Descargar

Prueba de hipótesis para medias de una muestra con Excel, Winstats y GeoGebra


    edu.red PRUEBAS DE HIPÓTESIS PARA MEDIAS DE UNA MUESTRA CON EXCEL, WINSTATS Y GEOGEBRA En vez de estimar el valor de un parámetro, a veces se debe decidir si una afirmación relativa a un parámetro es verdadera o falsa. Es decir, probar una hipótesis relativa a un parámetro. Se realiza una prueba de hipótesis cuando se desea probar una afirmación realizada acerca de un parámetro o parámetros de una población. Una hipótesis es un enunciado acerca del valor de un parámetro (media, proporción, etc.). Prueba de Hipótesis es un procedimiento basado en evidencia muestral (estadístico) y en la teoría de probabilidad (distribución muestral del estadístico) para determinar si una hipótesis es razonable y no debe rechazarse, o si es irrazonable y debe ser rechazada. La hipótesis de que el parámetro de la población es igual a un valor determinado se conoce como hipótesis nula. Una hipótesis nula es siempre una de status quo o de no diferencia. Se simboliza con el símbolo ??0 .Y cuando se desarrolla la prueba se asume que la hipótesis nula es verdadera y este supuesto será rechazado solo si se encuentran suficientes evidencias en base a la información muestral. Siempre que se especifica una hipótesis nula, también se debe especificar una hipótesis alternativa, o una que debe ser verdadera si se encuentra que la hipótesis nula es falsa. La hipótesis alternativa se simboliza ??1 . La hipótesis alternativa representa la conclusión a la que se llegaría si hubiera suficiente evidencia de la información de la muestra para decidir que es improbable que la hipótesis nula sea verdadera, y por tanto rechazarla. Es siempre opuesta a la Hipótesis Nula. En toda prueba de hipótesis se presentan 3 casos de zonas críticas o llamadas también zonas de rechazo de la hipótesis nula, estos casos son los siguientes: 1) Prueba Bilaterial o a dos colas: ??0 : ?? = ??; ??1 ? ?? 2) Prueba Unilateral con cola hacia la derecha: ??0 : ?? = ??; ??1 > ??

    edu.red 3) Prueba Unilateral con cola hacia la izquierda: ??0 : ?? = ??; ??1 < ?? En toda prueba de hipótesis se pueden cometer 2 tipos de errores: 1) Error tipo I: se comete error tipo I, cuando se rechaza la ??0 , siendo esta realmente verdadera. A la probabilidad de cometer error tipo I, se le conoce como nivel de significación y se le denota como ?? 2) Error tipo II: se comete error tipo II, cuando no se rechaza la ??0 , siendo esta realmente falsa. A la probabilidad de cometer error tipo II, se le denota como ?? El complemento de la probabilidad de cometer error tipo II, se le llama potencia de la prueba y se denota como 1 – ?? Como resumen se da la siguiente tabla: Se Acepta ??0 ??0 es Verdadera Decisión Correcta Se Rechaza ??0 Error de Tipo I ??0 es Falsa Error de Tipo II Decisión Correcta Se utiliza una prueba de una muestra para probar una afirmación con respecto a una media de una población única. Si se conoce la desviación estándar de la población (??), la distribución de muestreo adecuada es la distribución normal. Si la población que se muestra es normal, la distribución de muestreo será normal en el caso de todos los tamaños de la muestra, y el valor estadístico de prueba a utilizar es: ?????????????? = ??¯ – ?? ?? v?? Si la población no es normal, o si se desconoce su forma, se emplea la ecuación anterior solamente para tamaños de muestra iguales o mayores 30, es decir, para n = 30 Si no se conoce la desviación estándar de la población (??), el valor estadístico de prueba es:

    edu.red ?????????????? = ??¯ – ?? ?? v?? Nota: Se considera práctico utilizar la distribución t solamente cuando se requiera que el tamaño de la muestra sea menor de 30, ya que para muestras más grandes los valores t y z son aproximadamente iguales, y es posible emplear la distribución normal en lugar de la distribución t. Las anteriores ecuaciones se aplican para poblaciones infinitas, pero cuando la población es finita y el tamaño de la muestra ?? constituye más del 5% del tamaño de la población ??, es decir: ?? ?? · 100% > 5% En este caso se debe usar el factor finito de corrección para modificar las desviaciones estándar, por lo tanto se aplican las siguientes ecuaciones para (??) conocida y desconocida, respectivamente. ?????????????? = ??¯ – ?? ?? · v?? – ?? v?? ?? – 1 ?????????????? = ??¯ – ?? ?? · v?? – ?? v?? ?? – 1 Ejemplos ilustrativos: 1) La duración media de una muestra de 300 focos producidos por una compañía resulta ser de 1620 horas. Se conoce que desviación típica de la población es 150 horas. Comprobar la hipótesis ?? = 1600 contra la hipótesis alternativa ?? ? 1600 horas con un nivel de significación de 0,05 si la muestra fue tomada de 5000 focos. Solución: Los datos son: ?? = 300 ??¯ = 1620 ?? = 150 ?? = 0,05 ?? = 5000 Las hipótesis son: ??0 : ?? = 1600 ??1 : ?? ? 1600 Al observar ??1 : ?? ? 1600 se trata de una prueba a dos colas, por lo que se tiene que calcular: ?? 0,05 = = 0,025 2 2 Como se conoce la desviación estándar de la población ?? se debe utilizar la distribución normal. Con lectura en la tabla para un área de 0,025 le corresponde un valor ???????????? = ±1,96. Se toma en cuenta el valor positivo y el negativo porque se trata de una prueba de hipótesis a dos colas. Como se tiene como dato el tamaño de la población se tiene que verificar si cumple con la condición para utilizar el factor finito de corrección. ?? ?? · 100% > 5%

    edu.red v300 300 5000 · 100% = 6% Entonces para calcular el valor de ?????????????? se emplea la siguiente ecuación: ?????????????? = ??¯ – ?? ?? · v?? – ?? v?? ?? – 1 ?????????????? = 1620 – 1600 150 · v5000 – 300 5000 – 1 = 2,24 Los cálculos en Excel se muestran en la siguiente imagen: El gráfico elaborado con Winstats y Paint se muestra en la siguiente imagen:

    edu.red Decisión: Dado que ?????????????? 2,24 > ???????????? ± 1,96 se rechaza la ??0 , y por lo tanto se acepta ??1 2) La duración media de lámparas producidas por una compañía han sido en el pasado de 1120 horas. Una muestra de 8 lámparas de la producción actual dio una duración media de 1070 horas con una desviación típica de 125 horas. Comprobar la hipótesis ?? = 1120 horas contra la hipótesis alternativa ?? < 1200 horas mediante un error tipo I de 0,05. Solución: Los datos son: ?? = 1120 ?? = 8 ??¯ = 1070 ?? = 125 ?? = 0,05 Las hipótesis son: ??0 : ?? = 1120 ??1 : ?? < 1120 Como se conoce la desviación estándar de la muestra S se debe utilizar la distribución t de Student. Con lectura en la tabla para un área de 0,05 y con ?? – 1 = 8 – 7 grados de libertad le corresponde un valor ???????????? = -1,8946. Se toma en cuenta el valor negativo porque se trata de una prueba de hipótesis a cola izquierda como se puede observar en la ??1 . Entonces para calcular el valor de ?????????????? se emplea la siguiente ecuación:

    edu.red = ?????????????? = ??¯ – ?? ?? ?????????????? v?? 1070 – 1120 125 = -1,131 v8 Los cálculos en Excel se muestran en la siguiente imagen: Los cálculos en GeoGebra se muestran en la siguiente imagen: El gráfico elaborado con Winstats y Paint se muestra en la siguiente imagen:

    edu.red Decisión: Dado que ?????????????? – 1,131 > ???????????? – 1,8946 se Acepta la ??0