Descargar

Codificación y modulación digital

Enviado por Pablo Turmero


    edu.red 1 Técnicas de Codificación Datos digitales, señales digitales Datos analógicos, señales digitales (PCM) Datos digitales, señales analógicas (modem) Datos analógicos, señales analógicas (AM, FM, PM)

    edu.red 2 Datos digitales, señales digitales Señal digital: secuencia de pulsos de tensión Discreto, pulsos de tensión discontinuos Cada pulso es un elemento de señal Datos binarios codificados en elementos de señal

    edu.red 3 Esquemas de Codificación No Retorno a Cero. Nonreturn to Zero-Level (NRZ-L) No Retorno a Cero Invertido. Nonreturn to Zero Inverted (NRZI) Binario Multinivel (Bipolar-AMI, Alternate Mask Inversion) Pseudoternarios Bifase: Manchester y Manchester Diferencial B8ZS (Bipolar con 8 ceros de sustitución) HDB3 (Bipolar de Alta Densidad con 3 ceros)

    edu.red 4 No Retorno a Cero-Nivel (NRZ-L) Dos tensiones diferentes para los bits 0 y 1 Tensión constante durante el intervalo del bit no hay transición, no retorna a tensión cero Ausencia de tensión para 0, tensión constante positiva para 1 Más habitual, tensión negativa para un valor y tensión positiva el otro valor

    edu.red 5 No Retorno a Cero Invertido (NRZI) Sin retorno a cero invertido en 1’s Tensión constante durante la duración de un bit El dato se codifica por la presencia o ausencia de una transición al principio del tiempo del bit Transición (bajo a alto o al revés) significa un 1 Sin transición significa un 0 Ejemplo de codificación diferencial

    edu.red 6 NRZ Cada vez que vaya a empezar un “1” se produce una transición. Si empieza un “0” no se produce transición.

    edu.red 7 Codificación Diferencial Datos representados por cambios en vez de por niveles Detección más fiable en la transición que en el nivel En sistemas de transmisión complicados es fácil perder la polaridad. Si se invierte, se cambian los 0 por 1 y viceversa. Con codificación diferencial no existe este problema

    edu.red 8 NRZ: ventajas e inconvenientes Ventajas: Fácil de implementar Uso eficaz del ancho de banda Inconvenientes Componente continua (DC) Ausencia de la capacidad de sincronización Usados para grabaciones magnéticas No usados para transmisión de señales

    edu.red 9 Binario Multinivel Usan más de dos niveles Bipolar-AMI 0 representado por ausencia de señal 1 representado por pulsos de polaridad alternante No hay pérdidas de sincronismo para una larga cadena de unos (sí para cadena de ceros) No tiene componente continua Menor ancho de banda que NRZ Sencilla detección de errores

    edu.red 10 Pseudoternario Unos representados por ausencia de señal Ceros representados por pulsos de polaridad alternante No tiene ventajas ni inconvenientes respecto al Bipolar-AMI

    edu.red 11 Bipolar-AMI y Pseudoternario

    edu.red 12 Inconvenientes para Binario Multinivel No tan eficiente como el NRZ Cada elemento de señal sólo representa un bit En un sistema de 3 niveles, lo que representaría log23 = 1.58 bits de información El Receptor debe distinguir entre tres niveles (+A, -A, 0) Necesita aproximadamente 3dB más de potencia de señal para la misma probabilidad de error Dada una relación S/N, la tasa de error por bit para los códigos NRZ es menor que para binario multinivel

    edu.red 13 Bifase Manchester Transición en mitad del intervalo de duración del bit La transición sirve como reloj y para transmitir el dato Transición Bajo a Alto representa “1” Transición Alto a Bajo representa “0” Manchester Diferencial Transición en mitad del intervalo usado sólo para sincronizar. La transición al principio del intervalo del bit representa “0”. La ausencia de transición al principio del intervalo representa “1” Nota: es un esquema de codificación diferencial

    edu.red 14

    edu.red 15 Bifase: ventajas e inconvenientes Inconvenientes Al menos una transición por cada bit pudiendo ser hasta dos Velocidad de modulación máxima doble que en NRZ Necesita más ancho de banda Ventajas Sincronización: el receptor se sincroniza con la propia señal (auto-sincronizados) Ausencia de componente continua Detección de errores, si hay una ausencia de la transición esperada

    edu.red 16

    edu.red 17 Técnicas de “Scrambling” Usada para reemplazar secuencias que producirían una tensión constante por otras secuencias con transiciones para mantener el sincronismo. La secuencia de relleno debe Producir suficientes transiciones para sincronizar Ser reconocida por el receptor y reestablecer la original Tener la misma longitud que la original OBJETIVOS: Eliminar la componente continua Evitar que las secuencias largas sean señales de tensión continua No reducir la velocidad de transmisión de datos Tener cierta capacidad de detectar errores

    edu.red 18 B8ZS (Norteamérica) Bipolar con 8 Ceros de Sustitución Basado en AMI bipolar Si aparece un octeto con todo ceros y el último valor de tensión anterior a dicho octeto fue positivo, se codifica dicho octeto como 000+-0-+ Si aparece un octeto con todo ceros y el último valor de tensión anterior a dicho octeto fue negativo, se codifica dicho octeto como 000-+0+- Causa dos violaciones del código AMI Improbable que ocurra debido al ruido El receptor detecta e interpreta como octeto con todo ceros Adecuado para transmisión a altas velocidades

    edu.red 19 HDB3 (Europa y Japón) Alta Densidad Bipolar 3 Ceros Basado en AMI bipolar Si aparece un cuarteto con todo ceros y el último valor de polaridad anterior a dicho cuarteto fue negativo, se codifica dicho cuarteto como 000- o bien +00+ Si aparece un cuarteto con todo ceros y el último valor de polaridad anterior a dicho cuarteto fue positivo, se codifica dicho cuarteto como 000+ o bien –00- En las violaciones siguientes se alternan las polaridades de las violaciones para evitar la componente continua Adecuado para transmisión a altas velocidades

    edu.red 20 B8ZS y HDB3

    edu.red 21 Datos Digitales, Señales Analógicas Sistema de Telefonía pública 300 Hz a 3400 Hz Usa modem (modulador-demodulador) Desplazamiento de Amplitud (ASK, Amp Shift K.) Desplazamiento de Frecuencia (FSK,Frec S. K.) Desplazamiento de Fase (PSK,Phase S. Keying)

    edu.red 22 Técnicas de Modulación

    edu.red 23 Desplazamiento de Amplitud (ASK) Valores representados por diferentes amplitudes de portadora Usualmente, una amplitud es cero Se usa presencia y ausencia de portadora Susceptible de repentinos cambios de ganancia Poco eficiente Hasta 1200 bps en líneas de calidad telefónica Usada en fibra óptica

    edu.red 24 0 binario ASK 1 binario

    edu.red 25 Desplazamiento de frecuencia (FSK) Valores representados por diferentes frecuencias (próximas a la portadora) Menos sensible a errores que ASK Hasta 1200 bps en líneas de calidad telefónica Transmisión por radio en HF (3-30 MHz) Incluso en LAN en frecuencias superiores con cable coaxial

    edu.red 26 0 binario FSK 1 binario

    edu.red 27 FSK en línea de calidad telefónica

    edu.red 28 Desplazamiento de Fase (PSK) La Fase de la portadora se desplaza para representar los datos PSK Diferencial El cambio de fase se refiere a la transmisión del bit anterior en lugar de a una referencia absoluta

    edu.red 29 0 binario 1 binario PSK

    edu.red 30 PSK en cuadratura (QPSK) Uso más eficaz del espectro si por cada elemento de señalización se representa más de un bit Con saltos de fase de ?/2 (90o) Cada elemento representa dos bits Se pueden usar 8 ángulo de fase e incluso amplitudes distintas Un modem estándar de 9600 bps usa 12 ángulos, cuatro de los cuales tienen dos amplitudes

    edu.red 31 11 QPSK 10 00 01

    edu.red 32 OTROS PSK 8-PSK 8 fases, repartidas dos en cada cuadrante, para cada una de las 8 ternas que se pueden generar con tres bits 16-PSK 16 fases, repartidas cuatro en cada cuadrante, para cada una de las 16 cuaternas que se pueden generar con cuatro bits

    edu.red 33 Codificación Amplitud – Fase La información digital está contenida tanto en la fase como en la amplitud Puede haber 16 cuaternas con 4 bits

    edu.red 34 Constelación (Gp:) 000 (Gp:) 001 (Gp:) 101 (Gp:) 100 (Gp:) 010 (Gp:) 011 (Gp:) 110 (Gp:) 111

    edu.red 35 Modulación en Amplitud en Cuadratura (QAM) Se pueden enviar dos señales diferentes simultáneamente sobre una misma portadora Se utilizan dos réplicas de la portadora, una de ellas desfasada 90 respecto a la otra (en cuadratura) Cada una de las portadoras se modula usando ASK Las dos señales independientes se transmiten por el mismo medio

    edu.red 36 Prestaciones (1) Ancho de Banda BT ASK y PSK directamente relacionado con la velocidad de transmisión R. FSK depende tanto del salto de frecuencia de las frecuencias con la portadora como de la velocidad binaria R r es un factor relacionado con la técnica de filtrado y su valor está comprendido entre 0 y 1. es f2-fc o bien fc-f1

    edu.red 37 Prestaciones (2) En señalización multinivel se consigue un importante aprovechamiento del espectro

    edu.red 38 Algunos ejemplos de Ancho de Banda en FSK =1,25 MHz, fc=5 MHz, R=1 Mbps, BT depende de =100 Hz, fc=1.170 Hz, R=300 bps, BT depende de R

    edu.red 39 Datos Analógicos, Señales Digitales Digitalización: conversión de datos analógicos en datos digitales Los datos digitales se pueden transmitir utilizando NRZ-L Los datos digitales se pueden transmitir utilizando otros códigos que no sean NRZ-L Los datos digitales se pueden convertir en señal analógica: (ASK, FSK, PSK) La conversión analógica a digital y viceversa se realiza usando un codec: PCM, DM Modulación por Impulsos Codificados (PCM) Modulación Delta (DM)

    edu.red 40 Modulación Impulsos Codificados MIC (Pulse Code Modulation) (1) Si una señal se muestrea a intervalos regulares a un ritmo mayor que el doble de la componente de frecuencia más alta, las muestras contienen toda la información de la señal original (TEOREMA DEL MUESTREO) Los datos de voz están limitados a 4000 Hz Se necesitan 8000 muestras por segundo A cada muestra se le asigna un código digital

    edu.red 41 Modulación por Impulsos Codificados MIC (PCM) (2) Un sistema de 4 bits proporciona 16 niveles Cuantificación Error de cuantificación o ruido Las aproximaciones suponen que es imposible recuperar exactamente la señal original Muestras de 8 bits proporcionan 256 niveles Calidad comparable a la transmisión analógica 8000 muestras por segundo de 8 bits cada una suponen 64 kbps

    edu.red 42 Relación Señal / Ruido PCM La relación S/N se mejora en aproximadamente 6 dB cada vez que se aumenta un bit

    edu.red 43 Codificación no lineal Los niveles de cuantificación no están espaciados regularmente Se reduce mucho la distorsión de señal Los escalones son más pequeños para entradas más bajas También se puede usar cuantificación uniforme y previamente expandir y comprimir la señal analógica, dando más ganancia a los niveles más bajos

    edu.red 44 Modulación Delta (DM) La entrada analógica se aproxima mediante una función escalera Se mueve arriba o abajo un nivel ? en cada intervalo de muestra, intentando asemejarse a la entrada analógica Comportamiento binario: la subida se representa con un 1 y la bajada con un 0 Se necesita un bit por cada muestra La precisión es mayor cuanto mayor sea la frecuencia de muestreo, si bien ello incrementa la velocidad de transmisión

    edu.red 45 Modulación Delta (DM) Compromiso elección ?: grande para poco error de sobrecarga de pendiente y pequeño para poco ruido o error de cuantificación (ruido granular)

    edu.red 46 Problemas DM Sobrecarga de pendiente, si la señal varía rápidamente el DM no puede seguir las variaciones Ruido granular o de cuantificación. En ausencia se señal, o con variaciones muy pequeñas el DM está variando constantemente entre 0 y 1 generando un ruido que la señal analógica no tiene DM es más sencillo que PCM pero tiene peor relación S/N

    edu.red 47 Espectro Expandido Datos analógicos o digitales Señal analógica Datos esparcidos en una ancho de banda grande Consigue que la perturbación y la interceptación sean más difíciles Salto en Frecuencia (Frequency hoping) La señal se transmite sobre una serie pseudoaleatoria de frecuencias Secuencia Directa Cada bit se representa mediante varios bits en la señal trasmitida

    edu.red 48 Secuencia Directa