Descargar

Modelo FK de los Sistemas dinámicos

Enviado por Pablo Turmero


Partes: 1, 2, 3

    edu.red

    El modelo FK (Gp:) ¿?

    En 1938, Y.Frenkel y T. Kontorova desarrollaron un modelo previo propuesto por U. Dehlinger (1929) Estudio de dislocaciones en sólidos

    edu.red

    Descripción matemática V(u) representa un potencial (“on-site”) actuando sobre cada partícula y generalmente periódico. W(Du) representa la interacción entre partículas vecinas. (Gp:) a

    edu.red

    Existen distintas variantes del modelo FK, dependiendo de la elección de V y W Estandar. V sinusoidal y W armónico

    W no convexo, p.ej. el modelo XY quiral Que representa, por ejemplo, un sistema de momentos magnéticos con anisotropía planar fuerte (plano XY) y dirección preferente (dada por el ángulo g) impuesta por ejemplo por un campo magnético superpuesto. Long. Natural del muelle

    edu.red

    V parabólico

    V multiarmónico. P.ej. compuesto de 3 sinusoidales

    Multidimensionales (2d, 3d). Largo alcance, …

    edu.red

    Modelo FK estandar Las ecuaciones del movimiento son: Estas (en principio infinitas) ecuaciones son la discretización mas simple de la ecuación en derivadas parciales (integrable) conocida como sine-Gordon Existen variaciones no hamiltonianas (la energía no se conserva a todo t), introduciendo términos disipativos (por ejemplo, del tipo viscoso dependiente de la primera derivada temporal de u), y/o añadiendo forzamientos adicionales uniformes y/o paramétricos.

    edu.red

    Modelo FK estandar La forma canónica de la ecuación s-G era: (Gp:) Pero si hacemos el cambio:

    Aproximación por diferencias finitas

    edu.red

    Propiedades del equilibrio del modelo FK estandar (Gp:) Hamiltoniano (Gp:) Configuraciones de equilibrio (Gp:) Configuraciones de mínima energía (Gp:) Recurrentes (Gp:) No-Recurrentes

    edu.red

    FK estandar Configuraciones de equilibrio Hamiltoniano MAP ESTANDAR

    edu.red

    FK estandar Configuraciones de mínima energía (MEC) Perturbaciones arbitrarias pero que solo afectan a un segmento finito de la configuración inicial Donde:

    edu.red

    FK estandar MEC recurrentes: Hay de 2 tipos: Conmensuradas (o periódicas) Inconmensuradas (o cuasiperiódicas)

    edu.red

    FK estandar (Gp:) MEC no recurrentes: (Gp:) Son las versiones discretas de los solitones sine-Gordon (Gp:) Reciben el nombre de disconmensuraciones, kinks o tambien solitones discretos. Corresponden a órbitas homoclínicas en el map estandar.

    n

    edu.red

    FK estandar Podemos caracterizar las configuraciones mediante el winding-number o espaciado promedio: Conmensuradas Inconmensuradas

    edu.red

    FK estandar Diagrama de fases del FK: s (Gp:) Escalera del diablo (Gp:) s (Gp:) w

    (Gp:) “rellanos” en todos los racionales p/q

    edu.red

    (Gp:) K=0.5

    FK estandar Los estados fundamentales del FK Órbitas hiperbólicas sin reflexión del map estandar (Gp:) K=0.7

    u u

    edu.red

    FK estandar ¿ y los irracionales ? (fases inconmensuradas) Recordar a Chirikov y el teorema KAM (Gp:) K=1.1 (Gp:) K=0.95

    “Slidding” Indefectible “Pinned” Defectible Se abren infinitos “gaps” EXISTENCIA DE BARRERAS DE PN u u

    edu.red

    FK estandar El último toro KAM (no homótopo a cero) en romperse, corresponde a la media áurea ( y los relacionados con ella de forma sencilla ). El irracional “más irracional”. (R.S. Mackay 1982) El resultado se basa en la conjetura de Greene. Que supone que la rotura de un toro de KAM y la inestabilidad de las órbitas elípticas del map estándar están relacionadas. Valor de K al que la órbita periódica estable (elíptica) de winding number p/q se vuelve inestable (hiperbólica) Valor de K al que el toro KAM de winding number w se vuelve rompe.

    Partes: 1, 2, 3
    Página siguiente