Conclusiones
La combinación de los diferentes tipos de sentidos y la agudeza de los mismos les ha permitido a los elasmobranquios adaptarse perfectamente a la vida en el mar. La ecología sensorial de estos organismos es muy compleja, y dependiendo de la especie y las condiciones del ambiente pueden utilizar uno o varios sentidos para monitorear el ambiente, detectar a sus presas y congéneres o ubicarse espacialmente.
Muchos de los sistemas presentes en los mal llamados "animales superiores", tuvieron origen hace cuatrocientos millones de años con la aparición del primer condrictio y durante este tiempo han permanecido casi inmutables; la mayoría de sentidos, órganos y estructuras relacionadas con los sentidos en los elasmobranquios son muy similares a las presentes en otros grupos taxonómicos, por lo que pueden ser puntos de comparación para establecer la filogenia de múltiples especies, o para comprender el funcionamiento básico de éstos sistemas en otros organismos incluidos los humanos.
El rango al que cada unidad sensorial opera depende de la especialidad del órgano responsable, la sensibilidad del sistema, las características del estímulo y las condiciones físicas del ambiente en que desarrolle la precepción. La orientación y el comportamiento de estos animales puede ser influenciada por estímulos comunes a su historia de vida, algunos de los cuales pueden ser reproducidos en condiciones controladas y de laboratorio, y en algunas ocasiones por estímulos sintéticos e introducidos por el hombre dentro del hábitat de estos animales.
Aunque los elasmobranquios fueron objeto de muchos estudios, la mayoría se desarrollaron hasta comienzos del siglo pasado y eran principalmente de índole descriptiva; en la época de mayor avance en la ciencia estos organismos fueron reemplazados por animales que presentaban ventajas económicas, facilidades de manejo, obtención y mantenimiento por parte de los investigadores por lo que son muy pocos los estudios de fondo realizados en estos animales.
Los avances en materia de investigación, conservación y bioética que existen en la actualidad nos abren las puertas para retomar la investigación en este grupo taxonómico, estudios que nos permitirán entender nuestro propio funcionamiento, nos ayudarán en la comprensión y posiblemente la cura de enfermedades humanas, y más importante aún, nos darán luces para el cuidado y protección de estos organismos encargados de mantener el delicado equilibrio en nuestro planeta.
Bibliografía
Andres, K. H. 1970. Anatomy and ultrastructure of the olfactory bulb in fish, amphibia, reptiles, birds and mammals, in Taste and Smell in Vertebrates. G.E.W. Wolstenhome and J. Knight, Eds., Ciba Foundation Symposium/J. and A. Churchill, London, 177-196.
Aronson, L.R. 1963. The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms, in Sharks and Survival. P.W. Gilbert, Ed., D.C. Heath, Boston, 165-241.
Barry, M.A. 1987. Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J. Comp. Neurol. 266:457-477.
Barry, M.A. and M.V.L. Bennett. 1989. Specialized lateral line receptor systems in elasmobranchs: the spiracular organs and vesicles of Savi, in The Mechanosensory Lateral Line: Neurobiology and Evolution. S. Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag, New York, 591-606.
Barry, M.A., D.H. Hall, and M.V.L. Bennett. 1988a. The elasmobranch spiracular organ I. Morphological studies. J. Comp. Physiol. A 163:85-92.
Barry, M.A., D.H. Hall, and M.V.L. Bennett. 1988b. The elasmobranch spiracular organ II. Physiological studies. J. Comp. Physiol. A 163:93-98.
Bennett, M.V.L. 1971. Electroreception, in Fish Physiology. Vol. 5. W.S. Hoar and D.J. Randall, Eds., Academic Press, New York, 493-574.
Bleckmann, H. and T.H. Bullock. 1989. Central nervous physiology of the lateral line, with special reference to cartilaginous fishes, in The Mechanosensory Lateral Line: Neurobiology and Evolution. S. Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag, New York, 387-408.
Bleckmann, H., O. Weiss, and T.H. Bullock. 1989. Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J. Comp. Physiol. A 164:459-474.
Bleckmann, H., T.H. Bullock, and J.M. Jorgensen. 1987. The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J. Comp. Physiol. A 161:67-84.
Blonder, B.I. and W.S. Alevizon. 1988. Prey discrimination and electroreception in the stingray Dasyatis sabina. Copeia 1988:33-36.
Bodznick, D. 1991. Elasmobranch vision: multimodal integration in the brain. J. Exp. Zool. Suppl. 5:108-116.
Bodznick, D. and A.W. Schmidt. 1984. Somatotopy within the medullary electrosensory nucleus of the skate, Raja erinacea. J. Comp. Neurol. 225:581-590.
Bodznick, D. and R.G. Northcutt. 1980. Segregation of electro- and mechanoreceptive inputs to the elasmobranch medulla. Brain Res. 195:313-321.
Bodznick, D. and R.G. Northcutt. 1984. An electrosensory area in the telencephalon of the little skate, Raja erinacea. Brain Res. 298:117-124.
Bodznick, D. and R.L. Boord. 1986. Electroreception in Chondrichthyes, in Electroreception. T.H. Bullock and W. Heiligenberg, Eds., John Wiley & Sons, New York, 225-256.
Boord, R.L. and C.B.G. Campbell. 1977. Structural and functional organization of the lateral line system of sharks. Am. Zool. 17:431-441.
Boord, R.L. and J.C. Montgomery. 1989. Central mechanosensory lateral line centers and pathways among the elasmobranchs, in The Mechanosensory Lateral Line: Neurobiology and Evolution. S. Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag, New York, 323-340.
Boord, R.L. and R.G. Northcutt. 1982. Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria. J. Comp. Neurol. 207:274-282.
Broun, G.R., O.B. Il"inskii, and B.V. Krylov. 1979. Responses of the ampullae of Lorenzini in a uniform electric field. Neurophysiology 11:118-124.
Brown, B.R. 2003. Sensing temperature with ion channels. Nature 421:495.
Budker, P. 1958. Les organes sensoriels cutanes des selaciens, in Traité de Zoologie. Vol. 15, Library de l"Academie de Medicine. Masson et Cie, Paris, 1033-1062.
Bullock, T.H. 1979. Processing of ampullary input in the brain: comparisons of sensitivity and evoked responses among siluroids and elasmobranchs. J. Physiol. (Paris) 75:315-317.
Chu, Y.T. and M.C. Wen. 1979. A study of the lateral-line canal system and that of Lorenzini ampullae and tubules of elasmobranchiate fishes of China. Monograph of Fishes of China. Academic Press, Shanghai.
Coombs, S. and J.C. Montgomery. 1999. The enigmatic lateral line system, in Comparative Hearing: Fish and Amphibians. R.R. Fay and A.N. Popper, Eds., Springer-Verlag, New York, 319-362.
Corwin, J.T. and R.G. Northcutt. 1982. Auditory centers in the elasmobranch brain stem: deoxyglucose autoradiography and evoked potential recording. Brain Res. 236:261-273.
Daniel, J.F. 1928. The Elasmobranch Fishes. University of California Press, Berkeley.
Denton, E.J. and J.A.B. Gray. 1983. Mechanical factors in the excitation of clupeid lateral lines. Proc. R. Soc. Lond. B 218:1-26.
Denton, E.J. and J.A.B. Gray. 1988. Mechanical factors in the excitation of the lateral lines of fishes, in Sensory Biology of Aquatic Animals. J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga, Eds., Springer-Verlag, New York, 595-617.
Denton, E.J. and J.A.C. Nicol. 1964. The chorioidal tapeta of some cartilaginous fishes (Chondrichthyes). J. Mar. Biol. Assoc. U.K. 44:219-258.
Dijkgraaf, S. and A.J. Kalmijn. 1962. Verhaltensversuche zur Funktion der Lorenzinischen Ampullen. Naturwissenschaften 49:400.
Dotterweich, H. 1932. Bau und Funktion der Lorenzinischen Ampullen. Zool. Jahrb. Abt. 3. 50:347-418.
Dowling, J.E. and H. Ripps. 1991. On the duplex nature of the skate retina. J. Exp. Zool. Suppl. 5:55-65.
Doyle, J. 1963. The acid mucopolysaccharides in the glands of Lorenzini of elasmobranch fish. Biochem. J. 88:7.
Dryer, L. and P.P.C. Graziadei. 1993. A pilot study on morphological compartmentalization and heterogeneity in the elasmobranch olfactory bulb. Anat. Embryol. 188:41-51.
Dryer, L. and P.P.C. Graziadei. 1994. Mitral cell dendrites: a comparative approach. Anat. Embryol. 189:91-106.
Dryer, L. and P.P.C. Graziadei. 1996. Synaptology of the olfactory bulb of an elasmobranch fish, Sphyrna tiburo. Anat. Embryol. 193:101-114.
Ewart, J.C. and H.C. Mitchell. 1892. On the lateral sense organs of elasmobranchs. II. The sensory canals of the common skate (Raja batis). Trans. R. Soc. Edinb. 37: 87-105.
Fiebig, E. 1988. Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): a study with WGA-HRP and extracellular granule cell recording. J. Comp. Neurol. 268:567-583.
Franceschini, V. and F. Ciani. 1993. Lectin binding to the olfactory system in a shark, Scyliorhinus canicula. Fol. Histochem. Cytobiol. 31:133-137.
Fraser, P.J. and R.L. Shelmerdine. 2002. Dogfish hair cells sense hydrostatic pressure. Nature 415:495-496.
Gilbert, P.W. 1963. The visual apparatus of sharks, in Sharks and Survival. P.W. Gilbert, Ed., D.C. Heath, Boston, 283-326.
Graeber, R.C. and S.O.E. Ebbesson. 1972. Retinal projections in the lemon shark (Negaprion brevirostris). Brain Behav. Evol. 5:461-477.
Gruber, S.H. and J.L. Cohen. 1978. Visual system of the elasmobranchs: state of the art 1960-1975, in Sensory Biology of Sharks, Skates, and Rays. E.S. Hodgson and R.F. Mathewson, Eds., U.S. Office of Naval Research, Arlington, VA, 11-105.
Gruber, S.H., D.I. Hamasaki, and C.D.B. Bridges. 1963. Cones in the retina of the lemon shark (Negaprion brevirostris). Vision Res. 3:397-399.
Harris, A.J. 1965. Eye movements of the dogfish Squalus acanthias L. J. Exp. Biol. 43:107-130.
Hassan, E.S. 1989. Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish, Anoptichthys jordani, in The Mechanosensory Lateral Line: Neurobiology and Evolution. S. Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag, New York, 217-227.
Hensel, H. 1955. Quantitative Beziehungen zwischen Temperaturreiz und Aktionspotentialen der Lorenzinischen Ampullen. Z. Vergl. Physiol. 37:509-526.
Herrick, C.J. 1924. Neurological Foundations of Animal Behavior. Henry Holt and Company; reprint edition 1965 by Hafner, New York.
Heupel, M.R., C.A. Simpfendorfer, and R.E. Hueter. 2003. Running before the storm: sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. J. Fish Biol. 63:1357-1363.
Hodgson, E.S. and R.F. Mathewson. 1978b. Electrophysiological studies of chemoreception in elasmobranchs, in Sensory Biology of Sharks, Skates, and Rays. E.S. Hodgson and R.F. Mathewson, Eds., U.S. Office of Naval Research, Arlington, VA, 227-267.
Howes, G.B. 1883. The presence of a tympanum in the genus Raja. J. Anat. Physiol. 17:188-191.
Hueter, R.E. 1991. Adaptations for spatial vision in sharks. J. Exp. Zool. Suppl. 5:130-141.
Johnson, R.H. and D.R. Nelson. 1978. Copulation and possible olfaction-mediated pair formation in two species of carcharhinid sharks. Copeia 1978:539-542.
Johnson, S.E. 1917. Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthias). J. Comp. Neurol. 28:1-74.
Kalmijn, A.J. 1971. The electric sense of sharks and rays. J. Exp. Biol. 55:371-383.
Kalmijn, A.J. 1974. The detection of electric fields from inanimate and animate sources other than electric organs, in Handbook of Sensory Physiology. Vol. 3. A. Fessard, Ed., Springer, Berlin, 147-200.
Kalmijn, A.J. 1981. Biophysics of geomagnetic field detection. IEEE Trans. Magn. MAG-17:1113-1124.
Kalmijn, A.J. 1982. Electric and magnetic field detection in elasmobranch fishes. Science 218:916-918.
Kalmijn, A.J. 1984. Theory of electromagnetic orientation: a further analysis, in Comparative Physiology ofnSensory Systems. L. Bolis, R.D. Keynes, and S.H.P. Madrell, Eds., Cambridge University Press, Cambridge, U.K., 525-560.
Kalmijn, A.J. 1988b. Detection of weak electric fields, in Sensory Biology of Aquatic Animals. J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga, Eds., Springer-Verlag, New York, 151-186.
Kalmijn, A.J. 1989. Functional evolution of lateral line and inner ear sensory systems, in The Mechanosensory Lateral Line: Neurobiology and Evolution. S. Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag, New York, 187-215.
Kalmijn, A.J. 2000. Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes. Philos. Trans. R. Soc. Lond. 355:1135-1141.
Kantner, M., W.F. Konig, and W. Reinbach. 1962. Bau und Innervation der Lorenzinischen Ampullen und deren Bedeutung als niederes Sinnesorgan. Z. Zellforsch. 57:124-135.
Koester, D.M. 1983. Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria. J. Comp. Neurol. 221:199-215.
Kroese, A.B. and N.A.M. Schellart. 1992. Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophysiol. 68:2212-2221.
Loewenstein, W.R. and N. Ishiko. 1962. Sodium chloride sensitivity and electrochemical effects in a Lorenzinian ampulla. Nature 194:292-294.
Long, D.J., K.D. Hanni, P. Pyle, J. Roletto, R.E. Jones, and R. Bandar. 1996. White shark predation on four pinniped species in central California waters: geographic and temporal patterns inferred from wounded carcasses, in Great White Sharks: The Biology of Carcharodon carcharias. A.P. Klimley and D.G. Ainley, Eds., Academic Press, San Diego, 263-274.
Lorenzini, S. 1678. Osservazioni intorno alle Torpedini, Vol. 1. Florence. 136 pp.
Maisey, J.G. 2001. Remarks on the inner ear of elasmobranchs and its interpretation from skeletal labyrinth morphology. J. Morphol. 250:236-264.
Maruska, K.P. 2001. Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. Environ. Biol. Fishes 60:47-75.
Maruska, K.P. and T.C. Tricas. 1998. Morphology of the mechanosensory lateral line system in the Atlantic stingray, Dasyatis sabina: the mechanotactile hypothesis. J. Morphol. 238:1-22.
Montgomery, J.C. 1984. Frequency response characteristics of primary and secondary neurons in the electrosensory system of the thornback ray. Comp. Biochem. Physiol. 79A:189-195.
Montgomery, J.C., S. Coombs, and M. Halstead. 1995. Biology of the mechanosensory lateral line in fishes. Rev. Fish Biol. Fish. 5:399-416.
Münz, H. 1989. Functional organization of the lateral line periphery, in The Mechanosensory Lateral Line: Neurobiology and Evolution. S. Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag, New York, 285-297.
Murphy, C.J. and H.C. Howland. 1991. The functional significance of crescent-shaped pupils and multiple pupillary apertures. J. Exp. Zool. Suppl. 5:22-28.
Murray, R.W. 1960b. Electrical sensitivity of the ampullae of Lorenzini. Nature 187:957.
Murray, R.W. and T.W. Potts. 1961. The composition of the endolymph and other fluids of elasmobranchs. Comp. Biochem. Physiol. 2:65-75.
New, J.G. 1990. Medullary electrosensory processing in the little skate. I. Response characteristics of neurons in the dorsal octavolateralis nucleus. J. Comp. Physiol. 167A:285-294.
Nickel, E. and S. Fuchs. 1974. Organization and ultrastructure of mechanoreceptors (Savi vesicles) in the elasmobranch Torpedo. J. Neurocytol. 3:161-177.
Norris, H.W. 1929. The distribution and innervation of the ampullae of Lorenzini of the dogfish, Squalus acanthias: some comparisons with conditions in other plagiostomes and corrections of prevalent errors. J. Comp. Neurol. 47:449-465.
Norris, H.W. 1932. The laterosensory system of Torpedo marmorata, innervation and morphology. J. Comp. Neurol. 56:169-178.
Norris, H.W. and S.P. Hughes. 1920. The cranial, occipital, and anterior spinal nerves of the dogfish, Squalus acanthias. J. Comp. Neurol. 31:293-402.
Northcutt, R.G. 1978. Brain organization in the cartilaginous fishes, in Sensory Biology of Sharks, Skates, and Rays. E.S. Hodgson and R.F. Mathewson, Eds., U.S. Office of Naval Research, Arlington, VA, 117-193.
Northcutt, R.G. 1979. Retinofugal pathways in fetal and adult spiny dogfish, Squalus acanthias. Brain Res. 162:219-230.
Northcutt, R.G. 1989. The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines, in The Mechanosensory Lateral Line: Neurobiology and Evolution. S. Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag, New York, 17-78.
Northcutt, R.G. 1991. Visual pathways in elasmobranchs: organization and phylogenetic implications. J. Exp. Zool. Suppl. 5:97-107.
Pals, N., P. Valentijn, and D. Verwey. 1982b. Orientation reactions of the dogfish, Scyliorhinus canicula, to local electric fields. Neth. J. Zool. 32:495-512.
Parker, G.H. 1909. The influence of eyes and ears and other allied sense organs on the movement of Mustelus canis. Bull. U.S. Bureau Fisheries 29:43-58.
Parker, G.H. 1914. The directive influence of the sense of smell in the dogfish. Bull. U.S. Bur. Fisheries 33:61-68.
Parker, G.H. and R.E. Sheldon. 1913. The sense of smell in fishes. Bull. U.S. Bur. Fisheries 32:33-46.
Paulin, M.G. 1995. Electroreception and the compass sense of sharks. J. Theor. Biol. 174:325-339.
Peach, M.B. and N.J. Marshall. 2000. The pit organs of elasmobranchs: a review. Philos. Trans. R. Soc. Lond. B 355:1131-1134.
Platt, C.J., T.H. Bullock, G. Czéh, N. Kova?cevic, D.J. Konjevi´c, and M. Gojkovi´c. 1974. Comparison of electroreceptor, mechanoreceptor, and optic evoked potentials in the brain of some rays and sharks. J. Comp. Physiol. 95:323-355.
Puzdrowski, R.L. and R.B. Leonard. 1993. The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves. J. Comp. Neurol. 332:21-37.
Rasmussen, L.E.L. and M.J. Schmidt. 1992. Are sharks chemically aware of crocodiles? in Chemical Signals in Vertebrates, Vol. IV. R.L. Doty and D. Müller-Schwarze, Eds., Plenum Press, New York, 335-342.
Reese, T.S. and W.M. Brightman. 1970. Olfactory surface and central olfactory connections in some vertebrates, in Taste and Smell in Vertebrates. G.E.W. Wolstenhome and J. Knight, Eds., Ciba Foundation Symposium/J. and A. Churchill, London, 115-149.
Retzius, G. 1881. Das Gehörorgan der Wirbelthiere, Vol. 1. Samson and Wallin, Stockholm.
Roberts, B.L. 1978. Mechanoreceptors and the behavior of elasmobranch fishes with special reference to the acoustico-lateralis system, in Sensory Biology of Sharks, Skates, and Rays. E.S. Hodgson and R.F. Mathewson, Eds., U.S. Office of Naval Research, Arlington, VA, 331-390.
Sand, A. 1938. The function of the ampullae of Lorenzini, with some observations on the effect of temperature on sensory rhythms. Proc. R. Soc. B 125:524-553.
Savi, P. 1844. Etudes anatomiques sur le systeme nerveux et sur l"organe electrique de la Torpille, in Traité des Phenomenes Electrophysiologiques des Animaux. C. Matteucci, Ed., Chez L. Mechelsen, Paris, 272-348.
Schweitzer, J. and D.A. Lowe. 1984. Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch: evidence for two parallel electrosensory pathways. Neurosci. Lett. 44:317-322.
Sejnowski, T.J. and M.L. Yodlowski. 1982. A freeze fracture study of the skate electroreceptors. J. Neurocytol. 11:897-912.
Sheldon, R.E. 1909. The reactions of the dogfish to chemical stimuli. J. Comp. Neurol. 19:273-311.
Sheldon, R.E. 1911. The sense of smell in selachians. J. Exp. Zool. 10:51-62.
Sillman, A.J., G.A. Letsinger, S. Patel, E.R. Loew, and A.P. Klimley. 1996. Visual pigments and photoreceptors in two species of shark, Triakis semifasciata and Mustelus henlei. J. Exp. Zool. 276:1-10.
Sisneros, J.A. and T.C. Tricas. 2000. Androgen-induced changes in the response dynamics of ampullary electrosensory primary afferent neurons. J. Neurosci. 20:8586-8595.
Sisneros, J.A., T.C. Tricas, and C.A. Luer. 1998. Response properties and biological function of the skate electrosensory system during ontogeny. J. Comp. Physiol. 183A:87-99.
Smeets, W.J.A.J. 1998. Cartilaginous fishes, in The Central Nervous System of Vertebrates, Vol. 1. R. Nieuwenhuys, H.J. ten Donkelaar, and C. Nicholson, Eds., Springer, Berlin, 551-654.
Stell, W.K. and P. Witkovsky. 1973. Retinal structure in the smooth dogfish, Mustelus canis: light microscopy of photoreceptor and horizontal cells. J. Comp. Neurol. 148:33-46.
Stenonis, N. 1664. De musculis et glandulis observationum specimen cum duabus epistolis quarum una ad guil. Pisonum de anatome Rajae etc. Amstelodami.
Strong, W.R., Jr., R.C. Murphy, B.D. Bruce, and D.R. Nelson. 1992. Movements and associated observations of bait-attracted white sharks, Carcharodon carcharias: a preliminary report. Aust. J. Mar. Freshwater Res. 43:13-20.
Takami, S., C.A. Luer, and P.P.C. Graziadei. 1994. Microscopic structure of the olfactory organ of the clearnose skate, Raja eglanteria. Anat. Embryol. 190:211-230.
Tester, A.L. 1963a. Olfaction, gustation, and the common chemical sense in sharks, in Sharks and Survival. P.W Gilbert, Ed., D.C. Heath, Boston, 255-282.
Tester, A.L. 1963b. The role of olfaction in shark predation. Pac. Sci. 17:145-170.
Tester, A.L. and G.J. Nelson. 1969. Free neuromasts (pit organs) in sharks, in Sharks, Skates, and Rays. P.W. Gilbert, R.F. Mathewson, and D.P. Rall, Eds., Johns Hopkins University Press, Baltimore, 503-531.
Tester, A.L. and J.I. Kendall. 1969. Morphology of the lateralis canal system in the shark genus Carcharhinus. Pac. Sci. 23:1-16.
Tester, A.L., J.I. Kendall, and W.B. Milisen. 1972. Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pac. Sci. 26:264-274.
Theisen, B., E. Zeiske, and H. Breucker. 1986. Functional morphology of the olfactory organs in the spiny dogfish (Squalus acanthias L.) and the small-spotted catshark (Scyliorhinus canicula L.). Acta Zool. (Stockholm) 67:73-86.
Tong, S.L. and T.H. Bullock. 1982. The sensory functions of the cerebellum of the thornback ray, Platyrhinoidis triseriata. J. Comp. Physiol. 148A:399-410.
Tricas, T.C. 1982. Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum. Copeia 1982:948-952.
Tricas, T.C. 2001. The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior. Environ. Biol. Fishes 60:77-92.
Tricas, T.C. and J.E. McCosker. 1984. Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc. Calif. Acad. Sci. 43:221-238.
Tricas, T.C., S.W. Michael, and J.A. Sisneros. 1995. Electrosensory optimization to conspecific phasic signals for mating. Neurosci. Lett. 202:29-131.
Waltman, B. 1966. Electrical properties and fine structure of the ampullary canals of Lorenzini. Acta Physiol. Scand. 66(Suppl. 264):1-60.
Zeiske, E., B. Theisen, and S.H. Gruber. 1987. Functional morphology of the olfactory organ of two carcharhinid shark species. Can. J. Zool. 65:2406-2412.
Zeiske, E., J. Caprio, and S.H. Gruber. 1986. Morphological and electrophysiological studies on the olfactory organ of the lemon shark, Negaprion brevirostris (Poey), in Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes. T. Uyeno, R. Arai, T. Taniuchi, and K. Matsuura, Eds., Ichthyological Society of Japan, Tokyo, 381-391.
Zigman, S. 1991. Comparative biochemistry and biophysics of elasmobranch lenses. J. Exp. Zool. Suppl. 5:29-40.
Autor:
Diego Fernando Beltrán Villalobos
Página anterior | Volver al principio del trabajo | Página siguiente |