Descargar

Energía eólica II (página 2)

Enviado por Pablo Turmero


Partes: 1, 2
acute;a de aerogeneradores modernos. Esto se hace, sobre todo, porque la corriente de aire tras la torre es muy irregular (turbulenta). ¿Qué es lo que hace que el rotor gire? La respuesta parece obvia: el viento. Pero en realidad, no se trata simplemente de moléculas de aire que chocan contra la parte delantera de las palas del rotor. Los aerogeneradores modernos toman prestada de los aviones y los helicópteros tecnología ya conocida, además de tener algunos trucos propios más avanzados, ya que los aerogeneradores trabajan en un entorno realmente muy diferente, con cambios en las velocidades y en las direcciones del viento. Obsérvese la animación del perfil cortado (sección transversal) del ala de un avión. La razón por la que un aeroplano puede volar es que el aire que se desliza a lo largo de la superficie superior del ala se mueve más rápidamente que el de la superficie inferior. Esto implica (por efecto Venturi) una presión más baja en la superficie superior, lo que crea la sustentación, es decir, la fuerza de empuje hacia arriba que permite al avión volar. La sustentación es perpendicular a la dirección del viento. El fenómeno de la sustentación es desde hace siglos bien conocido por la gente que trabaja en la construcción de tejados: saben, por experiencia, que el material de la cara a sotavento del tejado (la cara que no da al viento) es arrancado rápidamente si no está correctamente sujeto a su estructura. F

edu.red Pérdida de sustentación y resistencia aerodinámica Ahora bien, ¿qué es lo que ocurre cuando un avión se inclina demasiado hacia atrás en un intento de subir más rápidamente? La sustentación del ala va de hecho a aumentar, pero en el dibujo puede verse que, de repente, el flujo de aire de la superficie superior deja de estar en contacto con la superficie del ala. En su lugar, el aire gira alrededor de un vórtice irregular (condición que también se conoce como turbulencia). Bruscamente, la sustentación derivada de la baja presión en la superficie superior del ala desaparece. Este fenómeno es conocido como pérdida de sustentación. Un avión perderá la sustentación si la forma del ala va disminuyendo demasiado rápidamente conforme el aire se mueve a lo largo de su dirección general de movimiento (por supuesto, no va a ser el ala propiamente dicha la que cambie su forma, sino el ángulo que forma el ala con la dirección general de la corriente, también conocido como ángulo de ataque, que ha sido aumentado en el dibujo de abajo). Observe que la turbulencia es creada en la cara posterior del ala en relación con la corriente de aire. La pérdida de sustentación puede ser provocada si la superficie del ala del avión (o la pala del rotor de un aerogenerador) no es completamente uniforme y lisa. Una mella en el ala o en la pala del rotor, o un trozo de cinta adhesiva, pueden ser suficiente para iniciar una turbulencia en la parte trasera, incluso si el ángulo de ataque es bastante pequeño. Obviamente, los diseñadores de aviones intentan evitar la pérdida de sustentación a toda costa, ya que un avión sin la sustentación de sus alas caerá como si fuera una piedra. En la página sobre control de potencia volveremos sobre este tema, y veremos cómo los diseñadores de aerogeneradores hacen uso deliberado del fenómeno de pérdida de sustentación cuando diseñan la palas del rotor. Resistencia aerodinámica Sin embargo, los diseñadores de aviones y los de palas de rotor no sólo se preocupan de la sustentación y de la pérdida de sustentación. También se preocupan de la resistencia del aire, conocida en el argot técnico como resistencia aerodinámica. La resistencia aerodinámica normalmente aumentará si el área orientada en la dirección del movimiento aumenta.

edu.red Para estudiar como se mueve el viento respecto a las palas del rotor de un aerogenerador, hemos fijado lazos rojos en los extremos de las palas del rotor, y lazos amarillos a una distancia al buje de aproximadamente 1/4 la longitud de la pala. A continuación dejamos los lazos flotar en el aire libremente (en el dibujo no se han tenido en cuenta las corrientes turbulentas creadas por las propias palas ni tampoco la fuerza centrífuga). Las dos imágenes de esta página le proporcionan una vista lateral de la turbina, y otra vista desde la parte delantera de la turbina. Dado que la mayoría de las turbinas tienen una velocidad de giro ? constante, la velocidad a la que se mueve la punta de la pala (velocidad periférica) en un aerogenerador típico suele estar alrededor de 64 m/s (en el centro del buje la veocidad, claro, es nula). A un cuarto de la longitud de la pala, la velocidad será entonces de 16 m/s. Los lazos amarillos, cerca del buje del rotor, serán llevados más hacia la parte de atrás de la turbina que los lazos rojos, en los extremos de las palas. Esto es debido a que la velocidad del viento visto desde un punto de la pala es la suma vectorial de la velocidad del viento (visto por un observador fijo) más la velocidad de ese punto de la pala, que a su vez es v = ?r (donde r es la distancia del punto al buje). ¿Por qué están torsionadas las palas del rotor? Las palas del rotor de los grandes aerogeneradores están siempre torsionadas. Visto desde la pala del rotor, el viento llegará desde un ángulo (ángulo de ataque) mucho mayor (más desde la dirección general de viento en el paisaje) conforme nos desplazamos hacia el buje (es decir, hacia la base de la pala) ? ver la siguiente diapositiva. Tal como vimos en la página sobre pérdida de sustentación, la pala de un rotor dejará de proporcionar sustentación si el viento llega con un ángulo de ataque demasiado grande. Así pues, la pala debe estar alabeada, con el fin de que el ángulo de ataque sea el óptimo a lo largo de toda la longitud de la misma. Sin embargo, en el caso particular de aerogeneradores controlados por pérdida aerodinámica ("stall controlled") es importante que la pala esté construida de tal forma que la pérdida de sustentación se produzca de forma gradual desde la raíz de la pala y hacia el exterior a velocidades de viento altas. El viento que llega a las palas del rotor de un aerogenerador no viene de la dirección en la que el viento sopla en el entorno, es decir, de la parte delantera de la turbina. Esto es debido a que las propias palas del rotor se están moviendo. Aerodinámica del rotor y diseño de las palas

edu.red ESTA PRESENTACIÓN CONTIENE MAS DIAPOSITIVAS DISPONIBLES EN LA VERSIÓN DE DESCARGA

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente