Descargar

Radiactividad


Partes: 1, 2

    1. Radiactividad artificial
    2. Clases y componentes de radiación
    3. Clases de radiación ionizante y cómo detenerla
    4. Ley de la radiosensibilidad
    5. Riesgos para la salud

    (Redirigido desde Radioactividad)

    edu.red

    Diagrama de Segrè. El color indica el periodo de semidesintegración de los isótopos radiactivos conocidos, también llamado semivida.

    La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunos cuerpos o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, etc

    Es aprovechada para la obtención de energía, usada en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades entre otras).

    La radiactividad puede ser:

    • Natural: manifestada por los isótopos que se encuentran en la naturaleza.

    • Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales.

    Radiactividad natural

    En 1896 Becquerel descubrió que ciertas sales de uranio emitían radiaciones espontáneamente, al observar que velaban las placas fotográficas envueltas en papel negro. Hizo ensayos con el mineral en caliente, en frío, pulverizado, disuelto en ácidos y la intensidad de la misteriosa radiación era siempre la misma. Por tanto, esta nueva propiedad de la materia, que recibió el nombre de radiactividad, no dependía de la forma física o química en la que se encontraban los átomos del cuerpo radiactivo, sino que era una propiedad que radicaba en el interior mismo del átomo.

    El estudio del nuevo fenómeno y su desarrollo posterior se debe casi exclusivamente al matrimonio Curie, quienes encontraron otras sustancias radiactivas como el torio, polonio y radio. La intensidad de la radiación emitida era proporcional a la cantidad de uranio presente, por lo que dedujo Marie Curie que la radiactividad era una propiedad atómica. El fenómeno de la radiactividad se origina exclusivamente en el núcleo de los átomos radiactivos. Se cree que la causa que lo origina es debida a la interacción neutrón-protón del mismo. Al estudiar la radiación emitida por el radio se comprobó que era compleja, pues al aplicarle un campo magnético parte de ella se desviaba de su trayectoria y otra parte no.

    Con el uso del neutrino, partícula descrita en 1930 por Pauli pero no medida hasta 1956 por Clyde Cowan y sus colaboradores, consiguió describirse la radiación beta.

    En 1932 James Chadwick descubrió la existencia del neutrón que Wolfgang Pauli había predicho en 1930, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración eran en realidad neutrones

    Radiactividad artificial

    edu.red

    Símbolo utilizado tradicionalmente para indicar la presencia de radiactividad

    Se produce la radiactividad inducida cuando se bombardean ciertos núcleos estables con partículas apropiadas. Si la energía de estas partículas tiene un valor adecuado penetran dentro del núcleo bombardeado y forman un nuevo núcleo que, en caso de ser inestable, se desintegra después radiactivamente. Fue descubierta por los esposos Jean Frédéric Joliot-Curie e Irène Joliot-Curie, bombardeando núcleos de boro y aluminio con partículas alfa. Observaron que las sustancias bombardeadas emitían radiaciones después de retirar el cuerpo radiactivo emisor de las partículas de bombardeo.

    En 1934 Fermi se encontraba en un experimento bombardeando núcleos de uranio con los neutrones recién descubiertos. En 1938, en Alemania, Lise Meitner, Otto Hahn y Fritz Strassmann verificaron los experimentos de Fermi. Es más, en 1939 demostraron que parte de los productos que aparecían al llevar a cabo estos experimentos era bario .

    También en 1932 Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), describiendo poco después Hans Bethe el funcionamiento de las estrellas en base a este mecanismo.

    Clases y componentes de radiación

    edu.red

    Clases de radiación ionizante y cómo detenerlaLas partículas alfa (núcleos de helio) se detienen al interponer una hoja de papel. Las partículas beta (electrones y positrones) no son capaces de atravesar una capa de aluminio. Sin embargo, los rayos gamma (fotones de alta energía) necesitan una barrera mucho más gruesa, pudiendo los más energéticos atravesar el plomo.

    Partes: 1, 2
    Página siguiente