturno enviando fotografías del planeta, sus anillos y satélites. Richard J. Terrile, en octubre de 1980 descubrió en estas fotografías una nueva luna que orbitaba ligeramente exterior al anillo A, a la que llamó provisionalmente 1980 S28 [1]. Más adelante se le pondría el nombre definitivo de Atlas [2] (ver imagen 1). Imagen1. Fotografía obtenida por la sonda Voyager 1 el 12 de noviembre de 1980. (Credit: NASA, JPL, SSI) Imagen 2. Fotografía obtenida por la sonda Cassini el 8 de junio de 2005. (Credit: NASA, JPL, SSI) -2-

    edu.red

    El 8 de junio de 2005 la sonda Cassini se acercó a Atlas a una distancia de 428.551 km obteniendo distintas fotografías [3] que mostraban un satélite con una fuerte simetría en su eje polar (ver imagen 2). Una ampliación de esta fotografía del 2005 nos revela que la morfología del satélite tiene forma de disco (ver imagen 3). Imagen 3. Atlas visto en una ampliación de la fotografía del 8 de junio de 2005.(Credit: NASA, JPL, SSI) Imagen 4. Atlas visto por Cassini el 12 de junio de 2007. (Credit: NASA, JPL, SSI) -3-

    edu.red

    El 12 de junio de 2007 Cassini obtiene una serie de imágenes de mejor resolución de Atlas vista desde el plano polar (ver imagen 4). Diferencias morfológicas de Atlas

    respecto de otros satélites pequeños. Si comparamos las imagenes de Atlas del 8 de octubre de 2005 y 12 de junio de 2007 con las imágenes que tenemos de otros satélites “pequeños” de Saturno, encontramos varias notables diferencias (ver imagen 5) Imagen 5. Prometheus, Pandora y Epimeteo. Satélites de Saturno de órbitas cercanas y tamaños ligeramente superiores a los de Atlas. Incluso los pequeños satélites de otros planetas del sistema solar resultan ser también muy distintos (ver imágenes 6 y 7). Imagen 6. Amaltea y Thebe. Satélites de Júpiter. -4-

    edu.red

    • • • Imagen 7. Phobos y Deimos. Satélites de Marte.

    Se aprecia que las diferencias entre Atlas y otros satélites del sistema solar – como Prometheus, Pandora y Epimeteo (satélites de Saturno) de órbitas cercanas y tamaños ligeramente superiores, o Amaltea y Thebe (satélites de Júpiter) también de parámetros muy similares o Phobos y Deimos (satélites de Marte) cuyas masas son menores que las de Atlas – son las siguientes:

    Todos los satélites son irregulares mientras que la forma de Atlas tiene un eje de simetría central perpendicular al plano de rotación y del anillo de Saturno.

    El resto de satélites muestran marcas de cráteres de las que carece Atlas.

    Las superficies de los demás satélites asemejan rocas de aspecto áspero, mientras que la superficie de Atlas parece pulida.

    El límite de Roche.

    El “límite de Roche” [4] es la distancia a la cual un satélite cuya estructura se mantiene cohesionada únicamente por su propia gravedad comienza a disgregarse debido a que las fuerzas de marea gravitatoria del planeta al que orbita y a la fuerza centrípeta de su rotación son mayores que su fuerza gravitatoria de cohesión.

    -5-

    edu.red

    • • • • d = ? • • • • Existen dos ecuaciones distintas para calcular este límite según el satélite sea rígido o deformable. La diferencia entre ambas ecuaciones depende solo de un parámetro que notaremos por la letra d. De esta forma la ecuación tiene la forma: d ˜ d ·R· 3 2 ? M ? m (1) Siendo: d = Límite de Roche R = Radio del planeta ?M = Densidad del planeta ?m = Densidad del satélite. ? 1,260 para un satélite sólido ?2,423 para un satélite deformable

    Nuestro objetivo será conocer cual es el valor del limite de Roche para el satélite Atlas tanto si consideramos que se trata de un satélite rígido o de uno deformable. Para ello deberemos conocer el valor de la masa del satélite.

    El problema de la masa de Atlas.

    Cuando buscamos en las páginas web de la JPL.NASA los datos sobre las características de Atlas encontramos que, el valor de la masa tiene diversos valores según en que parte de la web lo consultemos:

    En “sse.jlp.nasa,gov” [2] el valor de la masa es 8 · 1017 kg

    El dato de “saturn.jpl.nasa.gov”[3] para la masa es de 2·1015 kg

    Por otra parte, en “nssdc.gsfc.nasa.gov”[5], aunque ofreciendo un valor para la masa de 2·1015 kg, asigna una densidad de 500 kg/m3. Dando unas dimensiones radiales de 18.5 × 17.2 × 13.5 km (que llamamos a, b y c respectivamente). Con estos dos datos la masa resultante para Atlas sería cercana a 9·1015 kg.

    -6-

    edu.red

    • • • • Por último, del estudio realizado en 2006 por Spitale, J. N.; Jacobson, R. A.; Porco, C. C.; Owen, W. M., Jr. [6] se deduce que G·mAtlas = (0.44± 0.04)×

    Partes: 1, 2
    Página siguiente