- Variables aleatorias
- Distribución probabilística
- Desviación estándar
- Función de probabilidad discreta
- Función de distribución acumulativa
- Distribución binomial
- La distribución Poisson
Una distribución de probabilidades para una variable aleatoria discreta es un listado mutuamente excluyente de todos los resultados numéricos posibles para esa variable aleatoria tal que una probabilidad específica de ocurrencia se asocia con cada resultado. El valor esperado de una variable aleatoria discreta es un promedio ponderado de todos los posibles resultados, donde las ponderaciones son las probabilidades asociadas con cada uno de los resultados.
Donde: Xi = i-ésimo resultado de X, la variable discreta de interés.
P(Xi) = probabilidad de ocurrencia del i-ésimo resultado de X
La varianza de una variable aleatoria discreta (s 2) se define como el promedio ponderado de los cuadros de las diferencias entre cada resultado posible y su media (los pesos son las probabilidades de los resultados posibles).
Donde: Xi = i-ésimo resultado de X, la variable discreta de interés.
P(Xi) = probabilidad de ocurrencia del i-ésimo resultado de X
Variables aleatorias
Una variable aleatoria X es una función que asocia un número real a cada punto del espacio muestral.
Dado un experimento aleatorio cualquiera cuyos sucesos elementales posibles pueden identificarse fácilmente mediante un número real, se denomina Variable Aleatoria, X, al conjunto de estos números.
También se le llama variable de azar o variable estocástica, y significa cantidad que puede tomar varios valores imprevistos.
Ejemplo.- Sea el experimento aleatorio de averiguar la marca de tabaco que preferirá un individuo entre las posibles marcas: <<X>>, <<Y>>, <<Z>>.
En este caso la asociación de un número para cada suceso elemental posible del experimento no es inmediata. En consecuencia, se establece una correspondencia entre el conjunto de los sucesos elementales posibles y el conjunto de los números reales, del modo siguiente:
Al suceso elemental <<preferir la marca X>> se le hace corresponder el número 1; al suceso elemental <<preferir la marca Y>> se le hace corresponder el número 2; al suceso elemental <<preferir la marca Z>> se le hace corresponder el número 3.
La variable aleatoria X será: X = (1,2,3).
El número asociado a cada suceso elemental puede ser cualquiera dentro del conjunto de los números reales, con la condición única de que a sucesos elementales distintos le correspondan números también distintos. Se comprueba fácilmente que la correspondencia así definida entre el conjunto de los posibles sucesos elementales de un experimento aleatorio y el conjunto de los números reales es una aplicación inyectiva.
2.1.-CLASIFICACIÓN DE LAS VARIABLES ALEATORIAS.
a) VARIABLE ALEATORIA CONTINUA.-
Variable aleatoria continua, de recorrido infinito, donde el número al que se hace corresponder la aplicación pertenece al conjunto de los números reales R.
Si X es una Variable aleatoria continua, puede tomar cualquier valor de un intervalo continuo o dentro de un campo de variación dado. Las probabilidades de que ocurra un valor dado x están dadas por una función de densidad de probabilidad de que X quede entre a y b. El área total bajo la curva es 1.
Ejemplo.- Sea el experimento aleatorio consistente en medir la altura que es capaz de saltar cada miembro de un conjunto de personas. En este experimento, cada miembro del conjunto observado da lugar a un número, por lo que se toma como variable aleatoria el conjunto de las medidas de las alturas que son capaces de saltar las distintas personas.
En el supuesto que una persona hubiera saltado 105 cm y otra 106 cm, no existiría ninguna razón para que otra no hubiera saltado un valor intermedio cualquiera entre las dos anteriores, como 105.5 cm. Se trata de una variable aleatoria continua.
b) VARIABLE ALEATORIA DISCONTINUA O DISCRETA.
Variable aleatoria discreta, que produce como resultado un número finito de valores predeterminados, por lo que su recorrido es finito.
Se dice que una Variable aleatoria Discreta o Discontinua X, tiene un conjunto definido de valores posibles x1,x2,x3,…..xn con probabilidades respectivas p1,p2,p3,…..pn., Es decir que sólo puede tomar ciertos valores dentro de un campo de variación dado. Como X ha de tomar uno de los valores de este conjunto, entonces p1 + p2 +…+ pn=1.
En general, una variable aleatoria discreta X representa los resultados de un espacio muestral en forma tal que por P(X = x)se entenderá la probabilidad de que X tome el valor de x. De esta forma, al considerar los valores de una variable aleatoria es posible desarrollar una función matemática que asigne una probabilidad a cada realización x de la variable aleatoria X. Esta función recibe el nombre de función de la probabilidad.
Página siguiente |