Descargar

La correlación

Enviado por Pablo Turmero


Partes: 1, 2

    edu.red

    Correlación Decimos que dos variables, X e Y, están correlacionadas cuando hay una relación cuantitativa entre ellas. X suele ser la variable independiente e Y la dependiente (Y “depende” de X). Altura y peso de niños. Peso = f(Altura) Velocidad máxima que alcanza un coche y potencia de su motor. Velocidad = f(Potencia) Presupuesto para adquisiciones y número de libros que puede adquirir una biblioteca. Libros = f(Presupuesto) Si se hace una lista ordenando las palabras según su frecuencia de aparición en un texto extenso, se encuentra que hay una correlación entre frecuencia y posición o rango en esa lista. Frecuencia = f(Rango) =>(Ley de Zipf) La relación puede ser claramente causal o no. La potencia del motor de un coche es la causa de que alcance una mayor velocidad, así como un mayor presupuesto el que se puedan comprar más libros. (X es la “causa” de Y) En cambio, el rango de una distribución tipo Zipf no es la causa de la frecuencia; en todo caso, la frecuencia es la causa del rango. (Y es la “causa” de X) La relación altura – peso tiene parte de causalidad, pero también existen otros factores. (X y otros factores son la causa de Y) Cuando se hacen correlaciones hay que analizar bien el fenómeno para no caer en errores (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Correlaciones espúreas Hay que evitar las denominadas correlaciones espúreas o espurias, es decir, que llevan a conclusiones erróneas. Ocurren cuando dos variables, X e Y, son realmente independientes entre sí, pero dependientes ambas de una misma causa común, Z. Ejemplo de correlación espúrea: Cierto biólogo inglés publicó un estudio en el que se comprueba que en los pueblos y ciudades con más cigüeñas en los campanarios, X, nacen más niños, Y. Llegó a la conclusión de que “los niños los trae la cigüeña”. Lo cierto es que tanto el número de cigüeñas, X, como el de niños, Y, dependen de la causa común, Z, que es el tamaño del pueblo o ciudad. En las poblaciones grandes hay siempre más cigüeñas y más niños. Tanto cigüeñas como niños están correlacionados con el tamaño de la población, pero no entre ellos mismos. (Gp:) X (Gp:) Y (Gp:) Z

    (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Nubes de Puntos Sea un conjunto de pares de valores de las variables X e Y. Si los representamos en un diagrama de dispersión obtendremos una “nube de puntos” que nos dará una idea gráfica de la posible correlación entre ambas variables. (Gp:) No hay correlación (Gp:) Correlación positiva (Gp:) Correlación negativa

    X X X Y Y Y (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Algunos tipos de correlaciones Correlación lineal positiva Correlación lineal negativa Potencial Logarítmica Otros tipos Potencial Exponencial positiva Otros tipos Potencial inversa Exponencial negativa Otros tipos Modelo Lineal (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Modelos Lineales a .- Ordenada en el orígen. Punto de corte con el eje de ordenadas o “eje y”. En este punto x está en el “origen” es decir x=0 b .- Pendiente. Grado de inclinación de la recta. Si es positiva, la recta es creciente. Si es negativa es decreciente. Es el cociente entre el incremento que se produce en la variable dependiente, Y, cuando se incrementa la variable independiente, X. Los valores de “y” se calculan multiplicando “x” por la pendiente, b, y sumándole la ordenada en el origen, a y x a b y = a + bx Ecuación Explícita de la Recta (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Ejemplos de Rectas Recta creciente, ya que la pendiente es positiva La recta crece dos unidades de y por cada unidad de x, es decir b=2 Cuando x=0, y=1. La ordenada en el origen, a, vale 1 Recta decreciente, ya que la pendiente es negativa La recta decrece una unidad de y por cada unidad de x, es decir b=-1 Cuando x=0, y=4. La ordenada en el origen, a, vale 4 (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Recta de Regresión Mínimo-Cuadrática La recta de regresión es la que se obtiene a partir de la nube de puntos y es la que representa mejor la distribución de esos puntos como modelo lineal. Se suele emplear el método de los Mínimos Cuadrados, que consiste en encontrar aquella recta tal que la suma de los cuadrados de las distancias, di, de los puntos a la recta sea la mínima posible. (Gp:) d1 (Gp:) d2 (Gp:) d3 (Gp:) d4 (Gp:) d5 (Gp:) d6 (Gp:) d8 (Gp:) d9 (Gp:) d10

    Bajo esta condición se puede demostrar que la pendiente, b, y la ordenada en el origen, a, se determinan mediante: x y (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Ejemplo 1. Regresión Lineal (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Covarianza (Gp:) En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si.

    (Gp:) Por ejemplo, si se analiza la estatura y el peso de los alumnos de una clase es muy posible que exista relación entre ambas variables: mientras más alto sea el alumno, mayor será su peso. (Gp:) El coeficiente de correlación lineal mide el grado de intensidad de esta posible relación entre las variables. Este coeficiente se aplica cuando la relación que puede existir entre las varables es lineal (es decir, si representaramos en un gáfico los pares de valores de las dos variables la nube de puntos se aproximaría a una recta).

    No obstante, puede que exista una relación que no sea lineal, sino exponencial, parabólica, etc. En estos casos, el coeficiente de correlación lineal mediría mal la intensidad de la relación las variables, por lo que convendría utilizar otro tipo de coeficiente más apropiado. Para ver, por tanto, si se puede utilizar el coeficiente de correlación lineal, lo mejor es representar los pares de valores en un gráfico y ver que forma describen. El coeficiente de correlación lineal se calcula aplicando la siguiente fórmula:

    Es decir:

    (Gp:) Numerador: se denomina covarianza y se calcula de la siguiente manera: en cada par de valores (x,y) se multiplica la "x" menos su media, por la "y" menos su media. Se suma el resultado obtenido de todos los pares de valores y este resultado se divide por el tamaño de la muestra. Denominador se calcula el produto de las varianzas de "x" y de "y", y a este produto se le calcula la raíz cuadrada.

    (Gp:) Los valores que puede tomar el coeficiente de correlación "r" son: -1 < r < 1 Si "r" > 0, la correlación lineal es positiva (si sube el valor de una variable sube el de la otra). La correlación es tanto más fuerte cuanto más se aproxime a 1. Por ejemplo: altura y peso: los alumnos más altos suelen pesar más. Si "r" < 0, la correlación lineal es negativa (si sube el valor de una variable disminuye el de la otra). La correlación negativa es tanto más fuerte cuanto más se aproxime a -1. Por ejemplo: peso y velocidad: los alumnos más gordos suelen correr menos. Si "r" = 0, no existe correlación lineal entre las variables. Aunque podría existir otro tipo de correlación (parabólica, exponencial, etc.) De todos modos, aunque el valor de "r" fuera próximo a 1 o -1, tampoco esto quiere decir obligatoriamente que existe una relación de causa-efecto entre las dos variables, ya que este resultado podría haberse debido al puro azar.

    (Gp:) El coeficiente de correlación lineal mide el grado de intensidad de esta posible relación entre las variables. Este coeficiente se aplica cuando la relación que puede existir entre las varables es lineal (es decir, si representaramos en un gáfico los pares de valores de las dos variables la nube de puntos se aproximaría a una recta).

    Media aritmética: Suma de los valores que toma una variable dividida entre el número total, n, de valores sumados. Varianza: Es una medida de lo que se dispersan los valores de una muestra respecto de su media. Se determina con cualquiera de las formulas equivalentes siguientes: La varianza, V, es también el cuadrado de la desviación típica, S. Recordemos que… Cuando se trata de una distribución bidimensional… Covarianza: Es una medida de lo que se dispersan los valores de una muestra bidimensional tanto del valor medio de la x como del valor medio de la y. Se determina mediante la expresión: (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Coeficiente de Correlación de Pearson, r Bondad de los ajustes El coeficiente de correlación de Pearson, r, nos permite saber si el ajuste de la nube de puntos a la recta de regresión obtenida es satisfactorio. Se define como el cociente entre la covarianza y el producto de las desviaciones típicas (raiz cuadrada de las varianzas) Teniendo en cuenta el valor de la covarianza y las varianzas, se puede evaluar mediante cualquiera de las dos expresiones siguientes: (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Grado de Correlación El coeficiente de correlación, r, presenta valores entre –1 y +1. Cuando r es próximo a 0, no hay correlación lineal entre las variables. La nube de puntos está muy dispersa o bien no forma una línea recta. No se puede trazar una recta de regresión. Cuando r es cercano a +1, hay una buena correlación positiva entre las variables según un modelo lineal y la recta de regresión que se determine tendrá pendiente positiva, será creciente. Cuando r es cercano a -1, hay una buena correlación negativa entre las variables según un modelo lineal y la recta de regresión que se determine tendrá pendiente negativa: es decreciente. (Gp:) No hay correlación

    (Gp:) Correlación lineal positiva

    (Gp:) Correlación lineal negativa

    (Gp:) Hay correlación no lineal

    (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    edu.red

    Coeficiente de Determinación, R2 Para estimar la bondad de un ajuste frecuentemente se prefiere utilizar el Coeficiente de Determinación, R2, que es el Coeficiente de Correlación elevado al cuadrado. Se determina mediante cualquiera de las dos expresiones siguientes: Su valor oscila entre 0 y +1. Cuando hay una buena correlación lineal, R2 es muy cercano a +1. Normalmente se acepta para valores de R2 >= 0’99. Cuando no hay correlación o bien ésta no es lineal, R2 es bajo e incluso cercano a cero (c) Rosario Ruiz Baños. Departamento de Biblioteconomía y Documentación. Universidad de Granada (España)

    Partes: 1, 2
    Página siguiente