Descargar

Gráficas de control de la calidad empleando Excel y Winstats


    1) INTRODUCCIÓN

    Tanto la administración de calidad como la administración Seis Sigma utilizan una gran colección de herramientas estadísticas. Una herramienta ampliamente utilizada en cada enfoque al analizar el proceso de recolección secuencial de datos a lo largo del tiempo es la gráfica de control.

    Las gráficas de control permiten monitorear la variación en una característica del producto o servicio a lo largo del tiempo. Las gráficas de control se utilizan para estudiar el desempeño pasado, para evaluar las condiciones presentes, o para predecir los resultados futuros. La información obtenida al analizar una gráfica de control constituye la base para el proceso de mejoramiento. Los diferentes tipos de gráficas de control nos permiten analizar diferentes tipos de variables críticas para la calidad (CPC): variables categóricas como la proporción de habitaciones de hotel no aceptables en términos de disponibilidad de comodidades y el correcto funcionamiento de todos los electrodomésticos en la habitación; variables discretas como el número de huéspedes que registraron alguna queja durante la semana; y variables continuas como el tiempo requerido para entregar el equipaje en la habitación. Además de proporcionar una exhibición visual de los datos que representan un proceso, la gráfica de control hace énfasis principalmente en separar las causas especiales de las causas comunes de la variación.

    Las causas especiales de variación representan grandes fluctuaciones o patrones en los datos que no son inherentes al proceso. Estas fluctuaciones a menudo son causadas por cambios en el proceso que representan problemas para corregir u oportunidades para aprovechar. Algunas organizaciones se refieren a las causas especiales de variación como causas asignables de variación.

    Las causas comunes de variación representan la variabilidad inherente que existe en un proceso. Estas fluctuaciones consisten en numerosas pequeñas causas de variabilidad que operan aleatoriamente o por casualidad, Algunas organizaciones se refieren a las causas comunes de variabilidad como causas aleatorias de variación.

    La distinción entre las dos causas de variación es crucial porque las causas especiales de variación no forman parte de un proceso y son corregibles o explotables sin cambiar el sistema. Sin embargo, las causas comunes de variación se reducen tan sólo cambiando el sistema. Estos cambios sistémicos son responsabilidad de la administración.

    Las gráficas de control nos permiten monitorear un proceso e identificar la presencia o ausencia de causas especiales. Al hacerlo así, las gráficas de control nos ayudan a prevenir dos tipos de errores. El primer tipo de error implica la creencia de que un valor observado representa una causa especial de variación cuando en realidad se debe a una causa común de variación del sistema. Tratar una causa común de variación como si fuera una causa especial de variación a menudo tiene como consecuencia el sobreajuste de un proceso. Este sobreajuste, conocido como manipulación, incrementa la variación del proceso. El segundo tipo de error implica tratar una causa especial de variación como si fuera una causa común de variación. Este error es el resultado de no tomar una acción correctiva inmediata cuando es necesario. Aunque ambos tipos de errores pueden ocurrir aun cuando usemos una gráfica de control, es menos probable que suceda.

    Para construir una gráfica de control, se recolectan muestras de las salidas de un proceso a lo largo del tiempo. Las muestras utilizadas para construir gráficas de control se conocen como subgrupos. Para cada subgrupo (es decir, muestra), se calcula el valor de un estadístico asociado con una variable CPC. Los estadísticos utilizados comúnmente incluyen la fracción disconforme y la media y el rango de una variable numérica. Entonces se grafican los valores contra el tiempo y se agregan los límites de control a la gráfica. La forma más común de gráfica de control establece límites de control que están dentro de ±3 desviaciones estándar de la medida estadística de interés. La ecuación media del proceso ± 3 desviaciones estándar define, en general, los límites de control superior e inferior para las gráficas de control.

    Construcción de límites de control

    Media del proceso ±3 desviaciones estándar .Por lo que el Límite de control superior (LCS) = media del proceso +3 desviaciones estándar

    Límite de control inferior (LIC) = media del proceso -3 desviaciones estándar

    edu.red

    Cuando se establecen estos límites de control, se evalúa la gráfica de control tratando de encontrar un patrón que pudiera existir en los valores a lo largo del tiempo y determinando si algunos puntos caen fuera de los límites de control. Las siguientes figuras ilustran tres diferentes situaciones.

    En el panel A, no existe un patrón aparente de los valores a lo largo del tiempo y no hay puntos que caigan fuera del límite de control de 3 desviaciones estándar. El proceso parece estable y contiene sólo causas comunes de variación. El panel B, por el contrario, contiene dos puntos que caen fuera de los límites de control de las 3 desviaciones estándar. Se deben investigar estos puntos para tratar de determinar las causas especiales que llevan a su ocurrencia. Aunque el panel C no tiene ningún punto fuera de los límites de control, tiene una serie de puntos consecutivos por arriba del valor promedio (la línea central), así como una serie de puntos consecutivos por debajo del valor promedio. Además, se observa claramente una tendencia global descendente. Se debe investigar esta situación para tratar de determinar qué podría haber causado ese patrón.

    Detectar una tendencia no es siempre tan obvio. Hay otras dos reglas simples que nos permiten detectar un cambio en el nivel medio de un proceso:

    – Ocho o más puntos consecutivos que caen por arriba de la línea central u ocho o más puntos consecutivos que caen por debajo de la línea central.

    – Ocho o más puntos consecutivos se mueven hacia arriba en valor u ocho o más puntos consecutivos se mueven hacia abajo en valor.

    Se dice que un proceso cuya gráfica de control indica una condición fuera de control (un punto fuera de los límites de control o la exhibición de una tendencia) está fuera de control. Un proceso fuera de control contiene tanto causas comunes de variación como causas especiales de variación. Puesto que las causas especiales de variación no forman parte del diseño del proceso, un proceso fuera de control es impredecible. Una vez que se determina que un proceso está fuera de control, se deben identificar las causas especiales de variación que están provocando las condiciones fuera de control. Si las causas especiales actúan en detrimento de la calidad del producto o servicio, se requiere elaborar planes para eliminar esta fuente de variación. Cuando una causa especial incrementa la calidad, se debería cambiar el proceso para que la causa especial se incorpore dentro del diseño del proceso. Por lo tanto, esta causa especial benéfica se vuelve una causa común fuente de variación y el proceso se mejora.

    Se dice que un proceso cuya gráfica de control no indica condiciones fuera de control está bajo control. Un proceso bajo control contiene únicamente causas comunes de variación. Puesto que estas fuentes de variación son inherentes al proceso en sí mismo, un proceso bajo control es predecible. En ocasiones se dice que los procesos bajo control están en un estado de control estadístico. Cuando un proceso se encuentra bajo control, usted debe determinar si la cantidad de causa común de variación en el proceso es lo suficientemente pequeña como para satisfacer a los usuarios de los productos o servicios. Si la causa común de variación es lo suficientemente pequeña como para satisfacer al cliente, entonces se utiliza la gráfica de control para monitorear el proceso sobre una base continua para asegurarse de que el proceso permanece bajo control. Si la causa común de variación es demasiado grande, se requiere alterar el proceso en sí mismo.

    2) GRÁFICAS DE CONTROL PARA VARIABLES

    Estas gráficas de control ayudan a la detección de la variación de causa asignable (variación en el producto o proceso de producción que señala que el proceso está fuera de control y que se requieren medidas correctivas)

    EL PRESENTE TEXTO ES SOLO UNA SELECCION DEL TRABAJO ORIGINAL. PARA CONSULTAR LA MONOGRAFIA COMPLETA SELECCIONAR LA OPCION DESCARGAR DEL MENU SUPERIOR.