- Objetivos
- Rosa de cuatro hojas/pétalos
- Rosa de tres hojas/pétalos
- Rosa de ocho hojas/pétalos
- Una rosa dentro de otra
- Cardioides
- Limacones o caracoles
- Circunferencia
- Lemniscata
- La Nefroide de Freeth
- Concoides de Nicómenes
- Cisoide de Diocles
- Parábola
- Espiral
- Conclusión
- Bibliografía
- Estudiar y analizar las diferentes figuras que se forman mediante la graficación de funciones trabajando con coordenadas polares.
OBJETIVOS ESPECÍFICOS
- Apreciar las figuras que se forman con funciones en el plano polar.
- Visualizar la importancia de las coordenadas polares.
- Diferenciar las figuras de funciones formadas en coordenadas polares.
- Familiarizarse de manera global con los gráficos que resultan de determinadas funciones.
Al comenzar los estudios del Cálculo se suele trabajar de forma especial con coordenadas planas o coordenadas cartesianas, dejando de lado las coordenadas polares. Sin embargo, conforme se continúa avanzando en el estudio del Cálculo, nos damos cuenta de la necesidad de utilizar coordenadas polares para realizar ciertos cálculos y procedimientos que no podrían realizarse exitosamente con coordenadas cartesianas. No se trata de que un sistema de coordenadas sea mejor que el otro, sino que ambos son importantes pero uno servirá algunas veces y el otro servirá en otras ocasiones, dependiendo de nuestras necesidades y del trabajo que estemos realizando.
En este trabajo investigativo se presenta una buena cantidad de gráficos que nos permitirán conocer muchas de las figuras o gráficos que se forman usualmente a través de funciones en coordenadas polares. Cada uno de ellos tiene una breve explicación que consiste en describir el gráfico que resulta de la función y también se dan algunos breves detalles históricos o características que nos permiten reconocer determinado gráfico.
Para hacernos una idea general de los gráficos que se presentarán durante las páginas que veremos seguidamente, vemos ahora un listado general de los tipos de funciones que son graficados en este reporte o las figuras que resultarán:
1. Rosa
2. Cardioide
3. Limaçon o caracol
4. Circunferencia
5. Lemniscata
6. Nefroide de Freeth
7. Concoide de Nicómenes
8. Cisoide de Diocles
9. Parábola
10. Espiral
Por supuesto que existen muchísimas otras figuras que se forman a partir de las funciones en coordenadas polares, pero para este estudio se ha tratado de presentar las más importantes o comunes, a la vez que se muestra más de un ejemplo para casi todos los tipos de gráfico, de manera que resulte totalmente clara la forma que cada función tendrá al ser graficada en las coordenadas polares.
Se espera que al finalizar la lectura completa de este trabajo, se logre comprender claramente cada figura y se tenga una idea global de los tipos de gráfico que podemos desarrollar mediante funciones en coordenadas polares.
Este tipo de gráfico se conoce como Rosa de cuatro pétalos. Es fácil ver cómo se forma una figura parecida a una rosa con cuatro pétalos. La función para este gráfico es:
Presentamos ahora el gráfico llamado Rosa de tres pétalos. Analógicamente al gráfico de la rosa de cuatro pétalos, este gráfico es parecido pero tiene sólo tres hojas o pétalos en su forma gráfica. Un ejemplo es el siguiente:
El siguiente gráfico es como los dos anteriores, pero ahora con ocho hojas o pétalos, tal como lo vemos en la siguiente función graficada:
Un caso interesante y especial que se puede dar es el que se muestra en la gráfica que vemos a continuación, donde se aprecia una rosa de tres pétalos precisamente dentro de otra rosa de tres pétalos u hojas. Veamos:
A continuación se presenta el tipo de gráfico que se denomina cardioide. Para este ejemplo se presenta una cardioide simétrica con respecto al eje poplar y que apunta hacia la derecha. Podemos observar que se distingue una figura como de un corazón, razón por la cual se llama este gráfico cardioide. La función que lo ha generado es:
Habiendo visto el primer gráfico de una cardiode, se presenta otro gráfico de este tipo pero ahora apunta hacia arriba, tal como lo vemos a en el gráfico de la siguiente función:
Limaçon viene del latín limax que significa caracol. El caracol de Pascal, lo descubrió Etienne Pascal padre de Blaise Pascal en la primera mitad del siglo XVII y el nombre se lo dio Roberval en 1650 cuando la usó como ejemplo para mostrar su método para trazar tangentes. Un limaçon o las gráficas polares que generan limaçones son las funciones en coordenadas polares con la forma:
r = 1 + b cos
Ahora veamos un ejemplo concreto de un gráfico de este tipo, donde se muestra un caracol que apunta hacia la derecha y que tiene un lazo interior. La función para este gráfico es la siguiente:
Veamos otro gráfico de una función que tiene como resultado un caracol con un lazo interior pero que a diferencia del gráfico anterior, este apunta hacia abajo. Veamos:
Continuando con la gráfica de caracoles o limacones, hay otro tipo que es el caracol con hendidura o caracol con concavidad. Como podremos observar, este no tiene lazo, y está dirigido hacia la izquierda. Veamos a continuación el gráfico que resulta, el cual apunta hacia la izquierda:
Ahora se muestra un gráfico igual al anterior con la diferencia que ahora está dirigido hacia la derecha, de modo que tenemos un limaçon o caracol con hendidura o concavidad que está dirigido hacia la derecha:
Antes de terminar el tema de los limacoides o caracoles, veamos otro gráfico diferente a los otros, que es conocido como caracol convexo o caracol ovalado, el cual está apuntando hacia arriba, como lo vemos en el gráfico siguiente:
Esta nueva función nos presenta una forma conocida por todos y es precisamente la circunferencia, la cual será formada en el gráfico polar mediante la siguiente función:
Ahora veamos una nueva gráfica que resulta en una circunferencia, con la única diferencia que ahora aparece arriba del rayo inicial (o del eje x que todos conocemos), a diferencia del gráfico anterior, que la circunferencia aparecía abajo del radio inicial. La función con su gráfico es esta:
En matemáticas, una leminscata es un tipo de curva descrita por la siguiente ecuación en coordenadas polares:
La representación gráfica de esta ecuación genera una curva similar a . La curva se ha convertido en el símbolo del infinito y es ampliamente utilizada en matemáticas. El símbolo en sí mismo es, a veces, llamado lemniscata. Un ejemplo de esta función con su respectivo gráfico lo apreciamos a continuación:
Tenemos otro ejemplo de lemniscata, pero ahora aparece a lo largo del eje x o en sentido horizontal:
Finalmente se muestra un gráfico como los dos anteriores, donde aparece una lemniscata, con la única diferencia que ahora se muestra en sentido vertical. Veamos:
Esta es una curva muy reciente si hablamos relativamente a las demás. Hay curvas polares que tienen varios siglos de existir, mientras que esta que trataremos en este momento es bastante reciente, pues fue desarrollada por el matemático inglés T.J. Freeth, quien descubrió esta curva en 1879. Un ejemplo se aprecia en este gráfico:
Nicómenes nació sobre el año 280 antes de Cristo en Grecia y murió en el año 210 a.C. Se sabe muy poco de su vida pero es famoso por su "Las líneas de la Concoide". Veamos un gráfico en coordenadas polares de la concoide de Nicómenes:
Veamos un nuevo ejemplo de una concoide de Nicómenes. La gráfica anterior está hacia la derecha, mientras que la que se presenta a continuación tiene una dirección hacia arriba. Veamos:
Un tercer ejemplo de Concoide de Nocómenes lo tenemos en el gráfico que se muestra a continuación, donde su forma se ve diferente a los dos gráficos anteriores de este mismo tipo debido a que se le está restando un número uno a la función. El mismo gráfico veríamos si se le estuviera sumando uno a la función. El gráfico quedará así:
Esta es una curva muy famosa y útil en el cálculo. Fue utilizada por un griego llamado Diocles para resolver el problema de la duplicación del cubo. El gráfico aparece de esta forma:
Esta figura es muy conocida en el mundo del Cálculo. Tal como podemos generar funciones de parábolas en coordenadas cartesianas, lo podemos hacer también en coordenadas polares. Veamos el ejemplo:
Este gráfico tiene la forma de una espiral, tal como su nombre lo indica. La espiral más simple la podemos encontrar al mirar una cuerda enrollada sobre sí misma. La forma de una espiral la vemos en una serpiente enrollada por ejemplo.
El gráfico que se presenta a continuación es también conocido como Espiral de Arquímedes, precisamente en honor Arquímedes, quien fue un notable físico y matemático griego que al ser fascinado por la belleza de esta curva, realizó un estudio profundo sobre sus propiedades matemáticas en su escrito titulado Sobre las espirales, escrito en el siglo III antes de Cristo.
Para mostrar el gráfico que se forma, presentamos la siguiente función en coordenadas polares que formará la espiral polar siguiente:
Veamos ahora otra gráfica espiral conocida como espiral de Fermat, pues fue examinada por Fermat en 1936. Su ecuación es r² = a² + . En el siguiente ejemplo se muestra una función y su respectiva gráfica que nos permiten conocer la espiral de Fertat:
Un segundo gráfico espiral lo tenemos en la función que veremos ahora, que podríamos encontrarla con dos nombres refiriéndose al mismo gráfico. Ambos nombres equivalen a lo mismo como podremos apreciar . Dichos nombres con los que se conoce a esta espiral son: espiral recíproca o espiral hiperbolica. Tendremos entonces:
Otro caso que se puede dar es la espiral logarítmica, que se ilustra mediante la siguiente función y su respectivo gráfico:
Luego de haber visto todas las curvas polares presentadas a lo largo de esta investigación, podemos darnos cuenta que hay muchas figuras que se forman en las coordenadas polares que pueden ser identificadas y reconocidas por un nombre propio que las hace particulares.
El conocer las tendencias que una función determinada tiene en las coordenadas polares es una gran ayuda previa que nos facilitará la graficación de las mismas.
Aunque en la actualidad se cuenta con importantes programas de computación que hacen las gráficas con la simple acción de introducir la función que necesitamos, es totalmente necesario que como estudiantes de Ingeniería conozcamos cómo se forman y de dónde nacen matemáticamente cada una de estas figuras.
Al graficar sobre papel sin la herramienta de una calculadora graficadora y sin ningún programa que grafique funciones polares, resultará obviamente más difícil y nos llevará más tiempo el crear estas figuras gráficamente, pero si tenemos los conocimientos necesarios en cuanto a las forma de encontrar los puntos y tenemos una idea previa de las tendencias que presentará el gráfico y si es simétrico o no, seremos capaces de graficar sin complicaciones las funciones que se nos presenten y los problemas que se nos pida desarrollar.
En este trabajo se ha tratado también de presentar más de un ejemplo de cada gráfico, de manera que no estemos limitados a un solo caso, sino que veamos las diferentes formas que pueden apreciarse en cada tipo de curva polar.
Las explicaciones proporcionadas al inicio de cada gráfico sirven para describir y dar una explicación general del nombre y forma que encontraremos en cada gráfico, y en algunos casos también se da una reseña histórica del porqué del nombre del gráfico así como también de la persona que lo descubrió.
Es de esta manera que se concluye este trabajo, esperando que sea provechoso y de valor y utilidad.
Leithold, Louis. El Cálculo. Séptima Edición. Oxford University Press. ©1994
Thomas, George. Cálculo Varias Variables. Undécima Edición. Pearson Addison Wesley Educación. ©2005
Wikipedia, la enciclopedia libre.
http://es.wikipedia.org/wiki/Lemniscata
Ministerio de Educación y Ciencia. Formación del profesorado. España.
http://www.formacion.pntic.mec.es/web_espiral/matematicas/ arquimedes.htm
Sociedad Andaluza de Educación Matemática Thales.
http://thales.cica.es/rd/Recursos/rd99/ed99-0648- 02/esp_fermat.html
Jaime Oswaldo Montoya Guzmán
Fecha de finalización del documento: 20 de febrero de 2006. Nivel de estudios: segundo año en la carrera Ingeniería en Sistemas Informáticos. Centro de estudios: Universidad Católica de Occidente. Ciudad y país: Santa Ana, El Salvador.