Fibras discontinuas o whiskers: Las fibras discontinuas utilizadas normalmente para la producción de CMM son comercializadas en diferentes diámetros (entre 3 y 5 mm). El uso de éste tipo de fibras conduce a propiedades inferiores que las fibras continuas, por lo que su costo se reduce. Los whiskers tienen diámetros menores a 1 mm y pueden tener una longitud de hasta 100 mm, por lo que pueden considerarse como refuerzos discontinuos. Los principales tipos de whiskers disponibles en el mercado son los de SiC y Si3N4. Aunque este tipo de refuerzo ha sido de uso frecuente, su utilización se ha visto restringida en algunos países a causa de su carácter nocivo para la salud humana.
Interfase matriz-refuerzo
La zona de interfase es una región de composición química variable, donde tiene lugar la unión entre la matriz y el refuerzo, que asegura la transferencia de las cargas aplicadas entre ambos y condiciona las propiedades mecánicas finales de los materiales compuestos.
Existen algunas cualidades necesarias para garantizar una unión interfacial adecuada entre la matriz y el reforzante: una buena mojabilidad del reforzante por parte de la matriz metálica, que asegure un contacto inicial para luego, en el mejor de los casos, generar la unión en la interfase una estabilidad termodinámica apropiada (ya que al interactuar estos materiales, la excesiva reactividad es uno de los mayores inconvenientes encontrados), la existencia de fuerzas de unión suficientes que garanticen la transmisión de esfuerzos de la matriz al refuerzo y que sean además estables en el tiempo bajo altas temperaturas. En el sector eléctrico y electrónico, se debe tener en cuenta que los CET de la matriz y de los refuerzos deben ser similares para limitar los efectos de los esfuerzos internos a través de la interfase, sobre todo al utilizar el compuesto a altas temperaturas.
3. CMM: propiedades y comportamiento
Bajo condiciones ideales, el material compuesto muestra un límite superior de propiedades mecánicas y físicas definido generalmente por la regla de las mezclas. Es posible sintetizar material compuestos con una combinación de propiedades específicas de la aleación (tenacidad, conductividad eléctrica y térmica, resistencia a la temperatura, estabilidad ambiental, procesabilidad) con las propiedades específicas de los cerámicos reforzantes (dureza, alto módulo de Young, bajo coeficiente de expansión térmica). Es así como por ejemplo, un material compuesto AlCuMgAg/SiC/60p muestra una mejora de cada una de sus propiedades, tanto mecánicas como térmicas al compararlo con la aleación base. De igual modo, se han conformado CMM tipo A356/SiC/30-40, para la obtención de piezas que requieren alta transferencia de calor y alta tenacidad con baja densidad.
Propiedades mecánicas
Las propiedades mecánicas que exhiben los CMM son consideradas superiores con respecto a los materiales que los componen de manera individual, como ya se ha señalado anteriormente. Dicho aumento en propiedades, depende de la morfología, la fracción en volumen, el tamaño y la distribución del refuerzo en la aleación base. Además dichos factores controlan la plasticidad y los esfuerzos térmicos residuales de la matriz
Se ha comprobado cómo varía la dureza de un material compuesto en estado de obtención y después de un tratamiento térmico, así como respecto al incremento del volumen del reforzante. La experiencia muestra un incremento en la resistencia a la tracción al variar el % de volumen de la fracción reforzante, tanto en el material sin tratamiento térmico, como con tratamiento térmico.
Figura 3. La resistencia a la tracción en los materiales compuestos con partículas duras y blandas varía en función del volumen del material reforzante
Por su parte la deformación de los materiales compuestos tiene una tendencia inversa al incremento del volumen de partículas reforzantes Similar comportamiento a la elongación tiene la resistencia al impacto
Propiedades térmicas
Las propiedades térmicas fundamentales a considerar en los CMM son el CET y la conductividad térmica (CT) Dependiendo de la fracción de volumen de refuerzo, su morfología y su distribución en la aleación base, se obtienen diferentes valores de ambas propiedades. Ambos pueden ser modificados por el estado de precipitación de la matriz y por el tipo de aleación de la matriz. Es así como el CET de las aleaciones de titanio es muy similar a algunos tipos de fibras reforzantes, lo cual se considera una ventaja ya que se disminuyen los esfuerzos residuales debido a la diferencia térmica entre las fibras y la matriz.
Algunos investigadores conciben que en la medida en que la CT de la aleación matriz se vea disminuida con la introducción de partículas cerámicas, esto puede verse compensado si la fase cerámica que se usa como refuerzo es conductora.
4. Métodos de obtención
Las técnicas de producción para CMM se clasifican básicamente en cuatro tipos según el estado de la matriz durante el proceso:
- En estado líquido (fundición, infiltración),
- En estado sólido (pulvimetalurgía (PM), sinterización, prensado en caliente),
- En estado semisólido (compocasting) y
- En estado gaseoso (deposición de vapor, atomización, electrodeposición), éste último de poca difusión, pero bastante utilizado en la obtención de CMM para el sector electrónico
En la figura 1, se muestra el proceso de obtención de materiales compuestos por la vía de fundición, utilizando un agitador para homogeneizar las partículas del refuerzo en la matriz de aluminio.
Figura 1. Método de fundición con agitación.
En los métodos relacionados con la fundición deben tenerse en cuenta los siguientes aspectos:
- Empleo de una capa de gas inerte
- Técnicas de desgaseado por inyección rotatoria Argón-SF6
- Evitar sobrecalentamientos (Formación de carburo de aluminio)
- Agitación para el mezclado del refuerzo con el aluminio fundido)
- Evitar turbulencias (se atrapa gas)
En el caso donde el metal se infiltra sin presión en una preforma del material cerámico poroso, como se observa en la figura 2. En este caso la filtración del metal depende del nivel de porosidad interconectada en el material cerámico
Figura 3. Esquema del método de infiltración para obtener materiales compuestos.
Los pasos que se siguen cuando se emplea la pulvimetalurgia para obtener materiales compuestos con matriz de aluminios son los siguientes:
- Mezclado de los polvos
- Compactado
- Sinterizado
- Acabado del producto
Los materiales en forma de polvo son mezclados previamente hasta obtener una distribución homogénea, luego son prensados para obtener la forma de la pieza que se quiere obtener y después se procede a la sinterización. El proceso de sinterización generalmente se desarrolla en atmósfera de nitrógeno o amoniaco disociado.
Otro método empleado es el de al fundición prensada, mediante este método el metal solidifica bajo la presión, entre moldes cuyas superficies son presionadas en una prensa hidráulica. La presión aplicada y el contacto con el molde favorecen la transferencia de calor, por lo que el enfriamiento es rápido y se obtiene un grano fino, libre de poros y propiedades mecánicas cercanas a la materia prima
También se obtienen materiales compuestos con matriz de aluminio mediante extrucción, cuando se hace pasar el material preconformado, tanto en frío, como en caliente a través de troqueles con la forma que se desea, generalmente piezas simétricas a través de un eje.
Mediante la extrucción se logra acabado superficial y exactitud dimensional. Aunque a veces se requieren operaciones de maquinado pequeñas tales como taladrado, pequeños cortes, etc.
5. Estudios reportados en patentes
A continuación se muestran algunos trabajos presentados en patentes, en los que aparecen diferentes variantes en la obtención de materiales compuestos:
Reacción de aglutinación para preparar un material compuesto de aluminio nitrurado reforzado con un material cerámico, desarrollado en la patente CN1099739, en el año 1995, por Kefeng Cai (Cn); Cewen Nan (Cn); Xinmin Min (Cn). Un material compuesto de aluminio nitrurado con partículas de porcelana se obtiene mezclando previamente los polvos de aluminio y cerámicas, molida en un molino de bolas, secado en un horno al vacío, tamizado y conformado en una prensa en frío, y sinterización en atmósfera de nitrógeno. El material obtenido tiene las ventajas de emplear temperaturas relativamente bajas, materias primas de fácil obtención y baratas; se obtienen buenos cristales de nitruro de aluminio, no se produce contracción en el objeto sinterizado y además el costo de fabricación es bajo.
Preparación de un material compuesto de aluminio reforzado con granos de cerámica, desarrollado por Xie Guohong (Cn), reportado en la patente CN1182063, con fecha del 1998. Los granos de material cerámico son tratados con fluorato como asistente para sumergirlos; ellos son disueltos en una solución acuosa de K2ZrF6 o K2TiF6 a una temperatura de 80-95°C o mezclados con fluorato antes de calcinarlos, los granos de material cerámico de esta forma tratados son colocados en la parte superior del aluminio fundido y se mantiene la temperatura durante cierto período, el aluminio agitado es colado en un molde. Este invento puede incrementar las propiedades del aluminio para mojar la superficie de los granos de las cerámicas y a partir de una ligera agitación es posible preparar el material compuesto requerido en el medio ambiente de la atmósfera.
Método para la preparación de un material compuesto de aluminio y cerámicas, es propuesto mediante la patente CN1199101, del 1998, propuesta por Feng Di (Cn); Han Guangwei (Cn); Yin Ming (Cn). Un método para preparar un material compuesto de aluminio y cerámicas continuos preparando previamente piezas de material cerámico comunicadas con orificios en tres dimensiones, el aluminio aleado fundido recubre las piezas de cerámicas preelaboradas, al sumergir dichas piezas en el aluminio fundido. Luego las piezas son calentadas en una atmósfera de un gas inerte para su protección entre 760 y 1 200°C durante un período de 1 a 10 h, tomando entonces las piezas preelaboradas fuera del horno.
Material Compuesto formado por un material intermetálico de hierro-aluminio y óxido de aluminio y su preparación, son mostrados en la patente CN1210097, del 1999 por Yin Yansheng (Cn); Zhang Yujun (Cn); Sun Kangning (Cn). En esta patente se describe la formación de un material compuesto formado por un material intermetálico de hierro y aluminio y alúmina. Este material presenta altas propiedades mecánicas, resistencia a las altas temperaturas, a la corrosión y a la oxidación y puede ser empleado para producir herramientas de corte o matrices
La superficie de un freno hecho de un material compuesto en base a aluminio reforzado por cristales de borato de magnesio wisker y partículas de material cerámico, es descrito en la patente CN1414132, del 2003 por Fei Weidong (Cn); Shi Gang (Cn); Li Yilin (Cn). Un whisker de borato de magnesioy partículas de cerámica (SiC y/o partículas de borato de aluminio y/o Al2O3 y/o ZrO2) refuerzan un material base formado por una aleación de aluminio. Sus ventajas son su alta resistencia al desgaste, conductividad térmica, un excelente comportamiento ante las altas temperaturas y un coeficiente de fricción estable.
Preparación de un material compuesto de base aluminio y el proceso pulvimetalúrgico empleado para preparar el material, aparecen en la patente CN1487109 del 2004, cuyos autores son Fan Tongxiang (Cn); Zhang Di (Cn); Yang Guang (Cn). Esta patente pertenece al campo de la tecnología de preparación de materiales compuestos. El material compuesto que se obtiene tiene la siguiente expresión química AlaMgbBcMd,, donde a se encuentra entre 50-96, b entre 1-7, c entre 9-90 y d entre 0-13¸M puede ser uno de los siguientes elementos: Si, Cu, Ni, Ti, Fe, Cr, La, Mn, Ce, Zn, V y Zr. La preparación del material es un proceso combinado que comprende metalurgia de polvos y reacción in situ, también comprende mezclado de materiales en polvo, prensado en frío para conformar el material, calentamiento y prensado en caliente del material en polvo para producir una reacción química a una temperatura por encima de 950°C. dentro de la aleación base de aluminio, se añade un material cerámico de A1MgB14 se forma para formar el material compuesto. El material cerámico refuerza al material compuesto formado, este material cerámico tiene muy poco peso y alta resistencia, puede ser empleado en la industria del transporte y en la industria de la defensa.
Un proceso para sinterizar diboro de zircornio de alta pureza y Al2O3como material compesto en un solo paso. Esta patente es la CN1587188 del 2005, cuyos autores son Yang Zhenguo (Cn); Yu Zhiqiang (Cn). La presente patente trata de un proceso tecnológico de autoexpansión con alta temperatura reductora, para sintetizar el polvo cerámico compuesto ZrB2-Al2O3 en solo un paso. El metal activo reductor y el óxido barato como material son sintetizados en un material compuesto de alta pureza ZrB2-Al2O3 en forma de polvo ZrB2-Al2O3. Comparado con los procesos tradicionales, el polvo sintetizado tiene alta pureza, un tamaño de grano pequeño, un proceso simple, menor consumo de polvos, corto tiempo y bajo costo de producción.
Método de síntesis de un material compuesto formado por nitruro de aluminio ultra fino en fase de polvo cerámico mediante auto retardo. Patente CN1618767 del 2005cuyos autores son Ge Changchun (Cn); Chen Kexin (Cn); Li Jiangtao (Cn). Un proceso de autocontrol en su proceso para la preparación de superfino un compuesto cerámico en forma de polvo (AlN/ZrN/AL3Zr o AIN/ZrN) es revelado. Dicho AIN/ZrN/Al3Zres preparado a partir de AIN, ZrN, Al y Zr y Nitrógeno a través de la reacción SHS. Dicho AIN/ZrN es preparado a partir de Zr en polvo y AIN en polvo y N2 a través de la reacción SHS.
Material compuesto de zinc-aluminio reforzado con partículas de cerámicas y proceso de preparación. Patente CN1648269 del 2005 de Geng Haoran (Cn); Lin Ling (Cn); Cui Feng (Cn). La patente presente pertenece al campo de los materiales compuestos y especialmente a los materiales compuesto de aleaciones Zn-Al reforzado por partículas cerámicas capaz de ser usado en pares de deslizamiento y su proceso de obtención. El material compuesto consiste en Al 25-45 wt%, Cu 1.0-2.5 wt%, Sb 0.2-2.5 wt%, Te 0.05-0.15 wt%, Mg 0.02-0.15 wt%, Ti 1.80-5.0 wt%, y B 0.8-2.5 wt% excepto Zn y Fe, las impurezas inevitables totales se encuentran por debajo del 0,3%. Se prepara en dos etapas de un proceso de fusión, el que incluye el paso previo de producir una carga de Al-Ti-B en un bloque prefabricado comprimido con polvo de Ti, polvo de KBF4, Na3AlF6, y aluminio y aluminio fundido y a través de reacción y el último paso fusión de una carga de Al-Ti-B, otro carga y colada. El material compuesto de la siguiente patente tiene un excelente desempeño, incluyendo alta resistencia, alta resistencia al desgaste, bajo coeficiente de expansión lineal y buen desempeño ante las altas temperaturas.
Material compuesto en base a aluminio reforzado por un material cerámico recubierto por trióxido de dibismuto. Patente CN1648270 del 2005 de Fei Weidong (Cn); Li Zhijun (Cn); Wang Lidong (Cn). La patente está relacionada con un material compuesto en base de aluminio reforzado por una fase cerámica que representa del 5 al 50% del volumen total y donde el trióxido de dibismuto representa entre el 2 y 20% del material cerámico. La capa de trióxido de dibismuto se distribuye en la interfase entre el cuerpo reforzante y el cuerpo base a través de una reacción aluminotérmica con le aluminio del cuerpo base. Durante la deformación en caliente del material compuesto y después de que la temperatura supera el punto de fusión del bismuto (270°C), el bismuto fundido en la superficie actúa como lubricante el material reforzante y el material base, reduce la temperatura de deformación y el costo de maquinado reduce el daño a la fase cerámica y mantiene excelente el desempeño mecánico del material deformado.
Método de preparación de un material compuesto cerámico cuya base es el trióxido de aluminio. Patente CN1657486 del 2005 de Zhang Xihua (Cn); Zhang Jianhua (Cn); Liu Changxia (Cn). Un material compuesto en base a alúmina con alta dureza y resistencia se prepara a partir de la obtención del compuesto intermetálico AlTiC en un horno de inducción, mezclando partes proporcionales de alúmina y óxido de zirconio, en un molino de bolas, prensado en un molde caliente y sinterizando en atmósfera de nitrógeno. Este puede ser útil para moldes, boquillas de sand-blasting o herramientas de corte.
Método para preparar un material compuesto cerámico en polvo, whisker de carburo de silicio y óxido de aluminio, a partir de caolín natural. Patente CN1821175 del 2006 de los autores Zou Zhengguang Long (Cn). Esta patente muestra el proceso de preparación de un material compuesto cerámico en polvo de whisker de carburo de silicio y alúmina con caolín natural. El proceso incluye un paso en un molino de bolas, mezclado de los materiales, que incluye al caolín y una fuente de carbón, la cual puede ser grafito, carbón o un material orgánico con alto peso molecular, las proporciones deben ser 1 : 3. Posterior secado y se coloca dentro de un crisol de alúmina, en un horno, el cual se le produce vacío y se llena con argón hasta 1 atmósfera como medio de protección contra el oxígeno en el aire, se eleva la temperatura a una velocidad de 10 a 15 grado centígrado por minuto durante 2-4 horas y naturalmente enfriamiento dentro del horno para obtener polvo de carburo de silicio y alúmina en el nivel nanométrico. La patente emplea materiales baratos, un proceso de síntesis simple, fácil control del proceso.
Material compuesto cerámico de óxido de aluminio lining board y método de preparación. Patente CN1821165 del 2006, Wu Dongsheng (Cn). Este compuesto es preparado con polvo de alúmina (75-85%), acetona (2-4%), ebullidores de vidrio (1,5-3,5%), trietil dimetil silano (0,5-2,5%), titanato (4-6%) y cuarcita (5-10%). A través de mezclado, moldeo en frío, calentamiento entre 380 y 420°C durante 8-12 h, prensado en caliente a 18-22 MPa durante 0,5 a 2 h y enfriamiento a temperatura normal. El material compuesto de alúmina conocido como lining board tiene entre sus características resistencia a alta temperatura, antioxidante, elevada resistencia al desgaste, retardador de fuego, bajo coeficiente de fricción, relativa alta resistencia y es utilizable para uso en los campos de la industria mecánica, química y otras.
Empleo de una capa de cerámica para fortalecer un material compuesto en base a zinc o aluminio y proceso de obtención. Patente CN1793406 del 2006 de Fei Weidong Yue (Cn). Esta patente señala como una capa de pintura de ZnO cerámica puede reforzar a un material compuesto de base zinc o aluminio y su proceso de obtención. Lo cual resuelve el problema de la baja humectación y resistencia de la interfase de unión en los materiales compuestos comúnmente. El proceso incluye los siguientes pasos: adición de la fase cerámica en un sol de pintura cerámico de ZnO, formación de la fase de pintura ZnO, formación de un bloque preconformado y calcinación, además empleo de un proceso de extrución. La pintura de ZnO puede incrementar la fase cerámica y la posibilidad de mojar del material base. Además puede incrementar las propiedades mecánicas del material compuesto.
Reforzamiento de la capa de cerámica que contiene SnO2, en un material compuesto en base a magnesio o aluminio. Patente CN1769511 del 2006 por Fei Weidong Wang (Cn). Esta patente explica la obtención de una capa de fase cerámica que contiene SnO2
En materiales compuestos en base a aluminio o magnesio, el cual pertenece al campo de los materiales compuestos. Dicho material está formado por la capa de SnO2, la fase cerámica reforzante y el material base, que puede ser aluminio o magnesio. La película de SnO2 colocada por método químico o físico, puede incrementar la humectación de la fase y matriz e inhibir la reacción en la interfase, decrece la temperatura de deformación plástica del material compuesto y además tiene mejores propiedades mecánicas.
Material compuesto de aluminio reforzado con material cerámico granulado. Método de preparación. Patente CN1676644 del 2005 de Cui Chunxiang (Cn); Shen Yutian (Cn); Liu Shuangjin (Cn); Wang Ru (Cn); Qi Yumin (Cn); Wang Xin (Cn). Esta patente es sobre un material compuesto en base a aluminio reforzado por partículas de material cerámico granulado, está relacionado con una matriz de aluminio aleada. Sus componentes son: 2.5-15% TiN, 2.4-10% AIN, 4-6.5% Si, 0.5-1.5% Cu, 0.3-0.5% Mg, 0-0.8% Ni, 0-0.5% Ti, y el resto es Al, el método de obtención adopta un método de mezclado por fundición, donde se funden los materiales reforzantes se añaden al material base fundido, se modifica al material fundido y se produce la colada, se le da tratamiento térmico. El tamaño de la fase reforzante es de 5 a 10 micrómetros y el grado de vacío en el horno es de 1,3 . 10-3 Pa, la temperatura es de 670 a 800°C, el agente modificante se adiciona en la proporción de 1,8 g or kg del material compuesto que contiene de 1 a 6% sodio y polvo nanométrico de aluminio, el material compuesto de esta patente es más ligero, posee mayor módulo, mayor resistencia, buena conducción del calor y comportamiento al desgaste abrasivo y su preparación tiene bajo costo, la técnica es simple y puede reproducirse industrialmente.
Método de producción de material en base a aluminio reforzado con partículas cerámicas en un nanomaterial. Patente CN1667145 del 2005 deGu Wanli (Cn). Esta patente produce un material nano, de aluminio reforzado con partículas cerámicas y señala el método de su obtención. Su rasgo distintivo lo constituyen las partículas de cerámica con 21 nanómetros a 100 micrómetros y el polvo de aluminio, los que son mezclados en cantidades de 3 a 20% para el material cerámico y de 80 a 97% del aluminio. El polvo es pasado por un molino de bolas, entonces son puestos en un molde, sinterizados y fundidos, el material se deja enfriar a una velocidad no superior a 200°C por minuto. En el material compuesto, los granos del aluminio pueden ser menores que 100 nanómetros y de acuerdo a ello la dureza del material puede incrementarse hasta tres veces la del material común, si las dimensiones de los cristales se encuentran por debajo de 100 nanómetros. Por ejemplo, para un un material compuesto de aluminio con SiC al 10%, puede alcanzar una dureza de 200HV e incluso llegar hasta 260HV, pero el material no nanométrico solo alcanza cerca de los 60HV, la tenacidad a la rotura puede incrementarse de 110Mpa a 180 MPa.
El fuselaje de un avión en su parte exterior es un material compuesto tipo sándwich formado por fibras de carbono, fibras de vidrio, fibras de cerámicas y aleaciones de alumnio o titanio. Patente DE102004001078 del 2005 de Mueller Rainer (De); Turanski Petra (De); Oestereich Wilko (De); Reinelt Thorsten (De). El fuselaje de un avión tiene una estructura que consiste en un marco y horcones dentro de la capa exterior. Esta capa se produce a partir de un material no metálico resistente al fuego o de una pieza metálica resistente al fuego o mediante la combinación de ambos. El material no metálico puede ser fibra de carbón, vidrio o material cerámico o la combinación de estas. El metal es el aluminio, titanio o sus aleaciones dentro de una resina o recubiertos por esta.
6. Conclusiones
- Los materiales compuestos son aquellos que están formados por combinaciones de metales, cerámicos y polímeros. Las propiedades que se obtienen de estas combinaciones son superiores a la de los materiales que los forman por separado, lo que hace que su utilización cada vez sea más imponente sobre todo en aquellas piezas en las que se necesitan propiedades combinadas.
- Las técnicas de producción para CMM se clasifican básicamente en cuatro tipos según el estado de la matriz durante el proceso: en estado líquido (fundición, infiltración), en estado sólido (pulvimetalurgía (PM), sinterización, prensado en caliente), en estado semisólido (compocasting) y en estado gaseoso (deposición de vapor, atomización, electrodeposición), éste último de poca difusión, pero bastante utilizado en la obtención de CMM para el sector electrónico
- La pulvimetalurgia es uno de los métodos más empleados para la obtención de materiales compuestos con matriz de aluminios, entre los pasos seguidos para la obtención de estos materiales se encuentran: Mezclado de los polvos, Compactado, Sinterizado y Acabado del producto
Autor:
Dr. Lázaro Pino Rivero
Universidad Central de Las Villas. Cuba
Página anterior | Volver al principio del trabajo | Página siguiente |